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Abstract 

It is a common practice to rescale data to assist the model estimation process.  This paper 

describes a case where care is called upon when interpreting the results after rescaling.  

The case is shown as associated with the lognormally distributed coefficient in a mixed 

logit model.  Implications of rescaling data on a normally distributed coefficient are also 

given for comparison.   
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Introduction 

The mixed logit (ML) model, sometimes also referred to as the random parameter logit or 

error component logit model (Train 2003), has proved to be flexible and useful in 

modeling taste heterogeneity in random utility models.  Also due to its simplicity 

compared with other flexible models (e.g., probit or mixed probit model), it has drawn a 

significant amount of attention in the economics, marketing, and transportation literature.  

This paper describes a problem in interpretation of the model results after rescaling the 

data that is specified to be associated with a lognormally distributed random utility 

coefficient.  Rescaling is a common practice used to alleviate numerical problems in 

estimation or simply for ease of interpretation.  However, in this paper we show that the 

t-ratio associated with the estimate of one particular parameter in a lognormally 

distributed coefficient is not independent from the weighting factor used in rescaling 

although the likelihood function and model fit should be identical for the mixed logit 

model before and after rescaling the data.  This finding prevents the attempt to interpret 

that estimated parameter directly.   

 

Mixed Logit Model 

Choice models can be used to describe under what conditions consumers are more likely 

to make a purchasing/participating decision versus not.  In these models, researchers 

often wish to assume, for example, the coefficient associated with the price variable to be 

non-positive.  If the price coefficient is to be specified as random corresponding to the 

belief that consumers may be different in their “taste” or sensitivity towards price, the 

density function of the coefficient cannot have any mass on negative values.  In the 
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literature researchers have applied a series of different types of distributions to satisfy this 

restriction, including lognormal, gamma, Rayleigh, and various truncated symmetric 

distributions.  Among these the lognormal distribution is by far the most commonly used 

distribution (e.g., Train 1998; Hensher and Greene 200).   

 

In a random utility model (RUM), the utility of consumer n choosing alternative i among 

J total available alternatives can be written as: 

 ninini eVU += , Ji ,...,2,1=       (1) 

where niV and nie are respectively the deterministic and stochastic portion of the utility 

from the perspective of the researcher.  Suppose three variables X1, X2, and X3 are used to 

directly describe niV , then in a parametric context, one can write: 

 332211 XXXV nnni βββ ++=        (2) 

X1 to X3 are respectively assumed to be an alternative specific constant (ASC), a 

continuous quality index, and the price variable multiplied by negative one.  To allow the 

model to be representative and incorporate both fixed and random coefficients, we 

specify 1β  as a fixed coefficient and n2β  and n3β as random coefficients with normal and 

lognormal distributions respectively.  We further assume that a variable Z (e.g., a 

demographic characteristic) can be used to explain the heterogeneity in the “average” of 

each of the two random coefficients across the sampled individuals.  The most popular 

parameterization for n2β  and n3β  in the literature are as follows:  

 aan Zaa εσβ ++= 102 , ( )1,0~ Normalaε   

 and          (3) 
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( )bbn Zbb εσβ ++= 103 exp , ( )1,0~ Normalbε  

 

For simplicity, we assume that aε and bε are independent.  Parameters 0α , 1α , 0b , 1b , aσ  

and bσ are to be estimated.  Substituting (3) into (2) and then (2) into (1), one generates 

the complete indirect utility function.  If nie is assumed to be iid Gumbel distributed, the 

implied choice probability can be represented by a mixed logit model with choice 

probability: 

 ( ) ( )∫= 3232 ββββ ddffPP nnnini       (4) 

 where 
( )
( )∑

=

= J

j
nj

ni
ni

V

V
P

1
exp

exp
 

This probability does not have a closed form but it can be simulated.  Suppose dβ is the 

d-th draw of n2β and n3β  from their corresponding density functions, ( )d
n

d
n

d
32 ,βββ =  

(draws of d
n2β and d

n3β are independent).  Given the total D numbers of draws, the 

simulated probability can be written as: 

 ( )∑
=

=
D

d

d
nini P

D
P

1
|1~ β         (5) 

The simulated log-likelihood function for individual n is: 

 ( )∑
=

=
J

i
nini PcSLL

1

~ln         (6) 

where 1=nic if alternative i is chosen by individual n.   
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The Problem of Rescaling  

It is well known that when the magnitudes of the variables in a model differ very 

significantly (say by a factor of 1000), the numerical procedure for maximization may 

have difficulty achieving convergence.  In this case, researchers usually proceed by 

scaling up (down) the excessively small (large) variables to help the maximization 

algorithm.  The requirement for scaling may come from the data directly.  For example, 

for a study on consumers’ choices of food items, the price variable may be measured by a 

small unit in the original data, such as cents rather than dollars, or in a small currency 

unit such as the Japanese Yen.  These indicate that the magnitude of the measures in the 

price data will be relatively large.  However, in the same model, all other variables may 

be relative small (e.g., dummy variables).  In these cases, scaling is often necessary.   

 

The model fit (LL value and 2ρ statistic) should be identical before and after rescaling 

and if any X1 to X3 is scaled up (down) by a certain factor, the associated 

coefficient 1β , n2β or n3β will be scaled down (up) by the same factor.  It is simple to show 

that the impact of rescaling X1 on 1β  is the same as if in a linear regression model.  To 

examine the impact of scaling on the “deeper” parameters of the random coefficients, one 

can write:  

 =22 Xnβ 22120 XZXaXa aaεσ++  

 and          (7) 

 =33 Xnβ ( )[ ] 310exp XZbb bbεσ++ = ( ) ( )( ) ( )( ) 310 expexpexp Xbb b
b

Z εσ  
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For the normally distributed coefficient, it can be easily seen that holding Z unchanged, if 

X2 is scaled up by a factor f, then the estimated parameters a0, a1, and aσ  will all be 

scaled down by f.  However, this is not obvious in the case of lognormally distributed 

coefficient.  Suppose X3 is scaled up by a factor f, then the expression 

( ) ( )( ) ( )( ) b
b

Zbb εσexpexpexp 10 will be scaled down by f.  In contrast to the case of the 

normal distribution, these terms are multiplicative rather than additive.  By further 

observing the three terms involved, it can be seen that parameter b1 is directly associated 

with variable Z which is not affected by rescaling, and bσ is directly associated with the 

random variable bε , which follows a standard normal distribution.  The only “free” 

parameter that can be scaled down in order for n3β to be scaled down by f is b0.  In other 

words, the estimated b0 after scaling must satisfy  

 
( )
( ) f
b
b

scalingafter

scalingbefore

=
0

0

exp
exp

        (8) 

 

In simulated maximum likelihood estimation, the asymptotic variance of parameters is 

the corresponding diagonal of the inverse Hessian matrix.  It is known that the exact 

Hessian for a mixed logit model often cannot be inverted due to the complexity of the 

model.  Usually the approximated Hessian is computed instead and by far the most 

commonly used method is the BHHH algorithm.  Under this algorithm, the Hessian 

matrix is approximated by the outer product of the first-order derivative of the SLL with 

respect to the parameters: 

 
′

∂
∂

∂
∂

=′
θθ

SLLSLLH         (9) 
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where H’ is the approximated Hessian andθ stands for all the parameters involved in the 

model.  For parameters defining the normally distributed coefficient, it is not difficult to 

show that 

 ( ) =∂
∂

=
∂
∂

aaa
SLLSLL

n
σθ β ,, 103

( )∑ ∑
= = ∂

∂
⎟⎟
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DP 1 1

22

1
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     (10) 

Since scaling the data does not affect the overall model result, niP~  and nidP  will remain 

unchanged after scaling.  It can be seen that if X2 is scaled up by f, then ( )aaa
SLL

σ,, 10∂
∂ will 

be scaled up by f as well.  This implies that the inverse of the H’ matrix will be scaled 

down by 2f , which in turn implies that the estimated standard errors of the parameters 

in n2β will be scaled down by f.  Combining the result we have on the impact of scaling 

on the parameter estimates themselves, the conclusion is that the t-ratios of these 

parameters will remain unchanged before and after rescaling the data.   

 

Similarly, for the lognormally distributed coefficient n3β , the first-order derivative of the 

SLL with respect to the parameters is: 

 ( ) =∂
∂

bbb
SLL

σ,, 10 ( )∑ ∑
= = ∂

∂
⎟⎟
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n
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β

,, 10

3

∂
∂

Γ        (11) 

However, given the expression of n3β in (3), it follows that: 
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If X3 is scaled up by f, then Γwill be scaled up by f as well.  However, since 

( )b

n

bb σ
β

,, 10

3

∂
∂

is a function of n3β̂ , n3β̂ is scaled down by f due to the scaling in X3.  

Therefore, the expression ( )bbb
SLL

σ,, 10∂
∂ will not be affected by the scaling in X3.  This 

further implies that the estimated standard errors for the parameters in n3β will remain 

unchanged as well.  However, it is noted previously that the estimated parameter b0 will 

be changed to maintain the relationship in (8).  The resulting effect is that the t-ratio for 

parameter b0 will not be constant before and after rescaling of the data.  In other words, 

the t-ratio for b0 is dependent on the scaling factor f.  To complicate the situation, there is 

no “correct” scaling factor f one can use.  Any arbitrary rescaling may be used, dollars or 

cents for example, and still generate identical model fit but with different t-ratios 

associated with the parameter b0.   

 

Concluding Remarks 

The findings of this paper can be summarized as follows: 

1. Scaling data will not affect the overall model fit and estimation.   

2. Scaling variable with a normally distributed random coefficient changes the 

magnitude of the estimated parameters of the random coefficient but does not 

change their corresponding t-ratios.   
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3. Scaling variables with a lognormally distributed random coefficient will not 

change the magnitude of the estimated parameters of the random coefficient 

except the constant term in the distribution.   

4. Scaling variables with a lognormally distributed random coefficient will not 

change the standard errors associated with the parameters associated with the 

random coefficient.  However, the implied t-ratio of the constant term will be 

affected.   

 

It is noticeable that these results hold regardless of whether variables explaining 

heterogeneity in mean random coefficients are specified (the Z variable).  Researchers 

who wish to estimate a lognormally distributed coefficient in a mixed logit model should 

be aware of these impacts of scaling and not interpret the constant term separately but 

rather interpret the overall mean or median of the lognormal term, which in this study are 

given as ( )( )2exp 2
10 bZbb σ++  and ( )0exp b .  The standard errors of these two measures 

can be obtained by the delta method or simulation.   
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