Survey Design 101

Part II: Analyzing and Interpreting Survey Findings

Okan Bulut, Ph.D.

Centre for Research in Applied Measurement and Evaluation University of Alberta

Hello!

I am Okan Bulut

Associate Professor in Measurement, Evaluation, and Data Science (MEDS) & Program Coordinator

You can find me (virtually) at:

bulut@ualberta.ca

www.okanbulut.com

1. Analyzing survey data

2. Interpreting survey findings

1 Analyzing survey data

Data analysis options based on the type of survey data

How to analyze survey data

- What type of variables (quantitative or qualitative) do you have in your survey data?
- What are the possible options for analyzing survey data?
 - Statistical and qualitative data analysis
 - Software programs (open-access vs. commercial)
- Who is the target audience for the findings of your survey?
- How do you plan to present your findings?
 - Thesis/dissertation
 - Publications, technical reports
 - Posters and presentations

Types of variables

Surveys typically yield two types of data:

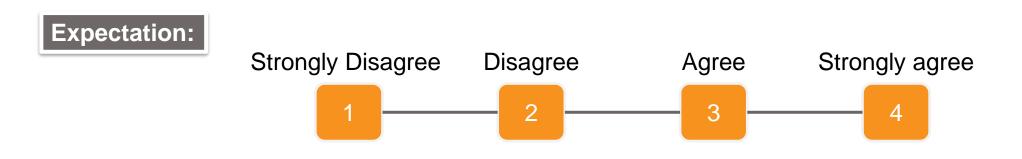
- Quantitative data (less common)
 - Age, income, height, weight
 - Time-related variables (e.g., years of experience)
 - Counts of things (e.g., children, books, credits earned)
- Qualitative data (more common)
 - Nominal categories (gender, race, province of residence)
 - Ordered categorical (level of satisfaction or agreement, frequency of a behaviour)
 - Descriptive comments (e.g., open-ended questions)

Descriptive statistics

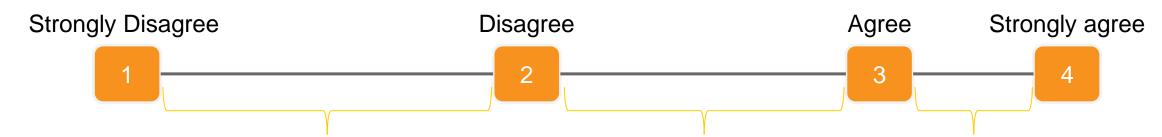
Some descriptive statistics that we can report for survey data include:

1. For quantitative variables:

Mean, median, standard deviation, minimum, and maximum


2. For qualitative variables (either ordinal or nominal):

- Nominal variables: Frequencies and proportions (i.e., percentages)
- Ordinal variables: Frequencies, proportions, median, and mode

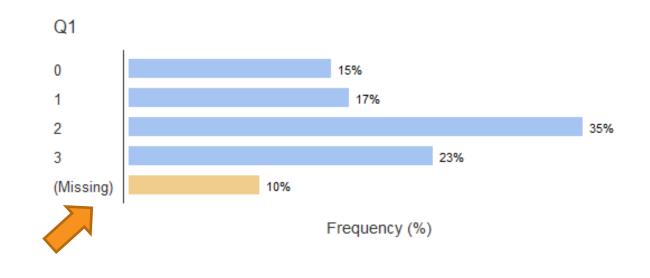


Avoid: Averaging ordinal variables

Ordinal variables such as Likert-scale questions should **not** be averaged or summed.

Reality:

Item and scale analysis


Check response frequencies

- Response categories (enough utilization of each response option)
- Skewness in the responses (no extreme skewness is desired)
- Levels of missing data (should be less than 10%)

Q1: I enjoy learning mathematics.

Response options are:

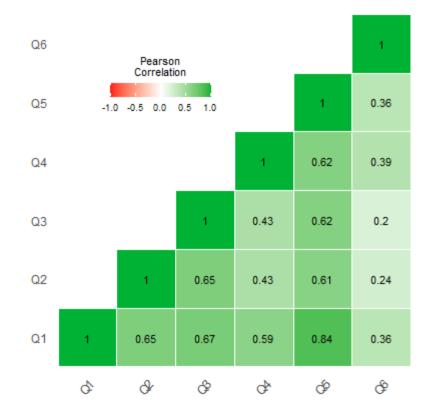
- 0 indicating "I strongly disagree"
- 1 indicating "I disagree"
- 2 indicating "I agree"
- 3 indicating "I strongly agree"

Item and scale analysis

2. Check the alignment among the questions

Questions focusing on "enjoying math" on the survey

Q1: I enjoy learning mathematics.


Q2: I wish have not to study Math. (reverse-coded)

Q3: Mathematics is boring. (reverse-coded)

Q4: I learn interesting things in mathematics class.

Q5: I like mathematics.

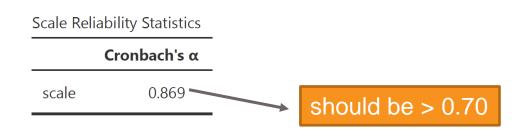
Q6: I think it's important to do well in mathematics.

Item and scale analysis

3. Check scale reliability (for a group of questions)

Questions focusing on "enjoying math" on the survey

Q1: I enjoy learning mathematics.


Q2: I wish have not to study Math. (reverse-coded)

Q3: Mathematics is boring. (reverse-coded)

Q4: I learn interesting things in mathematics class.

Q5: I like mathematics.

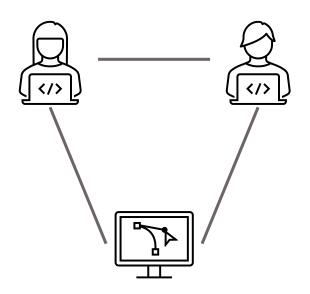
Q6: I think it's important to do well in mathematics.

Item Reliability Statistics

		if item dropped		
	item-rest correlation	Cronbach's α		
Q1	0.840	0.815		
Q2	0.678	0.846		
Q3	0.681	0.845		
Q4	0.618	0.855		
Q5	0.817	0.818		
Q6	0.372	0.887		

should be > 0.20

Analyzing qualitative responses


- Thematic analysis of open-ended responses
 - Generating initial codes or labels
 - Searching for themes or common patterns
 - Defining and naming each theme
- Word clouds using open-ended responses

- Text mining analysis
 - Sentiment analysis to extract emotions from the text
 - Topic modeling to create themes automatically

Statistical software programs

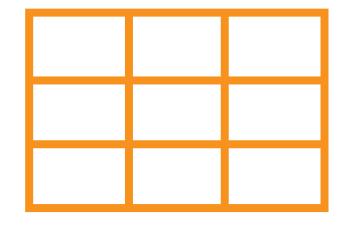
- Open-access (free) programs
 - jamovi https://www.jamovi.org/
 - JASP https://jasp-stats.org/
 - PSPP https://www.gnu.org/software/pspp/
 - R (no GUI) https://cran.r-project.org/

- Commercial programs
 - Microsoft Excel
 - IBM SPSS Statistics
 - Minitab

Software programs for qualitative data

Important: Qualitative software programs facilitate data storage, coding, retrieval, comparing, and linking; but they do **not** analyze data (Patton, 2015, p. 529)

- Open-access programs
 - <u>Compendium</u> for mapping and management of ideas and arguments
 - KH Coder for content analysis and text mining
 - R and Python (no GUI)
- Commercial programs
 - MAXQDA, <u>ATLAS.ti</u>, and <u>NVIVO</u>
 - Check out <u>UAlberta On the Hub</u> for discounted prices
 - discovertext for analyzing textual data


© Okan Bulut

2

Interpreting survey findings

How to interpret and report survey findings

Presenting survey findings

Tables



Figures

Tables vs. Figures

• Prefer tables if:

- The table will be used to look up individual values
- Precise information is required
- Both summary and original values are needed

Prefer figures if:

- The goal is to reveal relationships among whole sets of values
- The relationships between two or more variables are the main priority

Creating effective tables

Table 1. **Median** scores for items on the **Social Engagement Scale** by students' pass/fail status in mathematics.

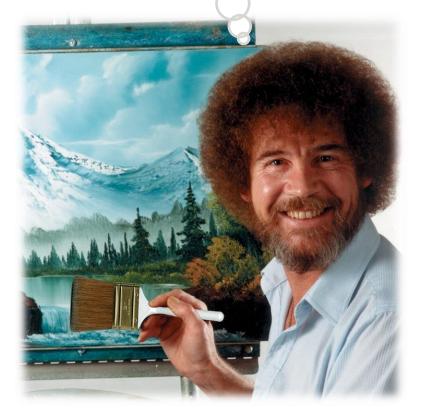
As a 9 th grade student, I	Fail	Pass	Total
care if I finish high school.	4	4	4
know my way around the school.	4	3	3
have many friends at school.	3	4	3
know what my teachers think about me.	2	3	3
ignore what other students think about me.*	2	2	2
come to school only because my friends are here	2	2	2

Note: Students failing mathematics n = 31; students passing mathematics n = 147. Response scale for the questions: 1 = Strongly disagree; 2 = Disagree; 3 = Agree; and 4 = Strongly Agree.

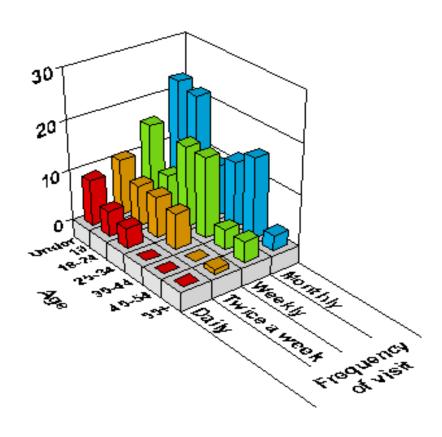
^{*} The question uses **negative wording**, and a low median indicates positive student behaviour.

Avoid: Tables with a single row

	Telephone Survey		City Insight Panel	
	Total Satisfied (4,5 ratings)			
	2014	2015	2014	2015
	n=400	n=400	n=1,126	n=1,630
Overall satisfaction with living in the City of Edmonton	77%	80%	75%	74%

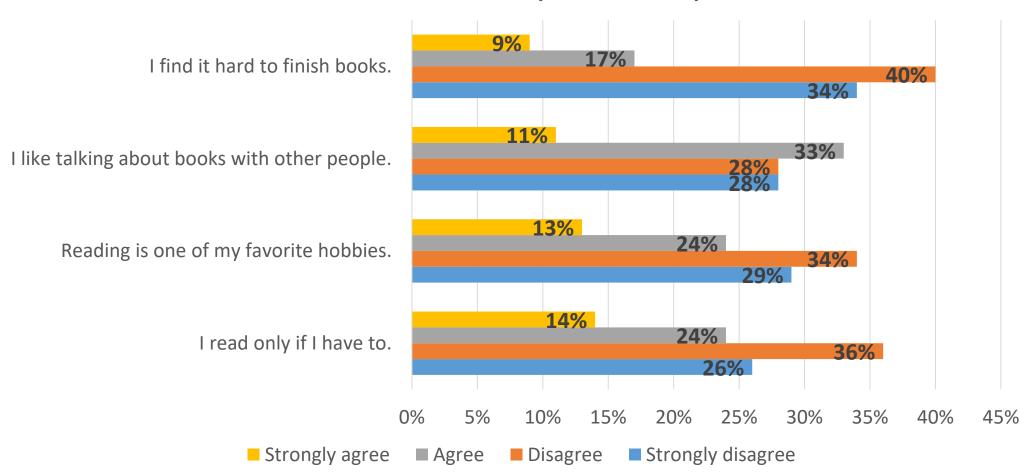

Source: 2015 Edmonton Citizen Perception Survey

 Figures can be very effective for summarizing survey findings.


- Consider the following elements
 - Colours
 - Shapes
 - Size
 - Font type, size, and colour
- Check out <u>my workshop notes</u> on visualizing survey items

We don't make figures and charts.
We just have happy little accidents.

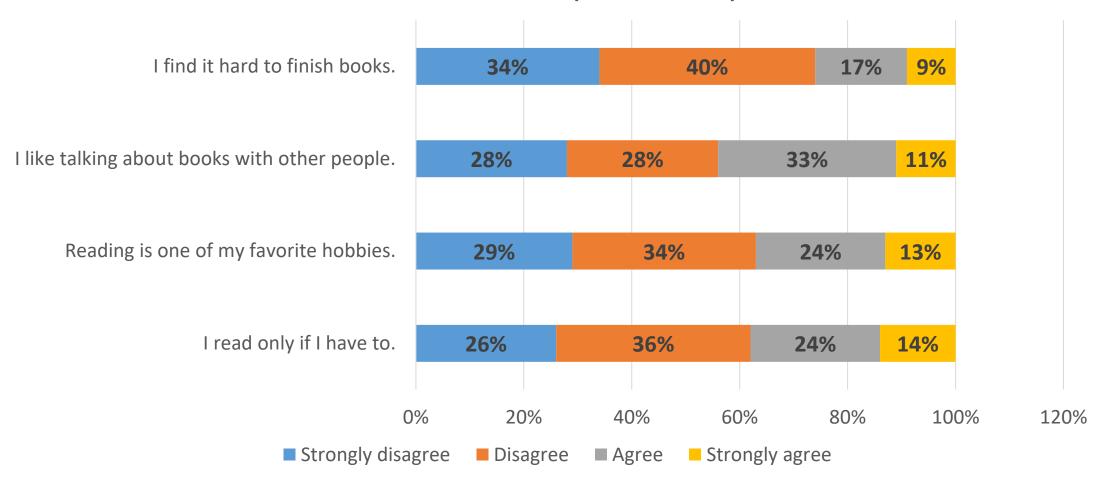
Avoid: Complex figures


Created by Darkhorse Analytics

www.darkhorseanalytics.com

Source: Darkhorse Analytics – Data looks better naked

Bar charts


PISA 2009 Results (Source: OECD)

Note: The data come from a random sample of Canadian students who participated in PISA 2009.

Bar charts

PISA 2009 Results (Source: OECD)

Note: The data come from a random sample of Canadian students who participated in PISA 2009.

"Some" tools to make great figures

- Microsoft Excel:
 - Bar charts, pie charts, scatter plots, line charts, etc.
 - Excel gives publication-quality graphs (a bit tedious...)
 - https://www.youtube.com/watch?v=d7JgmQCLgNg
- jamovi
 - Bar charts, scatterplots, boxplots, correlation matrix plots, etc.
 - Not very customizable but high-quality graphs
 - https://www.youtube.com/watch?v=NoG-YJcTtx8
- Websites to create graphs
 - RAWGraphs (https://rawgraphs.io/): Free and easy to use
 - Datawrapper (https://www.datawrapper.de/): Free plan; charts, tables, and maps
 - Canva Graph Maker (https://www.canva.com/graphs/): Beautiful infographics; values must be entered manually.

Thanks!

Any questions?