RURAL ECONOMY

A Net Present Value Model of Natural Gas Exploitation in Northern Alberta: An Analysis of Land Values in Woodland Caribou Ranges

> Grant Hauer Wiktor Adamowicz Robert Jagodinski

Project Report # 10-01

Project Report

Department of Rural Economy

Faculty of Agricultural, Life & Environmental Sciences University of Alberta Edmonton, Canada

A Net Present Value Model of Natural Gas Exploitation in Northern Alberta: An Analysis of Land Values in Woodland Caribou Ranges

Grant Hauer Wiktor Adamowicz Robert Jagodinski

Project Report # 10-01

The authors are, respectively, Adjunct Professor and Research Associate, Professor and Research Assistant.

A Net Present Value Model of Natural Gas Exploitation in Northern Alberta: An Analysis of Land Values in Woodland Caribou Ranges

Abstract

This report was prepared for the purpose of providing background documentation of inputs to be used in mathematical programming models and papers, which are being prepared for our research project: Ecological and economic tradeoff analysis of conservation strategies for woodland caribou. The report presents a simple net present value model of resource and land value for natural gas in northern Alberta. The variables in the model include costs (drilling, seismic, operating and capital); geological variables (stratigraphic intervals, booked reserves, future reserves); drilling variables (well densities, drilling success rates, and drilling depths); production data and prices. Each variable is described in detail and methods of derivation are provided. A map of net present values for natural gas at a spatial resolution of 250ha sections is provided and overlaid on top of caribou ranges to provide a spatial representation of where the most valuable reserves are in relation to caribou ranges.

JEL Classification: Q49, Q32, Q57

Keywords: Net present value, energy reserves, natural gas, caribou.

A Net Present Value Model of Natural Gas Exploitation in Northern Alberta: An Analysis of Land Values in Woodland Caribou Ranges

1. Introduction

This paper is one of a series of background documents prepared for the "Ecological and economic tradeoff analysis of conservation strategies for Woodland Caribou Project." The goal of the project is to explore tradeoffs of economic activities, arising from conventional oil and gas exploration and development, oilsands development, and forestry activities, with the protection and recovery of woodland caribou in northern Alberta. Tradeoffs will be presented in terms of a production possibilities frontier or as cost curves that show the opportunity costs of preserving various levels of woodland caribou habitat and population. This paper documents how opportunity costs, expressed in term of land values on a land section level (a land section is ~250 ha, 1/36 of a 10x10 km township), were developed for the natural gas sector. Two other papers under preparation document how land values were developed for conventional oil sector and the oilsands sector. Land values for both of these other sectors were developed in a similar way as for natural gas, but with enough differences to justify separate treatment.

In addition, this paper provides a very crude estimate of total opportunity cost by caribou range, which was achieved by overlaying the land values derived from natural gas exploitation and exploration, with caribou range boundaries. Cost curves for caribou habitat preservation as well as other economic analysis of caribou preservation are reserved for a summary report titled: **Ecological and economic tradeoff analysis of conservation strategies for Woodland Caribou.**

The study area for this project is shown in Figure 1. The caribou herd boundaries were obtained from the Alberta Caribou Committee (ACC). Industrial activity in both the forest and oil/gas sectors is modelled over the entire region, both inside and outside the herd ranges. The first step required to assess tradeoffs of caribou conservation and industrial activity is to quantify the resource values inside and outside each herd boundary.

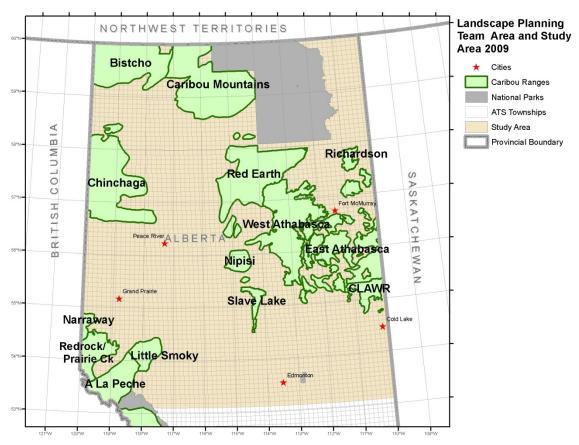


Figure 1. The study area.

2. Net present value model of natural gas exploitation

To quantify the value of oil and gas resources, we have developed a new model of the net present value (NPV) of subsurface resources that accounts for the costs and success probabilities of exploration and drilling activity and for the amount of resources remaining to be discovered. The model is first developed from the perspective of a company exploiting one tract (voxel) of resources, which is a combination of an area of land called a land section and geological (stratigraphic) interval.

The model assumes that each section and stratigraphic interval will be exploited separately. This means that cost savings that companies may exploit by planning for exploitation of more than one stratigraphic interval in one place will not be captured in our model. However, the assumption vastly simplifies our model and thus makes it easier to solve. The NPV model varies depending on whether the resources are booked or future resources. For resources that are booked the NPV model for one section/stratigraphic interval (tract) is as follows:

$$NPV = W^{s} \left(C^{DrillComp} + C^{Tieln} + C^{equip} + \sum_{t=1}^{L} \left(\sum_{g}^{G} v_{gt} \left(P_{gt} - C^{oper} - C_{gt}^{Roy} \right) \beta_{t} - T_{t}^{ax} \right) \right)$$
(1)

where

 $C^{DrillComp}$ = cost of drilling and completing wells;

 $C^{DrillAbandon}$ = the cost of drilling and abandoning wells;

 C^{TieIn} = the cost of tying in the gas well to the pipeline gathering and processing system.

 C^{equip} = the cost of equipment used at the well to extract gas or oil.

 v_{gt} = volume of component type g (methane, ethane, butane, propane, pentane,

light/medium oil, heavy oil) extracted per well in year t;

 W^{s} = number of successful wells required to extract gas given successfully drilled tract;

L = Lifespan of a well;

 P_{gt} = price of component g (methane, ethane, butane, propane, pentane) in year t;

 C^{oper} = unit cost of operating the well;

 β_t = a discount rate set to 0.96 which is equivalent to 0.04 interest rate;

 C_{gt}^{Roy} = royalties collected from component g in year t; T_t^{ax} = corporate taxes collected in year t.

The volume of gas extracted per well per year, v_{gt} , is computed based on the initial marketable reserves in the land section and geologic interval and a computed curve of volume extraction curve over time, which we call a volume extraction profile. The volume extraction profile also depends on the number of wells W^s used to extract the resources. The method of computing the extraction profile is described in detail in a following section. The length of time the well operates is implicit in the volume extraction profile and varies from 4 to 34 years (see Table A1).

Many resources classified as booked have wells with production history. In these cases equation 1 is modified as follows:

$$NPV = W^{s} \sum_{t=t_{o}}^{L} \left(\sum_{g}^{G} v_{gt} \left(P_{gt} - C^{oper} - C_{gt}^{Roy} \right) \beta_{t} - T_{t}^{ax} \right)$$

$$(2)$$

Here, the initial capital costs are sunk and therefore have been taken out of the equation. The only exception is that T_t^{ax} is affected by initial capital costs (see section on computation of taxes), but this does not change the fact that the initial capital costs are sunk and should be taken out of the equation if the wells are already operating on the landscape. Equation (2) is also different from equation 1 in that the summation over time begins at t_p rather than at 1. The variable t_p is the length of time in years that existing wells have been used to exploit the booked reserves on a particular tract. Here we also made a simplifying assumption and assumed that the all wells on a particular tract started operating at the same time. Where this was not the case, we computed an average

starting time for all the known wells still operating and used this for t_p . One other difference in equations (1) and (2) is in the computation of the volume extraction profile v_{gt} . In equation (1) the profile is based on the initial reserves and an assumed number of wells used to extract the resource, W^s , which is computed based on historical averages for the stratigraphic interval and play area (see below for a description). In equation 2, we already know the number of wells W^s . We also have information about the cumulative production of the wells from the tract and the length of time the wells have been operating. What remains to be estimated is how much longer the wells will operate, L- t_p and the volume extraction profile over this remaining period. The length of time, L, that the wells will operate is based on the chosen production profile. We choose the volume extraction profile based on cumulative production over the period t_p , rather than initial reserves, and the number of wells currently operating. Again, the method of choosing the extraction profile is explained below. A further complication is that the estimated volume extraction profile may forecast extraction of more or less gas than that remaining at time t_p . In cases, where the profile extracts more gas than remaining, we simply truncated the computed profile. In the case that the profile extracted less gas than that remaining, it was assumed that additional wells would be drilled to extract the remaining resources. The NPV model then reverts back to equation 1 since new wells are drilled and initial capital costs must be incurred.

If the tract was designated as having future potential (i.e., not explored but with the right geology), then NPV model was altered to consider the probabilities of successful and failed drilling:

$$ENPV = C^{seis} + p^{seis} \left(p^{success} W^{s} \left(C^{DrillComp} + C^{Tieln} + C^{equip} + \sum_{t=1}^{L} \left(\sum_{g}^{G} v_{gt} \left(P_{gt} - C^{oper} - C_{gt}^{Roy} \right) \beta_{t} - T_{t}^{ax} \right) \right) + p^{success} W^{sa} C^{DrillAbandon} + \left(1 - p^{success} \right) C^{DrillAbandon} W^{a} \right)$$

$$(3)$$

where ENPV (expected NPV) is computed for each well in a land section/stratigraphic interval combination and

 C^{seis} = the cost of seismic activities;

 p^{seis} = the probability that seismic and/or other information indicates that resources are present in the section and the interval;

 $p^{success}$ = probability that drilling activity on the section will result in discovery of oil and/or gas;

 W^{sa} = number of unsuccessful wells given successfully drilled tract;

 W^a = number of wells abandoned when drilling is unsuccessful;

and all other variables are defined as above. Equation 3 imbeds equation 1 within it and suggests a 3 stage process. In stage one, tracts with appropriate geology, are assessed using seismic testing for which there is a cost C^{seis} . The seismic testing yields an indicator that indicates whether resources are present in a section or not. The indicator, however, is not certain because subsequent drilling is not 100% successful. The second stage is drilling, which triggers additional costs associated with drilling. Drilling is successful with probability $p^{success}$ or unsuccessful with probability $1-p^{success}$. If drilling is successful the well is completed and the cost $C^{DrillComp}$ is incurred, whereas if the well is unsuccessful the cost is $C^{DrillAbandon}$. Based on past drilling data the number of wells is different depending on success or failure. If the drilling is successful in the tract (i.e., the tract has resources) the number of successful wells is W^s and the number of unsuccessful wells in the tract is W^{sa} and if the drilling is unsuccessful (i.e., the tract has no resources) the number of unsuccessful wells is W^a . The number W^{sa} in tracts with resources reflects the situation in which there are unsuccessful wells in a tract even if the tract contains resources. In stage 3 the wells are completed and operated to extract gas which leads to further costs of tying in the well to the gas pipeline gathering and processing system, equipment costs, and operating costs. Royalties and taxes are also collected and subtracted from revenues that are generated from operating successful wells $P_{gt}v_{gt}$. Note that the company would proceed with the first stage only if equation 3 is greater than zero. This requires that the condition for drilling, post seismic assessment, is also positive:

$$p^{success}W^{s}\left(C^{DrillComp} + C^{TieIn} + C^{equip}\right) + \sum_{t=1}^{L} \left(\sum_{g}^{G} v_{gt} \left(P_{gt} - C^{oper} - C_{gt}^{Roy}\right) \beta_{t} - T_{t}^{ax}\right) + p^{success}W^{sa}C^{DrillAbandon} + \left(1 - p^{success}\right)C^{DrillAbandon}W^{a} > 0$$

$$(4)$$

This condition is contained within the outside set of brackets in equation 3.

Figure 2 is a flow diagram outlining the stages in equation 3. Figure 3 is a flow diagram that reflects the overall processing of data that occurs in our model depending on whether resources are booked (equation 1 and 2) or future.

Equations 1 to 4 present an industrial perspective and concern profits. From the government side, the interest will be more in total value of the royalties and taxes, although there is still an interest in 1 to 4 because these profits must be positive if any royalties and taxes are to be generated. The net present value of royalties is:

$$NPV^{roy} = \sum_{t=1}^{L} \sum_{g}^{G} v_{gt} C_{gt}^{Roy} \beta_t \tag{5}$$

and the net present value of taxes is:

$$NPV^{tax} = \sum_{t=1}^{L} T_t^{ax} \beta_t \tag{6}$$

In the following sections, each of the variables identified in equations 1 to 4 are outlined in more detail. First, we describe the data used for reserves and later we will describe the profiles and other variables listed above.

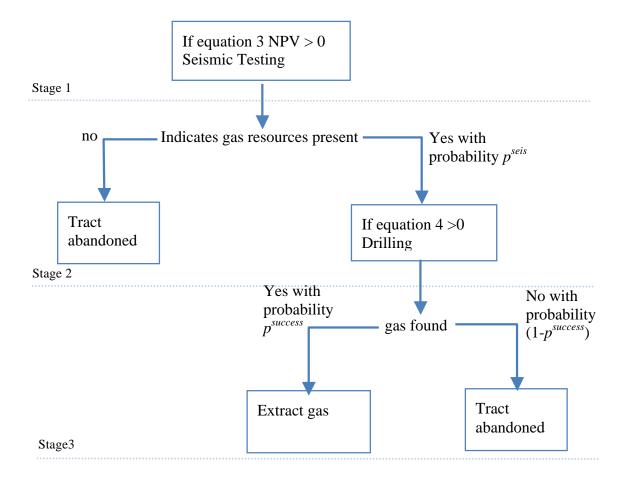


Figure 2. Shows the stages of gas exploration, discovery and extraction found in the expected NPV equation (3).

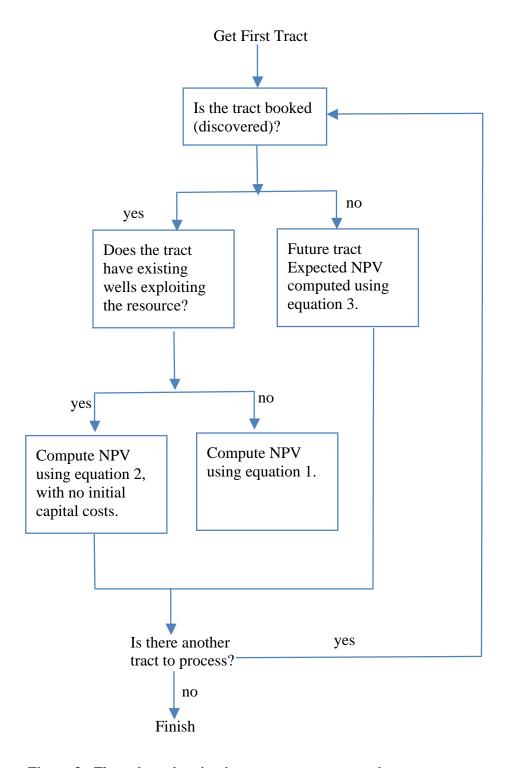


Figure 3. Flow chart showing how tracts are processed.

Reserves

For conventional natural gas we use Alberta's ultimate potential for conventional natural gas database (EUB/NEB 2005). Natural gas reserves and future potential of reserves are reported on a section basis, which is an administrative unit of land that is a subsection of a township. Townships are about 10x10 km in size although there is some variation. Sections are typically 1/36 of a township or approximately 277 ha, although they range in size from about 230 ha to 277 ha depending on township size. In the database a section is said to be 256 ha. In some cases there are fewer than 36 sections. For more information on Alberta's township system see Alberta Land Surveyor's Association website at http://www.alsa.ab.ca/alberta-s-township-system.

In each section, Alberta's ultimate potential database divides subsurface resources into vertical stratigraphic intervals based on the study of underlying rock layers (lithology) and geologic time (EUB/NEB 2005). The database recognizes 42 stratigraphic intervals. However, not every stratigraphic interval is represented in each section. Stratigraphic intervals are further subdivided spatially into play areas. This was based on similarity of geology within the stratigraphic intervals. In each play area several parameters are fairly consistent including depth, type of resource (oil, gas, bitumen), gas in place (GIP) per section, and drilling success rate (EUB/NEB 2005).

A combination of play area/stratigraphic interval and a section is referred to as a tract within the database. A tract is a 3D cell that is approximately 256 hectares and one stratigraphic interval in thickness. The volume of a 3D tract depends on both the area of the section (see above) and the thickness of the stratigraphic interval, which varies greatly, depending on the number and thickness of the geological zones that make up the stratigraphic intervals (EUB/NEB 2005). Conventional gas resources are reported by tract.

The following paragraphs follow the description of the ultimate potential database found in (EUB/NEB 2005). Estimation of ultimate potential for conventional natural gas proceeds by first classifying the resources within each tract as:

- booked,
- unbooked,
- unconfirmed,
- · bypassed,
- drilled,
- · no potential,
- future.

Tracts are classified in hierarchical fashion. If at least one well is drilled into a stratigraphic interval and that well has booked GIP, the whole tract is classified as

booked regardless of whether there are wells that do not have booked GIP or geological zones (subintervals) within the tract that do not have wells with no booked GIP. Booked tracts have GIP summed up from one or more recognized pools. Since booked gas pools may cross section boundaries there is the possibility of the presence of booked gas without the presence of a well. Therefore, some tracts may have booked GIP without the presence of the wells. Note that booked resources include both gas that has already been exploited and gas that has yet to be exploited.

Tracts that do not have GIP but that do have wells with more than 500,000 m3 of production are assigned the status of "unbooked". We found that very few tracts are assigned this status within the database, mainly because the administrative process of booking reserves takes time and hence production may be present before a pool has been declared booked. Since the GIP was not known at the time of database construction the tract was assigned the median GIP for the play area.

Unconfirmed tracts are neither booked nor unbooked but have had geological evaluations that indicate some potential. Unconfirmed tracts are assigned the median GIP for the play area. However, because the evaluations are incomplete and there is some uncertainty around about whether gas will actually be found, a probability of success is multiplied by the median GIP to give an estimate of the expected GIP per tract given the uncertainty. In addition, the probability cannot be determined precisely due to the uncertainty and thus the ultimate potential database gives three scenarios for the probabilities. These scenarios are simply named the low, medium and high cases and the probabilities associated with these scenarios are 0.15, 0.30, and 0.45 respectively.

Bypassed tracts do not have booked, unbooked or unconfirmed resources but like unconfirmed resources have had some testing that indicates it may be capable of production and for the time being is not being exploited. Again the GIP for a bypassed tract is the median GIP for the play and the GIP is assigned a probability to reflect the uncertainty for the presence of GIP. In most cases the probabilities assigned to the bypassed tracts are 0.05, 0.10 and 0.15 for the low, medium and high cases respectively.

Tracts are classified as drilled when there is evidence that a well has penetrated the tract and there is either evidence that the well(s) are not capable of production or at the least there is no evidence that the tract is capable of production.

Tracts having no future potential are classified based on the geology of the play, such as lack of trapping mechanisms for gas. Many of these tracts fall within stratigraphic intervals and these areas are labeled as barren play areas.

A tract is classified as future if it is not classified as any of the above (i.e., not booked, unbooked, unconfirmed, bypassed, drilled or no potential). Future tracts fall within play areas where gas has been found in other tracts within the play. GIP is estimated for these tracts based on information from the booked, unbooked, unconfirmed and bypassed tracts. Future potential is again a probability weighted GIP computed by multiplying a probability of success for the stratigraphic interval/play area by the median GIP for the

play. The success probabilities are unique to each play area and is based on the number of tracts in the play that have been drilled and where gas has been found divided by the number of tracts in the play that have been drilled.

Total ultimate potential for each play is computed by summing up all the gas resources over all the tracts in the play. Total ultimate potential is also the sum of booked, unbooked, unconfirmed, bypassed and future reserves. Marketable reserves for each tract are computed by multiplying the GIP by a fixed factor unique to each stratigraphic layer/play area. More information about the classification of resources and computations of ultimate potential can be found in EUB/NEB (2005).

Booked and unbooked reserves are mapped in figure 4.

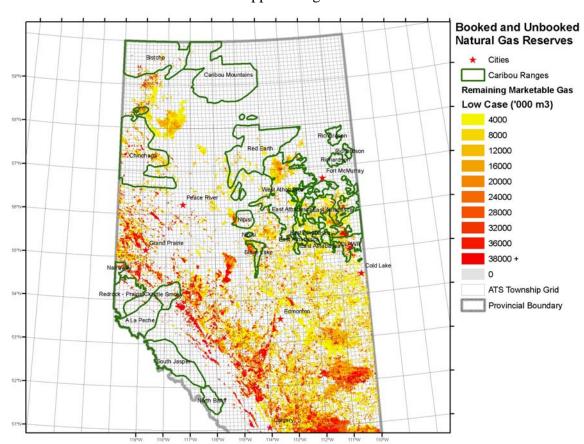


Figure 4. Booked and unbooked reserves according to the EUB/NEB ultimate potential database.

The ultimate potential estimates for each land section, the sum of the potential within each tract, is mapped in figures 5, 6 and 7 for the low, medium and high scenarios.

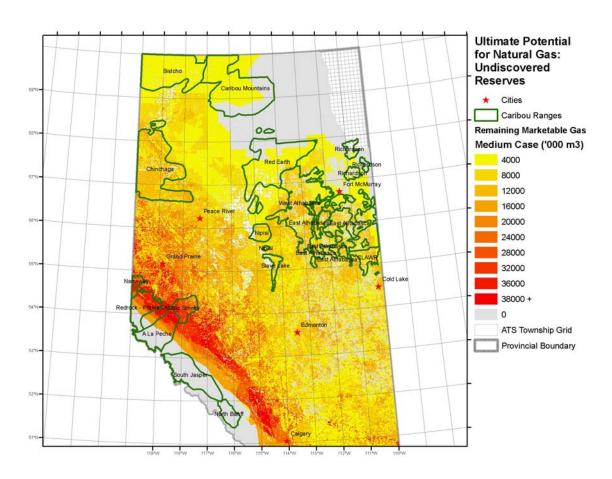


Figure 5. Estimated future, unconfirmed and bypassed resources for the medium scenario from the ultimate potential database.

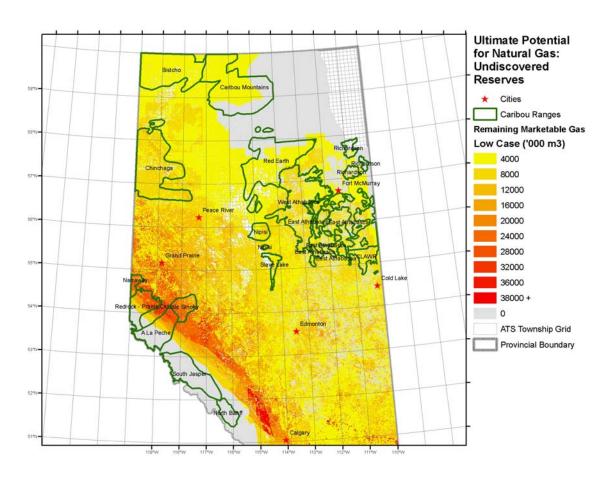


Figure 6. Estimated future, unconfirmed and bypassed resources for the low scenario from the ultimate potential database.

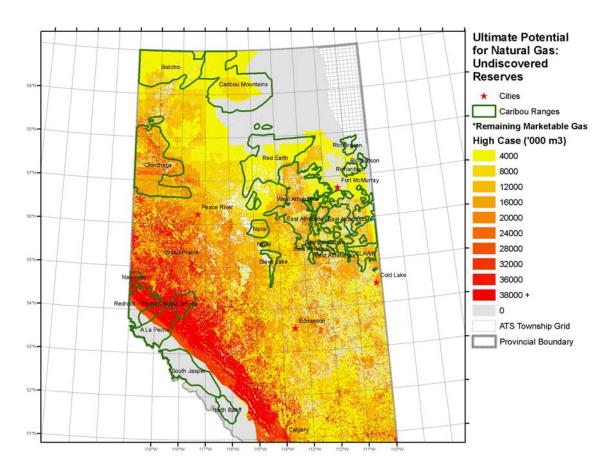


Figure 7. Estimated future, unconfirmed and bypassed resources for the high scenario from the ultimate potential database.

Volume Extraction over Time

The volume flow oil or gas extracted from a well (v_t) is a variable that responds to changes in prices. However, in this model, the volume flow over time is treated as a fixed set of parameters. This is done primarily for simplicity. In addition, our model removes much of the price fluctuation that would result in well shut-ins by modeling time in 5 year periods. In addition, since the purpose of our modeling exercise is to explore caribou tradeoffs and not price fluctuation, our future price scenarios are smooth projections into the future and do not include price fluctuations.

The volume flow parameters per gas well are derived from profiles presented in a technical background document for Alberta's Royalty Review of 2007 (see Alberta Department of Energy 2007a). Altogether, there are 42 profiles, which are shown in Table A2. There are 6 curves for each PSAC region (Petroleum Services Association of

Canada Regions). For each curve the table shows gas flow in 1000s of m3 for each year, the total flow of gas over the life of the well and the proportion of yearly gas flow with respect to the total flow over the life of the well.

Our approach was to tie the production profiles to each tract based on the amount of marketable gas in the tract, the total flow over a well's life and assumptions about the number of wells that would be used to extract the gas from the tract. For example, if the total amount of marketable gas available in a tract was 2000 m3, and we assume only one well would extract this gas, and if we choose curves specific to PSAC region 3 then this tract would be between curve 1 and 7. We then create weighted average of the two curves proportional to the distance 2000 m3 is between 1133 and 3681 thousand m3 which are the total flows for the two wells. This gives us our expected extraction profile of gas for that tract. This can be expressed in more general terms as a formula,

where:

$$v_{t}^{R/W^{s}} = \begin{cases} \frac{R/W^{s}}{P_{l}} \times v_{t}^{P_{l}} \text{ when } \frac{R}{W^{s}} \leq P_{l} \\ \left(1 - \frac{\left(R/W^{s} - P_{l}\right)}{\left(P_{l+1} - P_{l}\right)}\right) \times v_{t}^{P_{l}} + \frac{\left(R/W^{s} - P_{l}\right)}{\left(P_{l+1} - P_{l}\right)} \times v_{t}^{P_{l+1}} \text{ when there is a } P_{l} \text{ and } P_{l+1} \text{ such that } P_{l} \leq \frac{R}{W^{s}} \leq P_{l+1} \\ \frac{R/W^{s}}{P_{42}} \times v_{t}^{P_{42}} \text{ when } \frac{R}{W^{s}} > P_{42} \end{cases}$$

R is the quantity of gas reserves in the tract in thousands of m3;

 W^s is the number of wells extracting gas in the tract;

 v^{R/W^s} is the volume extracted from a well in a tract in year t with R thousand m3 of reserves where there are N wells extracting gas;

 $P_1, P_2, \dots, P_1, P_{1+1}, \dots, P_{41}, P_{42}$ is a list of 42 total production levels over well life (see Table A1) ordered from smallest to largest;

 P_1 is the well total production level which is the greatest of all production levels less than or equal to R/W^s and P_{1+1} is the well in the list with the smallest total production of all wells with greater production than R/W^s .

Figure 8 gives a graphical representation of the above procedure. We have also set up the model to create production profiles that are PSAC region specific. Hence, instead of ordering all 42 wells we first identify the PSAC region and then order the wells profiles (6 in each PSAC region for Alberta) before performing the above operation.

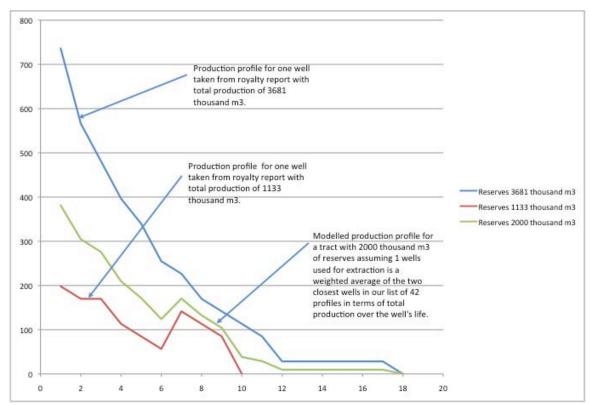


Figure 8. Profiles of production from tracts with reserves are weighted averages of the two closest wells from table A1 in terms of total production.

The above procedure for determining well production profiles for individual tracts was followed as described for tracts with previously unexploited booked reserves, unbooked reserves, unconfirmed reserves, and future potential tracts. For booked reserves in which exploitation was already underway the procedure was modified based on cumulative production at the age of the well in years rather than total production over the lifespan of the well. A weighted average production profile for remaining production was constructed using a similar formula. However, the list of total production over well life $P_1, P_2, \ldots, P_1, P_{1+1}, \ldots, P_{41}, P_{42}$ was replaced with a similar list of cumulative production for the average age of the wells currently extracting gas from the tract. In some cases the resulting profile would imply a larger amount of extraction than was actually remaining in the database. In this case the profile was simply truncated so that the production exactly matched the remaining reserves. In other cases the remaining production did not use up the remaining reserves. In that case a new well was modeled and the production profile was constructed as described above.

Number of Wells per Tract

In the previous section W^s and W^a denote the number of wells drilled conditional on if the tract is successfully drilled and the number of wells drilled conditional on if the tract is abandoned. Modelling the number of wells drilled is potentially a complex issue because there are many factors that determine how many wells will be drilled to exploit resources in a particular tract. These include the number of discrete pools over which the gas is

distributed, the proximity of other pools in other layers and whether old wells can be drilled deeper or whether it is possible for new wells to be drilled out from part way down the main drill hole. Since we are not in possession of such information, we decided to base the number of wells on past data for each stratigraphic interval and play area. Specifically, W^s , the number of wells required to extract gas reserves located in a tract, was based on an average number of successful wells per successfully drilled tract. This average was computed for all combinations of stratigraphic interval and play area. The variable, W^{sa} , which is the number of unsuccessful or abandoned wells found in a successfully drilled tract. Again this was computed for each strata/play combination. The W^a is the number abandoned wells per tract in which no gas was found. This was computed as the number of wells found on unsuccessful tracts. The data used to compute these averages was obtained by exporting all of the well data from GeoScout. The results are found in table 1.

Table 1. Average number of wells per tract for successful and unsuccessful wells.

Stratigraphic Interval	Play ID	Ave # of Successful Wells give Successful drilling	Ave # of unsuccessful wells on successful sections	Ave# of wells on unsuccessful sections
1	1	2.10	0.02	1.13
1	2	1.62	0.10	1.11
1	3	1.04	0.00	1.00
2	1	1.86	0.00	1.00
2	2	2.26	0.22	1.09
2	3	1.79	0.04	1.05
2	4	1.97	0.10	1.13
3	1	1.58	0.04	1.00
4	1	1.50	0.50	2.00
4	2	5.21	0.00	1.00
4	3	1.71	0.03	1.17
4	4	1.59	0.02	1.02
4	10	1.30	0.47	1.17
5	1	4.82	0.03	1.23
5	2	1.65	0.04	1.21
5	3	1.96	0.02	1.00
6	1	1.73	0.00	1.00
6	2	2.15	0.01	1.17
6	10	1.00	0.00	1.16
7	1	1.16	0.00	NA
7	2	1.00	0.00	NA
7	3	1.48	0.00	1.00
8	1	1.28	0.19	1.13
8	2	1.95	0.14	1.12
8	3	1.39	0.11	1.12
8	4	1.65	0.04	1.07
9	1	2.95	0.67	1.14
9	2	1.00	0.00	1.00
10	1	1.39	0.03	1.04
10	2	2.36	0.51	1.07

Table 1 continued. Average number of wells per tract for successful and unsuccessful wells.

Stratigraphic Interval	Play ID	Ave # of Successful Wells give Successful	Ave # of unsuccessful wells on successful	Ave# of wells on unsuccessful sections
		drilling	sections	
11	1	1.39	0.04	1.04
11	2	1.04	0.00	1.04
11	3	3.67	0.03	1.13
12	1	2.25	0.03	1.00
12	2	1.12	0.00	1.00
12	3	1.99	0.02	1.08
13	1	1.21	0.14	1.05
13	2	1.33	0.03	1.05
13	3	1.68	0.11	1.04
13	4	1.36	0.04	1.04
13	5	1.53	0.04	1.07
13	6	1.21	0.01	1.08
14	1	1.20	0.04	1.05
15	1	1.11	0.00	1.12
15	2	2.13	0.28	1.19
15	3	1.96	0.31	1.28
15	4	1.11	0.09	1.07
16	1	2.00	0.07	1.79
16	2	1.26	0.02	1.07
16	3	1.15	0.03	1.05
16	4	1.45	0.02	1.02
17	1	1.33	0.01	1.02
18	1	1.93	0.13	1.13
18	2	1.07	0.18	3.50
19	1	1.00	0.00	1.00
19	2	1.20	0.03	1.10
19	3	1.32	0.03	1.03
20	1	1.76	0.24	1.11
20	2	1.18	0.10	1.05
20	3	1.06	0.06	1.04
21	1	1.36	0.39	1.33
21	2	5.00	1.64	1.24
21	3	1.27	0.27	1.13
21	4	1.32	0.06	1.08
21	5	1.00	0.00	1.00
22	1	1.00	0.00	1.00
22	2	1.60	0.08	1.06
22	3	1.21	0.07	1.09
22	4	1.30	0.02	1.02
23	1	1.16	0.04	1.07
24	1	1.06	0.39	1.11
24	2	1.82	0.13	1.05
25	1	2.47	0.25	1.12
26	2	1.56	0.10	1.09

Table 1 continued. Average number of wells per tract for successful and unsuccessful wells.

Stratigraphic Interval	Play ID	Ave # of Successful Wells give Successful	Ave # of unsuccessful wells on successful	Ave# of wells on unsuccessful sections
27	1	drilling 1.00	sections 0.00	NA
27	2	1.44	0.13	1.07
28	1	1.05	0.00	1.00
28	2	1.60	0.14	1.08
29	1	1.00	0.00	1.00
29	2	1.32	0.07	1.03
30	1	1.10	0.06	1.03
31	1	1.23	0.30	1.23
31	2	1.59	0.70	1.36
31	3	1.24	0.12	1.07
31	4	2.04	0.20	1.09
31	5	1.10	0.07	1.05
32	1	1.20	0.07	1.05
32	2	1.06	0.00	1.00
33	1	1.00	0.00	1.00
33	2	1.59	0.41	1.29
33	3	1.56	0.16	1.06
33	4	1.27	0.07	1.04
33	5	1.03	0.00	1.05
34	1	1.51	0.35	1.14
34	2	1.93	0.45	1.17
34	3	1.04	0.08	1.04
34	4	1.22	0.05	1.08
35	1	1.57	0.18	1.06
36	1	1.30	0.21	1.17
36	2	1.19	0.26	1.15
36	3	1.20	0.18	1.10
36	4	1.09	0.14	1.09
36	5	1.08	0.00	1.04
36	6	1.64	0.58	1.18
36	7	1.18	0.06	1.05
36	8	1.00	0.00	1.06
37	1 2	1.61 2.69	0.12 0.31	1.26 1.05
37 37	3	1.26	0.14	1.03
37	4	1.23	0.14	1.14
37	5	1.23	0.10	1.07
37	6	1.12	0.03	1.07
37	7	1.65	0.03	1.00
38	1	1.44	0.10	1.04
38	2	1.09	0.08	1.05
38	3	1.17	0.10	1.03
38	4	1.70	0.22	1.11
38	5	1.85	0.46	1.16

Table 1 continued. Average number of wells per tract for successful and unsuccessful wells.

Stratigraphic Interval	Play ID	Ave # of Successful Wells give Successful drilling	Ave # of unsuccessful wells on successful sections	Ave# of wells on unsuccessful sections
38	6	2.17	0.64	1.30
38	7	1.17	0.00	1.00
38	8	1.74	0.35	1.16
38	9	1.23	0.19	1.19
39	1	1.19	0.09	1.04
39	2	2.00	0.33	1.11
39	3	2.23	0.17	1.02
39	4	1.12	0.12	1.15
39	5	1.14	0.08	1.02
39	6	1.01	0.04	1.00
39	7	1.05	0.00	1.19
39	8	1.45	0.14	1.09
39	9	1.57	0.23	1.00
40	1	1.28	0.09	1.02
40	2	2.05	0.68	1.21
41	1	1.19	0.02	1.00
41	2	1.01	0.00	1.04
42	1	2.52	0.49	1.10
42	2	2.03	0.27	1.04
42	3	1.85	0.26	1.11
42	4	1.23	0.12	1.04
42	5	2.00	0.00	1.10

Attaching wells to stratigraphic intervals

Within the energy component of our model depths of various strata are essential to the analysis of drilling costs. The deeper a proposed well is the greater the drilling costs. While depth data was used in constructing the Ultimate Potential Database is was not included in the database itself and was thus not available (EUB/NEB 2005). However, drilling depth data for many thousands of wells is available. Our approach for estimating depth for stratigraphic intervals, was to first attach wells to stratigraphic intervals and then use the depth data from the wells to estimate depths of stratigraphic intervals. Available well data was supplied by Geoscout, which is a software program that allows the user to view maps showing the location of wells, call up detailed information for each well in the province, and other functions. The program also allows the user to create output databases of well data such as production, depth, pool names and formations penetrated. Our approach was to link wells to the stratigraphic layers based on a table (see EUB/NEB 2005) in the Ultimate potential data that tells which formations are incorporated in each stratigraphic layer. This table is recreated as Table 2. While the approach was simple in concept it was more difficult to execute because the formation names in Geoscout were not standard and/or there were many sublayers within formation. Hence, we need to link formation names in Geoscout to the formation names seen in the right column of Table 2. The steps involved in this process were specifically:

- 1. Enumerate the formation names in the geoscout database. In the Geoscout database these fields were labeled Proj Fm., Formation at TD (total depth), etc.
- 2. Cross reference the formation names with the table in the appendix of report r2005-a (see table 2 above). If there is a direct match assign the name of the stratigraphic ID in the column to the right of the formation name. In many cases the formation name matched a name in the right column of Table 2 exactly.
- 3. However, in many cases project name did not match exactly to the names in Table 2. A second table was created that that matched many variations of formation names and others in the Table 2 to the stratigraphic IDs. This table is many thousands of lines long and cannot be replicated here. Table 3 is a small excerpt from this larger table.

Table 2. Shows how formations are related to stratigraphic intervals in the ultimate potential database. The table is recreated from r2005-A report by EUB/NEB.

1 Paskapoo&Edmonton 2 BellyRiver Wapiti, Bearpaw, Belly River, Brazeau, Oldman, Foremost, Ribstone Creek, Victoria, Brosseau 3 Chinook Chinook MilkRiver MilkRiver MilkRiver MedicineHat 6 Colorado Colorado 7 LowerColorado&Badheart 8 Cardium Dunvegan Dunvegan Dunvegan Dunvegan Dunvegan 11 SecondWhiteSpecks 12 FishScales FishScales FishScale, Barons, BaseFishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte BasalColorado Viking-Blairmore, MountainPark, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster	Strat ID Stratigraphic interval	Zones (group, formation, member)
2 BellyRiver Wapit, Bearpaw, Belly River, Brazeau, Oldman, Foremost, Ribstone Creek, Victoria, Brosseau 3 Chinook 4 Milk River MikRiver MikRiver MikRiver MikRiver MikRiver MikRiver MikRiver 5 MedicineHat 6 Colorado 7 LowerColorado&Badheart 8 Cardium 9 DecFreek 10 Durwegan 11 SecondWhiteSpecks 12 FishScales 12 FishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte 14 BasalColorado 15 Mannville Above Glauconitic Cle arwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cle arwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cle arwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Viking, Supers, Suburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital 19 Cadomin 19 Cadomin Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morfessey 21 RockCreek&Sawtooth Swift, Sawfooth, Rock Creek 25 Boundary Baldonnel B		
3 Chinook 4 MilkRiver 5 MedicineHat 6 Colorado 7 LowerColorado&Badheart FirstWhiteSpecks, Badheart, Lower Colorado 7 LowerColorado&Badheart FirstWhiteSpecks, Badheart, Lower Colorado 8 Cardium 9 DoeCreek 10 Durnvegan 11 SecondWhiteSpecks 12 FishScales 13 Viking 13 Viking 13 Viking 14 BasalColorado 15 MannvilleAboveGlauconitic 15 MannvilleAboveGlauconitic 16 Glauconitic 17 Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, MountainSerbin, Beasal Quartz, Ellerslie, Cutbank, Taber, Detirial 19 Cadomin 10 Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RocKcreek&Sautooth 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 24 CharlieLake Charlie Lake 25 Boundary Belloy Bello		
4 MilkRiver 5 MedicineHat 6 Colorado Colorado 7 LowerColorado&Badheart FirstWhiteSpecks, Badheart, Lower Colorado 7 LowerColorado&Badheart FirstWhiteSpecks, Badheart, Lower Colorado 8 Cardium 9 DoeCreek 10 Dunvegan 11 Sec ondWhiteSpecks Second White Specks 12 FishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte 14 BasalColorado 15 Mannville Above Glauc onitic Rapids, SpiritNer, Notikewin, McLaren, Waseca, Faiher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster 16 Glauconitic Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw Moulton 17 Ostracod Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital 19 Cadomin Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg, Banff, Jurassic, Jurassic Detrital 23 Baldonnel Bal		
5 MedicineHat 6 Colorado Colorado Colorado 7 LowerColorado&Badheart 8 Cardium 9 DoeCreek DoeCreek 10 Dunvegan 11 SecondWhiteSpecks Second White Specks 12 FishScales FishScale, Barons, BaseFishScales 13 Viking Bowlstand, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte 14 BasalColorado 15 Mannville Above Glauconitic Rights, SprintReyr, Notikewin, McLaren, Waseae, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster 16 Glauconitic Home, Glauconitic, Cummings, Cummings-Dina, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Vakiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst-Swift, Basal Quartz, Ellersile, Cutbank, Taber, Detrital 19 Cadomin Dalhousie, Cadomin Solikanas sin Kootenay, Nikanassin, Morrissey 21 RocKcreek&Sawtooth Swift, Sawtooth, Rock Creek Nordegg, Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 23 Baldonnel Baldonnel Baldonnel Baldonnel Baldonnel Baldonney Bundary Bundary Bundary Bundary Belloy Belloy Belloy Belloy Belloy Belloy Belloy Belloy Belloy Busky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Bunda Baldon Baldon Baldon Baldon Baldon Baldon Bellow Bundary Belloy Busky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Bunda Baldon Baldo	3 Chinook	Chinook
6 Colorado 7 LowerColorado&Badheart FirstWhiteSpecks, Badheart, Lower Colorado 7 LowerColorado&Badheart 8 Cardium 9 DoeCreek 10 Dumvegan Dumvegan 11 SecondWhiteSpecks Second White Specks 12 FishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte BasalColorado 15 Mannville Above Glauconitic Viking-Blairmore, MountainPark, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpirifRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Celarwater, General Petroleum, Rex, Llugdminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Ustracod Ustra	4 MilkRiver	MilkRiver
7 Lower Colorado & Badheart First MiniteSpecks, Badheart, Lower Colorado 8 Cardium 9 DoeCreek DoeCreek 10 Dunvegan 11 SecondWhiteSpecks Second White Specks 12 FishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte 14 BasalColorado 15 Mannville Above Glauconitic Viking-Blairmore, MountainPark, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, Spirifixer, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Ostracod Ostracod Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital 19 Cadomin Dalhousie, Cadomin Zo Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel 24 Charlie Lake Charlie Lake Baldonnel Charlie Lake Baldonnel Charlie Lake Charlie Lake Baldonnel Baldonnel Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Charlie Lake Baldonnel Charlie Lake Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Baldonnel Charlie Lake Baldonnel Baldonnel Baldonnel Baldonnel Baldonnel Baldonnel Charlie Lake Baldonnel B	5 Medicine Hat	MedicineHat
8 Cardium 9 DoeCreek Second White Specks Second White Specks 12 FishScales FishScales FishScales Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte 14 BasalColorado Ba	6 Colorado	Colorado
9 DoeCreek 10 Durwegan Durwegan Durwegan 11 SecondWhiteSpecks Second White Specks 12 FishScales FishScales FishScale, Barons, BaseFishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte BasalColorado 15 Mannville Above Glauconitic Viking-Blairmore, MountainPark, Blaimore, Mannville, Upper Mannville, Colony, Grand Rapids, Spritther, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton To Ostracod Ostracod Ostracod Ostracod Sellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin Dalhousie, Cadomin Zo Nikanassin Sootenay, Nikanassin, Morrissey Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel Aldroway Boundary Boundary Boundary Boundary Boundary Belloy Buesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Shunda Banff	7 LowerColorado&Badheart	FirstWhiteSpecks, Badheart, Lower Colorado
10 Durvegan 11 SecondWhiteSpecks Second White Specks 12 FishScales FishScales FishScales FishScales FishScales FishScales BasalColorado DasalColorado SasalColorado SasalColorado SasalColorado SasalColorado SasalColorado SasalColorado SasalColorado SasalColorado Si Mannville AboveGlauconitic Clearwater, Notikewin, McLaren, Waseer, Ealher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Clearwater, General Petroleum, Rex, Lloydminster 16 Glauconitic Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton Ostracod Ostracod Ostracod Stracod Stracod Si Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin So Nikanassin Kootenay, Nikanassin, Morrissey Stracod Swift, Sawtooth, Rock Creek Sautooth Swift, Sawtooth, Rock Creek Sabundary Saladonnel Baldonnel Baldonnel Baldonnel Charlie Lake Charlie Lake Charlie Lake Se Boundary Boundary Se Halfway Flaffway Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Sa Pekisko Shunda Shunda Shunda Shunda Shunda Shunda Shunda Shunda Shunda Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, Cookingl.ake Belucy-Oith, Gliwood-GraniteWash Gliwood-GraniteWash Gliwood-GraniteWash Gliwood-GraniteWash Gliwood-GraniteWash SuphurPoint SulphurPoint	8 Cardium	Cardium
11 SecondWhiteSpecks 12 FishScales 13 Viking 14 BasalColorado 15 Mannville Above Glauconitic 16 Glauconitic 17 Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, Basal Quartz, Ellerslie, Culbank, Taber, Delirital 19 Cadomin 20 Niking-Boxis, Nordegg, Banff, Jurassic, Jurassic Detrital 21 RockCreek&Sawtooth 22 Nordegg Nordegg, Nordegg, Banff, Jurassic, Jurassic Detrital 23 Baldonnel 24 Charlie Lake 25 Boundary 26 Halfway 27 Doig 28 Belloy 30 Kiskatinaw&TaylorFlat 31 TurnerValley 31 Buesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko 34 Banff 35 Bakken 36 WabamunCossfield 37 WinterburnMisku 40 Gilwood-Granite Wash Glaver District Wash Gender, Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills &SlavePoint Gewond, Granite Wash Glive Delire, Swan Hills, SlavePoint, Slave Point-GraniteWash GliveDoint Gewond, GraniteWash GliveDoint, Slave Point-GraniteWash GliveDoint Gewond, Feechee, Leduc, Caim, CookingLake 39 SwanHills &SlavePoint Gewond, GraniteWash GliveDoint SulphurPoint SulphurPoint SulphurPoint SulphurPoint SulphurPoint	9 DoeCreek	DoeCreek
12 FishScales FishScale, Barons, BaseFishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte BasalColorado 15 Mannville Above Glauconitic Viking-Blairmore, MountainPark, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikevin, McLaren, Waseca, Falher, Sparky, Wainwright, Celarwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw Moulton 17 Ostracod Ostracod Ostracod Viking-Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin Dalhousie, Cadomin Voordegg, Nordegg, Banff, Jurassic, Jurassic Detrital Dalhousie, Oxordegg Nordegg, Nordegg, Banff, Jurassic, Jurassic Detrital Baldonnel Bal	10 Dunvegan	Dunvegan
12 FishScales FishScale, Barons, BaseFishScales 13 Viking Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte BasalColorado BasalColorado Viking-Blairmore, Mountain-Park, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Ostracod Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin Dalhousie, Cadomin Converga Nordegg, Banff, Jurassic, Jurassic Detrital Baldonnel	11 SecondWhiteSpecks	Second White Specks
14 BasalColorado 15 Mannville Above Glauconitic King-Blairmore, Mountain Park, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Ostracod Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin Oalhousie, Cadomin Oalhousie, Cadomin Noctenay, Nikanassin, Morrissey Swift, Sawlooth, Rock Creek Swatooth, Rock Creek Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel Charlie Lake Charlie Lake Charlie Lake Charlie Lake Charlie Lake Charlie Lake Doig Doig Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Shunda Shunda Shunda Shunda Shunda Shunda Shunda Banff Banfe Banff		FishScale, Barons, BaseFishScales
14 BasalColorado 15 Mannville Above Glauconitic King-Blairmore, Mountain Park, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw, Moulton 17 Ostracod Ostracod Ostracod Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin Oalhousie, Cadomin Oalhousie, Cadomin Noctenay, Nikanassin, Morrissey Swift, Sawlooth, Rock Creek Swatooth, Rock Creek Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel Charlie Lake Charlie Lake Charlie Lake Charlie Lake Charlie Lake Charlie Lake Doig Doig Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Shunda Shunda Shunda Shunda Shunda Shunda Shunda Banff Banfe Banff	13 Viking	Bowlsland, Viking, Provost, Hamilton Lake, PeaceRiver, Paddy, Cadotte
15 Mannville Above Glauc onitic Viking-Blairmore, Mountain Park, Blairmore, Mannville, Upper Mannville, Colony, Grand Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster 16 Glauconitic Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Blue sky-Gething, Wabiskaw, Moulton Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital 19 Cadomin 20 Nikanas sin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel 24 Charlie Lake Charlie Lake Charlie Lake Charlie Lake Charlie Lake Doig Buoundary Buusky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Pallfway Doig Belloy Belloy Belloy Belloy Belloy Belloy Buesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Elkton, Elkton-Shunda 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda 33 Pekisko Shunda Banff Banken 36 WabamunCrossfield 77 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake Bouvehill Lake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash 41 SulphurPoint	9	
Rapids, SpiritRiver, Notikewin, McLaren, Waseca, Falher, Sparky, Wainwright, Clearwater, General Petroleum, Rex, Lloydminster Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw Moulton 17 Ostracod Stracod Stracod Stellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel 24 Charlie Lake Charlie Lake 25 Boundary Boundary Boundary Halfway Halfway Halfway Halfway Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Belloy Belloy Skijskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko Shunda Shunda Shunda Shunda Shunda Shunda Banff Ba		Viking-Blairmore, Mountain Park, Blairmore, Mannville, Upper Mannville, Colony, Grand
Home, Glauconitic		
Moulton 17 Ostracod Ostracod Ostracod Ostracod Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel Baldonnel Charlie Lake Charlie Lake Charlie Lake Doig Boundary Boundary Boundary Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Belloy		Clearwater, General Petroleum, Rex, Lloydminster
17 Ostracod 18 Ellerslie Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital 19 Cadomin Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel 24 CharlieLake Charlie Lake Charlie Lake Charlie Lake Boundary Boundary Boundary 26 Halfway Halfway 27 Doig Doig Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko Shunda	16 Glauconitic	Home, Glauconitic, Cummings, Cummings-Dina, Bluesky, Bluesky-Gething, Wabiskaw,
Wabiskaw-McMurray, Lower Blairmore, Lower Mannville, BasalMannville, Dina, Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital		Moulton
Gething, McMurray, Sunburst, Sunburst-Swift, Basal Quartz, Ellerslie, Cutbank, Taber, Detrital Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital Baldonnel Baldonnel Charlie Lake Charlie Lake Charlie Lake Doig Boundary Boundary Boundary Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Belloy Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic Belloy Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Shunda Shunda Shunda Phunda-Pekisko, Pekisko Bahff Banff Banff Banff Banff Bahken Bakken	17 Ostracod	Ostracod
Detrital 19 Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 23 Baldonnel 24 Charlie Lake Charlie Lake 25 Boundary 26 Halfway 10 Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko 34 Banff 35 Bakken 36 WabamunCrossfield 37 Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake BalphurPoint SulphurPoint SulphurPoint	18 Ellerslie	
19 Cadomin Dalhousie, Cadomin 20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 23 Baldonnel Baldonnel 24 CharlieLake Charlie Lake 25 Boundary Boundary 26 Halfway 27 Doig Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff Banff Banff Banff Banff Banff Banken 36 WabamunCrossfield 77 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BulphurPoint SulphurPoint SulphurPoint		
20 Nikanassin Kootenay, Nikanassin, Morrissey 21 RockCreek&Sawtooth Swift, Sawtooth, Rock Creek 22 Nordegg Nordegg, Nordegg, Banff, Jurassic, Jurassic Detrital 23 Baldonnel Baldonnel 24 Charlie Lake Charlie Lake 25 Boundary Boundary 26 Halfway Halfway 27 Doig Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko Shunda Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash		
21 RockCreek&Sawtooth 22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 23 Baldonnel 24 CharlieLake Charlie Lake 25 Boundary Boundary 26 Halfway Halfway 27 Doig Doig 28 Montney Belloy Belloy Belloy 30 Kiskatinaw&TaylorFlat 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 33 Pekisko Shunda Shunda Shunda Shunda Shunda Banff Banff Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake BaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash SulphurPoint SulphurPoint SulphurPoint SulphurPoint SulphurPoint		
22 Nordegg Nordegg, Nordegg-Banff, Jurassic, Jurassic Detrital 23 Baldonnel 24 Charlie Lake 25 Boundary 26 Halfway 27 Doig Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash 5 SulphurPoint		
23 Baldonnel 24 Charlie Lake Charlie Lake Charlie Lake Doundary Boundary Bo		
24 Charlie Lake 25 Boundary Boundary Boundary 26 Halfway Halfway 27 Doig Doig Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda Shunda Shunda-Pekisko, Pekisko 34 Banff Banff Banff 35 Bakken Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash Gilwood, GraniteWash SulphurPoint		
25 Boundary 26 Halfway 27 Doig Doig Doig Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda		
26 Halfway 27 Doig Doig Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy Bluesky-Debolt, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shund		
27 Doig Doig 28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint		
28 Montney Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic 29 Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Gilwesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda Shunda Shu	,	
29 Belloy 30 Kiskatinaw&TaylorFlat TaylorFlat, Kiskatinaw 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda Shunda Shunda Shunda Shunda Shunda Shunda Shunda Pekisko Shunda-Pekisko, Pekisko Banff Banff Banff JS Bakken Bakk		4
30 Kiskatinaw&TaylorFlat 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint	28 Montney	Bluesky-Montney, Spray River, Montney, Bluesky-Gething-Montney, Bluesky-Triassic
30 Kiskatinaw&TaylorFlat 31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint	29 Bellov	Bellov
31 TurnerValley Bluesky-Debolt, Rundle, Debolt, MountHead, Livingstone, TurnerValley, Elkton, Elkton-Shunda 32 Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint		
Shunda 32 Shunda 33 Pekisko 34 Banff 35 Bakken 36 WabamunCrossfield 37 WinterburnNisku Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Shunda Salvekisko Salvekisko Salvekisko Salvekisko Salvekisko Salvelley, Crossfield SulphurPoint, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue SulphurPoint, SlavePoint, SlavePoint, Slave Point-GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint		
32 Shunda Shunda 33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint	31 Turner valley	
33 Pekisko Shunda-Pekisko, Pekisko 34 Banff Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 5 SulphurPoint SulphurPoint	32 Shunda	
34 Banff 35 Bakken Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint		
35 Bakken 36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint		
36 WabamunCrossfield Palliser, Wabamun, Big Valley, Crossfield 37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint		
37 WinterburnNisku Winterburn, Graminia, Blueridge, Arcs, Nisku, JeanMarie, CamroseTongue 38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint		
38 Leduc&Grosmont Woodbend, Ireton, Grosmont, Peechee, Leduc, Caim, CookingLake 39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash SulphurPoint SulphurPoint		
39 SwanHills&SlavePoint BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash 40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint	o. Willelbullingstu	Transcription of the state of t
40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint	38 Leduc&Grosmont	
40 Gilwood&GraniteWash Gilwood, GraniteWash 41 SulphurPoint SulphurPoint	39 SwanHills&SlavePoint	BeaverhillLake, Swan Hills, SlavePoint, Slave Point-GraniteWash
	40 Gilwood&GraniteWash	Gilwood, GraniteWash
42 Zama&KegRiver Muskeg, Zama, Zama-Keg River, KegRiver, Winnipegosis	41 SulphurPoint	SulphurPoint
	42 Zama&KegRiver	Muskeg, Zama, Zama-Keg River, KegRiver, Winnipegosis

Table 3. Shows how formation names and abbreviations found in GeoScout data base are related to stratigraphic intervals in the ultimate potential database. The actual table has over 10,000 lines and cannot be fully replicated here.

Formation Code	Formation Name	Formation Abbrev	Strat ID for Depositional/Erosi onal Edges	Strat ID for Deepest Penetrated Formation
6440	BANFF FM	BNFF	34	34
6441	BANFF POOL NO. 1	BANFF#1	0	-
6442	BANFF SS	BNFF SS	34	
6445	UPPER BANFF	U BNFF	34	
6449	BASE OF BANFF	BS BNFF	34	
	MIDDLE BANFF	M BNFF	34	
	LOWER BANFF	L BNFF	34	
6457	BANFF SHALE	BNFF SH	0	34
6460	BAKKEN FM	BAKN	35	
6469	BASE OF BAKKEN	BS BAKN	35	
6480	EXSHAW FM	EX	0	34
6481	EXSHAW-WABAMUN	EX-WAB	0	1 -1
6499	REWORKED DEVONIAN	RWKD DEV	36	36
6500	DEVONIAN SYSTEM	DEV SYS	36	36
6520	UPPER DEVONIAN	U DEV	0	-
6540	PALLISER FM	PALL	36	
6560	COSTIGAN MBR	COST	36	
6580	WABAMUN GRP	WAB	36	36
	WABAMUN GRP	WAB	0	0
6585	WABAMUN-WINTERBURN	WAB-WINT	0	0
6586	WABAMUN & NISKU	WAB&NIS	0	
6590	WABAMUN-GRAMINIA	WAB-GRAM	36	36
6591	WABAMUN & BLUERIDGE	WAB&BLUE	0	
6592	WABAMUN-CALMAR	WAB-CALM	0	0

Assigning Depths to strata with no linked wells

Within the energy component of Tardis, depths of various strata are essential to the analysis of drilling costs. The deeper a proposed well is the greater the drilling costs. In theory there are over 4 million tracts that could potentially be drilled. This figure is obtained from the ultimate potential database, which is subdivided into townships, sections, and stratigraphic IDs giving approximately 4.19 million records within the database.

While depth data was used in constructing the Ultimate Potential Database it was not included in the database itself and was thus not available. Hence, a procedure for estimating depths for stratigraphic intervals was essential. Depths can be obtained directly from the well data downloaded from the GeoScout database. However, this can only be done for tracts that have wells linked to them using the procedure described in the previous section. In some cases wells do not have recorded depths. But wells are also attached to pools and there is a EUB pool database that contains average depths for the pools. Both of these data sources were used to estimate depths of tracts where wells are linked to stratigraphic intervals. If depth data from the GeoScout well database was available then this data was used to estimate the depth of the tract. If depth data was not

available for a well attached to a tract, then the average depth for the pool was assigned to the tract.

Since wells are heterogeneously distributed and the number of wells in our database is less than 400,000 there are many tracts that were not assigned a depth using this method. Most of these tracts would be classified as future potential in the ultimate potential database because they have not yet been explored. Hence, a method was required for assigning depths to tracts that did not have wells linked to them. In that case, a two step procedure was followed. First, we assigned depths to tracts in townships in which there was at least one other tract with depth information. In this case, those tracts which had depths were used to compute an average depth for the strata/play within the township. This average was then assigned to any tract with no depth information. Note, there are 36 sections in a township so the maximum number of tracts assigned a depth would be 35, if only one tract had depth information. The second step was to fill in tract depths for all townships/strata play combinations in which not a single tract had depth information. We used a nearest neighbour principle to fill in the depths in this case. Overall the procedure for assigning depths to tracts without assigned depths may be described as follows:

- 1. For all tracts with linked gas wells
 - a. Compute an average depth for all wells in the tract and assign the mean depth to the tract. If a well does not have depth data, then use the average depth for the pool for that well.
- 2. For each township/strata/play combination with at least one tract assigned a depth:
 - a. Assign tracts within the townships, not already assigned a depth, the average of the depths assigned to tracts in step 1.
- 3. For each stratigraphic interval/play id
 - a. For each township in the interval that has adjacent townships with depth data
 - i. Get the average depth of all adjacent townships with assigned depth data for the current stratigraphic interval.
 - ii. Assign the average depth to the township-stratigraphic interval

Thus stratigraphic layers within townships that do not have depth data are assigned a depth based on the average depths in neighbouring townships. The algorithm takes several passes to fill in the depths because many township-stratigraphic intervals may be 1 or more townships from a township with actual well data. Hence, on the first pass townships with neighbours containing data from drilling records are filled with average depth data from those neighbours. Townships that are more than one township away are left untouched on the first pass. On the second pass townships that are more than 1 township away are filled with average depths computed on the previous pass and so on until the entire stratagraphic interval is filled with depth data. Clearly this is only an estimate and their may be errors. Other statistical approaches are available to estimate depths however, time and resources were not available to pursue this.

Drilling cost model

Drilling costs were estimated using a regression model developed from the Petroleum Services Association Well Cost Studies (PSAC) from 2005-2008. The well costs studies provide costs for one or more wells within each of 15 PSAC regions across Canada. The wells are a list of "typical wells" and the selection of wells depends on the most recent interests of the drilling industry in terms of exploration activity such as horizontal drilling, oilsands, and coal bed methane (PSAC 2008). The drilling costs studies provide information on total drilling and completions costs as well as abandonment costs, but also provide information on drilling depth, fuel costs, horizontal depth and many other variables. One regression model was developed for drilling and abandonment costs and another for drilling and completion costs. Selected explanatory variables for the model were total vertical depth, horizontal depth, rig transport distance, and fuel costs. All variables expressed in dollars were adjusted for inflation using the consumer price index and are expressed in 2009 dollars. The regression results for the two models are presented in Table 4 and Table 5. The dependent variables were drilling and completion cost; and drilling and abandonment costs. The explanatory variables used are total measured depth of the well in meters, and the amount horizontal depth in meters, the rig transport distance in kilometers, fuel cost in \$/litre, and a set of dummy variables that indicate various PSAC regions. The total measured depth of the well includes the total well length along the well hole, including any change in horizontal direction. This is to distinguish another common measure of depth, which is total vertical depth, which obviously does not include horizontal distance. The total measure depth was included in the model with a Box-Cox transformation to account for the non-linear response of drilling cost with depth. The transformation was as follows:

$$BoxCox(2.5) = \frac{\left(Depth^{2.5} - 1\right)}{2.5}$$

The model also includes horizontal depth, which is the horizontal distance from the top of the well hole to the bottom of the well hole. Rig transport distance is the distance in kilometers the drilling rig was transported from its last location.

The regression model was used to estimate the cost of drilling and completing ($C_{DrillComp}$); and drilling and abandoning ($C_{DrillAbandon}$) wells in the NPV equations shown in equations 1 to 4.

In the net present value model fuel cost, rig transport distance, road distance and road building costs were set by PSAC region and were set as the averages of the data for each PSAC region. These averages are presented in table 5. For horizontal depth averages were taken for each stratigraphic interval and play area. While there were horizontal distances in many of the wells in the database they were by far in the minority and hence

horizontal depth averages were in all cases close to zero. Hence this variable was set to zero for all stratigraphic intervals and play areas.

Table 4. Drilling and Completion model.

	Drilling and C	Completion Co	st Model	Drilling and A	Abandon Co	st Model
	Coefficients	Standard	P-value		Standard	
		Error		Coefficients	Error	P-value
Intercept	-559576.4	284208.8	0.05	-642191.8	279280.9	0.02
Horizontal Depth (m)	-169.8440	104.6737	0.10	-191.5974	102.8588	0.06
Rig Transport Dist. (km)	913.1331	332.3388	0.006	910.2476	326.5764	0.006
Fuel Cost (\$/L)	967433.9	335037.1	0.004	779900.7	329227.9	0.018
Total Measured Depth	0.014755	0.000347	0.000	0.013426	0.000341	0.000
(m) Box Cox Trans. 2.5						
BC2	622273.3	123621.2	0.000	469150.9	121477.7	0.000
AB1	2306088.	218994.8	0.000	1925585.	215197.7	0.000
AB2	-586460.3	152792.0	0.000	-894709.1	150142.7	0.000
AB5	-137334.0	99890.31	0.170	-108010.7	98158.31	0.272
AB7	-191551.0	99067.34	0.05	-260329.0	97349.61	0.008
SK3	-344571.1	141473.4	0.015	-374973.8	139020.4	0.007
Model Statistics						
R Square			0.96139			0.95285
Standard Error			483880			475490
Observations			245			245

Table 5. Averages of explanatory variables in drilling cost model by PSAC region.

Tuble 3. Tiverag	es of explanatory v	arrables in arming co	ot model by I bille	region.
PSAC	FuelCost	Drill Rig Transport	Road Distance	Road
Region	(\$/litre)	Distance (km)	(km)	\$/km
1	0.87	161	5	15623
2	0.87	164	5.34	9855.6
3	0.87	60	1.05	6153.6
4	0.87	65	0.5	6632.8
5	0.87	92	1.75	5833.2
6	0.87	84	1	5195.0
7	0.87	155	2.53	5195.6

Operating Costs

Operating costs (C_{oper}) per unit extracted (m3 for gas and \$/bbl for oil) for gas and oil wells were taken directly from a technical background document for Alberta's royalty review (see Alberta Department of Energy 2007a). Operating costs vary from well to well and region to region. Operating costs by PSAC region are shown in Table 6 for oil and gas.

Table 6.	Operating	costs used	in NPV	model for	gas and oi	l wells.

PSAC	Variable	Variable
Region	Operating Cost	Operating Cost
	Gas Well \$/m3	Oil Wells \$/bbl
1	20.83	6.60
2	18.00	6.60
3	11.30	4.79
4	13.77	5.93
5	13.06	4.66
6	13.06	4.66
7	14.47	4.81

^{*}Costs taken from Alberta Department of Energy (2007a)

Equipment and Tie In Costs

Equipment costs per well (C_{equip}) for oil and gas wells and tie-in costs per well (C_{Tieln}) for gas wells were taken directly from a technical background document for Alberta's royalty review (see Alberta Department of Energy 2007a). Equipment costs vary from well to well and region to region. Equipment costs and Tie-In costs by PSAC region are shown in Table 7 for oil and gas.

Table 7. Equipment and Tie-in costs for gas and oil wells.

	Gas Wells		Oil Wells
PSAC	Equipment Cost	Tie-In Cost	Equipment Cost
Region	\$/well	\$/well	\$/well
1	236,000	432,000	55,000
2	123,000	278,000	55,000
3	39,000	53,000	57,000
4	29,000	67,000	56,000
5	42,000	82,000	57,000
6	80,000	120,000	57,000
7	118,000	324,000	57,000

^{*}Costs taken from Alberta Department of Energy (2007a)

Seismic Costs

Seismic costs per well ($C_{seismic}$) for oil and gas wells were also taken directly from a technical background document for Alberta's royalty review (see Alberta Department of Energy 2007a). Seismic costs are pre-well exploration costs. However, seismic costs are often reported on a per-well basis. Hence, in our model seismic costs per well as reported in Table 8, were computed on a tract basis by multiplying by the expected number of wells for the tract. See the section, entitled *Number of Wells per Tract* for details on the expected number of wells.

Table 8. Seismic Costs

PSAC	Ave. Seismic
Region	Costs \$/well
1	212,000
2	20,000
3	9,000
4	5,000
5	17,000
6	10,000
7	36,000

^{*}Costs taken from Alberta Department of Energy (2007a)

Price Forecasts

Price forecasts P_{gt} for (g=) methane were obtained from GLJ Petroleum Consultants for October 1, 2009 (see Herchen 2009). We used the Alberta Reference Price forecast. The reference price is a weighted average field price based on field sales in Alberta and is developed by the Alberta Department of Energy. The Alberta government uses the reference prices for royalty calculations.

The price forecasts provided are in current dollars. The prices were deflated to \$2008 using the consumer price index. The forecasts provided in Herchen (2009) go up to 2018. In our forecast, all prices after 2018 were set equal to the price in 2008. Past prices and a forecast for methane gas is shown in Figure 9.

Prices in the Herchen (2009) are reported in \$/mmbtu, which were converted to \$/GJ by dividing by a factor of 1.055. However, our \$/GJ prices needed to be converted to \$/1000m3 because gas volume flow profiles are in 1000m3. Table 9 shows the energy content in GJ/1000m3 for each component gas. In addition, there are differences in prices for each of the component gases. We used price ratios to adjust the prices for methane shown in Figure 9. The price ratios were developed from monthly time series of reference prices for methane, ethane, propane, butane and Pentane Plus for Jan 2007 to September 2008, which were obtained from Alberta Department of Energy (2007c, 2008b) Gas Royalty Calculation Information Bulletins. Ratios were computed by taking the price ratios of ethane, propane, butane and pentane to methane for each month of the time series and then computing an average. The average price ratios are in the 3^{rd} column of Table 9. The price of each component gas P_g were then computed as follows:

$$P_{methane} = P_{methane}^R \times E_{methane}$$

 $P_g = r_g^m \times P_{methane}^R \times E_g$ for g=ethane, propane, butane and pentane,

where $P_{methane}^R$ is the reference price for methane in \$/GJ as shown in Figure 9, and where r_g^m is gas to methane price ratio, and E_g is energy content of component gas found in Table 9. For the purposes of computing royalties the reference prices are needed for ethane, propane, butane and pentanes. These are easily computed using:

 $P_g^R = r_g^m \times P_{methane}^R$ for g=ethane, propane, butane and pentane.

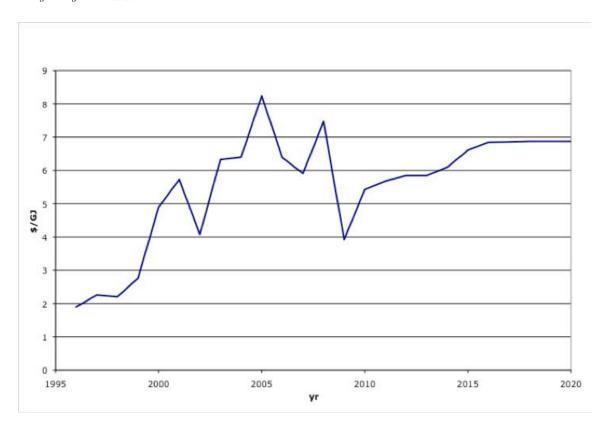


Figure 9. Alberta reference prices, past and forecasted from 2009-2020.

Table 9. Energy content and Energy Content with Price Adjustment for component gases.

		<u>J</u>			
Component Gas	Energy Content	Component to Methane			
	GJ/1000m3	price ratio			
Methane	37	1			
Ethane	66.065	1.0484			
Propane	93.936	1.0597			
Butane	121.6	1.0638			
Pentane Plus	149.15	1.0666			

Royalties

Royalties were computed using Alberta's post royalty-review system. However, the computations were simplified and excluded some of the special rates such as those applying to transitions wells and incentive programs such as the deep gas drilling program. Some of these rates will be added in the future versions of the model. This document shows how royalties were calculated for the current state of our model and relies heavily on Alberta Department of Energy (2008). Royalties for gas are collected as percentage of the par price set for each gas component by the government of Alberta. In addition, there are different rates for the gas components, which include methane, ethane, butane, propane, and pentanes. Total royalties over a month could then be computed as

Total Royalty =
$$\sum_{g}^{G} v_{gt} C_{gt}^{Roy} = \sum_{g}^{G} v_{gt} P_{gt}^{R} R_{gt}^{\%}$$

where $R_{gt}^{9/6}$ is the royalty rate for component g and C_{gt}^{Roy} , P_{gt}^{R} , and v_{gt} are the royalties for year t, the reference price of gas and the volume flow per year for gas component g in m3 as defined in equation 1 (see NPV formula). While royalties are charged on a monthly basis in Alberta our formula averages prices and volumes flows over a year to reduce the number of computations.

In the following paragraphs, we focus on the computation of the royalty rate or R_g %. The following discussion is based on Alberta Department of Energy (2008). The royalty rate R_g % is based on two components: the price component which makes R_g % price responsive and the quantity component which makes R_g % responsive to the amount of gas the well is producing. The formula is:

$$R_g^{\%} = \begin{cases} 0.05 & \text{if } r_{gp} + r_g < 0.05 \\ r_{gp} + r_g & \text{if } 0.05 \le r_{gp} + r_g \le 0.5 & \text{for } g = \text{methane, ethane} \\ 0.05 & \text{if } r_{gp} + r_g > 0.5 \end{cases}$$

$$R_g^{\%} = 0.3 & \text{for } g = \text{butane, propane}$$

$$R_g^{\%} = 0.4$$

where r_{gp} is the price component for gas type g and r_q is the quantity component, common to all types of gas. Note, that the rate has a maximum of 0.5 and a minimum of 0.05. This rate is computed for each of the gas components.

The price part r_{gp} is computed by the following formula:

$$r_{gp} = \begin{cases} \left(P_g^R - 4.5\right) \times 4.5 & \text{if } P_g^R \le 7\\ \left(P_g^R - 7\right) \times 3 + 11.25 & \text{if } 7 \le P_g^R \le 11\\ \left(P_g^R - 11\right) \times 1 + 23.25 & \text{if } 11 \le P_g^R \le 17.75\\ 30 & \text{if } 17.75 \le P_g^R \end{cases}$$

where P_g^R is the reference price of gas for gas component g, set by the government of Alberta on a monthly basis. The reference price is set based on a formula whereby various allowances are subtracted from the average price of gas in Alberta. These include allowances for marketing, transportation of gas within Alberta, pipeline fuel/loss factors and other special allowances. The allowances typically amount to a few cents per GJ of gas and make up a small percentage of the average gas price in Alberta. More information on the setting of the par prices may be seen in the monthly information bulletins put out by Alberta Energy (e.g. Alberta Energy 2008). Thus the reference price for gas is tightly linked to average gas prices in Alberta and the price component in the royalty formula will increase when gas prices increase and decrease when gas price decrease. The price component can become negative when the reference price falls below \$4.5/GJ and can go to a maximum 30% when the reference price increases above \$17.75/GJ.

While the price part varies by component gas, the quantity part is common to all gas components. The quantity component is dependent on the overall production of gas 1000s of m3 per day. The larger the daily production of gas the larger the quantity component. The quantity component is modified by a depth factor that increases with depth. The higher the depth factor the lower the quantity component. The quantity component is computed as follows:

$$q_{p} = \begin{cases} \left(v_{t}^{d} - 4D^{f}\right)0.05/D^{f} & \text{if } v_{t}^{d} \leq 6D^{f} \\ \left(v_{t}^{d} - 6D^{f}\right)\left(0.03/D^{f} + 0.1\right) & \text{if } 6D^{f} < v_{t}^{d} \leq 11D^{f} \\ \left(v_{t}^{d} - 11D^{f}\right)\left(0.01/D^{f} + 0.25\right) & \text{if } v_{t}^{d} > 11D^{f} \\ 0.3 & \text{if } \left(v_{t}^{d} - 11D^{f}\right)\left(0.01/D^{f} - 0.25\right) > 0.3 \end{cases}$$

Where D^f is the depth factor $(1 \le D^f \le 4)$ and v_t^d is the daily production in year t. The daily production is computed based on the yearly production curves described in a previous section:

$$v_t^d = \frac{v_t}{365} A^{gf}$$

where v_t the total flow of gas over the year is divided by 365 days and multiplied by an addition factor A^{gf} , which is the acid gas factor. The acid gas factor is multiplicative and equals one if the acid gases, hydrogen sulphide and carbon dioxide are negligible (i.e. less than 3% of the total flow of gas). The full formula for the acid gas factor is

$$A^{gf} = \begin{cases} 1.0 \text{ if } CO_2\% + H_2S\% \leq 3 \\ 1.03 - \left(CO_2\% + H_2S\%\right) & \text{if } 3 < CO_2\% + H_2S\% < 25 \\ 0.78 \text{ if } CO_2\% + H_2S\% \geq 25 \end{cases}$$

In addition, we have the following identity that relates gas components to total

production: $v_t = \sum_{g}^{G} v_{gt}$. The quantity component has a maximum of 0.3 and may also be

negative if the daily production is less than 4 times the depth factor. The depth factor is computed as follows:

$$D^{f} = \begin{cases} 1 & \text{if } MD < 2000m \\ (MD/2000)^{2} & \text{if } 2000m \le MD \le 4000m \\ 4 & \text{if } MD > 4000m \end{cases}$$

where MD is the measured depth of the well as defined above.

Natural gas was split up into its components methane, ethane, butane, propane, and pentane plus using the table provided in Alberta Department of Energy (2007a). The table gives proportions of component gases as compared to the total volume of gas by PSAC region and the volume over time profiles discussed above. Component gas volumes (v_{gt}) were then computed using:

$$v_{gt} = \rho_g v_t$$

where ρ_g is the proportion of component gas g found in the total volume stream v_t . The proportion ρ_g , for each component gas, can be found in Table 10 for 6 sizes of gas well in each of the 7 PSAC regions of Alberta. The table also shows proportions for helium, nitrogen, carbon dioxide and hydrogen sulphide, which we ignore in our NPV model.

Table 10. The proportion of total gas flow made up of individual component gases for a range of well sizes in each PSAC region. Source: Alberta Department of Energy (2007b).

(2007		0	T T	NIO	GOA	TTOC	C1	CO	CO	G4	Qr.
PSAC	Curve#		He	N2	CO2	H2S	C1 (methane)	C2	C3	C4	C5+
1	1	21,804	0.0003	(Nitrogen)	0.0279	0.0335	0.8335	0.0562	0.0218	0.0093	0.0080
1	2	26,957	0.0003		0.0279		0.8335	0.0562			0.0080
1	3		0.0003		0.0342		0.8462	0.0302			0.0066
1		135,013	0.0002		0.0342		0.8462	0.0440		0.0059	0.0066
1		462,976	0.0001		0.0367		0.8559	0.0434	0.0131	0.0055	0.0059
1		477,276	0.0001		0.0367		0.8559	0.0434	0.0131	0.0055	0.0059
2	1	5,125	0.0007			0.0050	0.8418	0.0674	0.0301	0.0126	0.0099
2	2	7,532	0.0007			0.0050	0.8418	0.0674	0.0301	0.0126	0.0099
2	3	30,101	0.0006		0.0177		0.8391	0.0716		0.0134	0.0099
2	4	34,320	0.0006		0.0177		0.8391	0.0716		0.0134	0.0099
2	5		0.0004		0.0220		0.8349	0.0653	0.0277	0.0117	0.0104
2	6	152,003	0.0004		0.0220		0.8349	0.0653	0.0277	0.0117	0.0104
3	1	1,133	0.0013		0.0025		0.9567	0.0052	0.0014	0.0006	0.0003
3	2	2,464	0.0013	0.0317	0.0025	0.0003	0.9567	0.0052	0.0014	0.0006	0.0003
3	3	3,681	0.0013	0.0318	0.0020	0.0001	0.9578	0.0048	0.0013	0.0006	0.0003
3	4	4,814	0.0013	0.0318	0.0020	0.0001	0.9578	0.0048	0.0013	0.0006	0.0003
3	5	12,091	0.0013	0.0332	0.0038	0.0003	0.9361	0.0148	0.0058	0.0026	0.0021
3	6	14,895	0.0013	0.0332	0.0038	0.0003	0.9361	0.0148	0.0058	0.0026	0.0021
4	1	1,133	0.0007	0.0380	0.0019	0.0000	0.9367	0.0149	0.0044	0.0022	0.0012
4	2	3,002	0.0007	0.0380	0.0019	0.0000	0.9367	0.0149	0.0044	0.0022	0.0012
4	3	6,541	0.0007	0.0386	0.0021	0.0000	0.9354	0.0167	0.0038	0.0016	0.0011
4	4	9,401	0.0007	0.0386	0.0021	0.0000	0.9354	0.0167	0.0038	0.0016	0.0011
4	5	33,782	0.0008	0.0383	0.0022	0.0000	0.9372	0.0160	0.0033	0.0014	0.0008
4	6	37,576	0.0008	0.0383	0.0022	0.0000	0.9372	0.0160	0.0033	0.0014	0.0008
5	1	2,152	0.0006		0.0085		0.9254	0.0251	0.0096	0.0046	0.0029
5	2	4,332	0.0006		0.0085		0.9254	0.0251	0.0096	0.0046	0.0029
5	3	10,590	0.0006			0.0006	0.9288	0.0233	0.0087	0.0041	0.0026
5	4	13,620	0.0006			0.0006	0.9288	0.0233	0.0087	0.0041	0.0026
5	5	50,913	0.0006			0.0008	0.8961	0.0391	0.0154		0.0048
5	6	55,444	0.0006			0.0008	0.8961	0.0391	0.0154	0.0077	0.0048
6	1	2,464	0.0003		0.0079		0.9741	0.0042	0.0005	0.0001	0.0004
6	2	4,757	0.0003		0.0079		0.9741	0.0042	0.0005	0.0001	0.0004
6						0.0000		0.0019			0.0003
6	4	19,397	0.0003			0.0000		0.0019		0.0001	0.0003
6		62,750	0.0002			0.0000	0.9699	0.0076		0.0002	0.0005
6		65,638	0.0002			0.0000		0.0076		0.0002	0.0005
7	1	3,681	0.0006			0.0105	0.9106	0.0243			0.0044
7	2	8,099	0.0006		0.0212		0.9106	0.0243	0.0099	0.0048	0.0044
7	3	13,903	0.0006			0.0105	0.9106	0.0243	0.0099	0.0048	0.0044
7	4	21,492	0.0006			0.0105	0.9106	0.0243	0.0099	0.0048	0.0044
7	5	78,437				0.0105	0.9106	0.0243		0.0048	0.0044
7	6	93,671	0.0006	0.0137	0.0212	0.0105	0.9106	0.0243	0.0099	0.0048	0.0044

Taxes

Firms in the natural gas industry pay corporate taxes to both federal and provincial governments. Corporate tax rates are subject to change over time. In this study we chose rates that closely approximate current conditions and use the same rates used by the Alberta Department of Energy in 2007 royalty review reports (see Alberta Department of Energy 2007a). Thus, the provincial corporate tax rate was set at 10% and the federal rate was set at 20%. Taxes are computed at the corporate level. This posed a problem for our simple model, which does not contain corporate entities. Thus taxes had to be computed at the well level, since that is the activity we are modeling. Taxes, for each year of a well's life, were computed by multiplying the percentage rates times the net revenue allowing for all operating costs, royalties, an allowance for depreciation of the initial capital investment. Depreciation was estimated in each year by applying a depreciation rate of 20%.

$$T_{t}^{ax} = 0.3 \left(\sum_{g}^{G} v_{gt} \left(P_{gt} - C^{oper} - C_{gt}^{Roy} \right) - \delta K_{t} \right)$$

where K_t is the capital balance in real dollars at the beginning of period t and δ is the depreciation rate. The capital balance is updated each year of he well's life using the formula:

$$K_{t} = K_{t-1}(1-\delta)$$

Conceivably, the formula could yield a negative result. In that case the tax for that year was simply set to zero.

Probability of Successful Drilling

The variables $p^{success}$ and p^{seis} capture the uncertain nature of oil and gas exploration and discovery. They are used to model firms' expectations about the probability of discovery of future reserves on undrilled sections. The success rates ($p^{success}$) are based on an analysis of GeoScout well data while p^{seis} is derived. Drilling success rates or probabilities of success may be expressed in different ways. A common way of expressing this is the number of successful wells drilled divided by the total number of drilled wells over a play area. Success is defined as a well that produces gas. However, this way of expressing success rate did not quite fit with our study. In the section that describes the ultimate potential data for natural gas we defined a tract, which is a combination of land section and stratigraphic interval, as our basic unit of exploitation and exploration. This influenced our choice of definition for success rate in our model. Our success rate is defined as the probability that at least one successful well will be drilled into a tract. We estimate the success probabilities over each play area in each stratigraphic interval using the following formula:

$p^{success} = \frac{\text{Number of Successfully Drilled Sections}}{\text{Total Number of Sections Drilled}}$

Data for drilled sections and successfully drilled sections was obtained from data downloaded from GeoScout. Each well was linked to a stratigraphic interval and play as outlined in the previous section on attaching wells to stratigraphic intervals. Wells were then classified as successful or not successful. Successful wells are wells that had either produced gas or that were classed as drilled and cased. Each tract, which is a specific land section/stratigraphic ID/play combination, was classified as successfully drilled if at least one well was classified as successful on the tract. The results of these computations are show in Table 11.

The table also shows the success rates provided by the EUB/NEB (2005) study for three scenarios that reflect low, medium, and high expectations of the probability of finding additional gas resources on a tract level. Note, that the probabilities provided by EUB/NEB (2005) for even the high scenario are considerably lower than the probabilities computed from the data downloaded from GeoScout. While, the EUB/NEB study gives the name drilling success rates to these success rates, they clearly have been computed using much different methods. Preliminary NPV models that used the EUB/NEB success rates instead of those computed from GeoScout, vielded NPVs that were consistently negative which was not a reasonable outcome given the amount of gas exploration happening in Alberta. These success rates are also much lower than those found in other sources such as Alberta Department of Energy (2007a). Hence, a different interpretation of the success rates incorporated in the EUB/NEB study is required. Rather than drilling success, we interpret the EUB/NEB rates as probabilities that a tract has gas resources before seismic or other testing has taken place (We interpret our drilling success rates as being conditional on some preliminary testing such as seismic. See explanation below.). The EUB/NEB rates can also be interpreted as the expected proportion of all remaining future tracts that will have gas resources. This interpretation is consistent with the way ultimate potential is calculated in the EUB/NEB ultimate potential study for future resources. While EUB/NEB does not provide a formula in it's written documentation, they do provide a spreadsheet that shows how ultimate potential for natural gas is computed for booked, unbooked, unconfirmed, bypassed and future resources. The formula for total future (i.e. undiscovered) gas resources in Alberta may be expressed as follows:

Total Future Potential =
$$\sum_{s=1}^{42} \sum_{m=1}^{M_s} p_{sm}^{EUB} V_{sm} N_{sm}^f$$

where s is a stratigraphic interval from 1 to 42, M_s is the number of plays in stratigraphic interval s, m denotes a specific play, N^f is the number of future tracts in stratigraphic interval s play area m left unexplored, p^{EUB} is the probability that an unexplored tract has gas resources and V_{sm} is the median volume of gas found previously in play m of stratigraphic interval m.

The formula also illustrates why we cannot simply replace the EUB probabilities with drilling probabilities. Doing so would increase the estimate of future potential, since $p^{success} > p^{EUB}$ in most cases, and we wished to honour the EUB's estimates of ultimate potential. We assume that the differences between the EUB success rates from the ultimate potential database and those we computed from the data exported from GeoScout is due to the different stages of information acquisition that takes place over the different stages of the exploration process, from the initial geological assessments, through seismic to drilling. Exploration companies do not drill everywhere, they only drill when the signals from pre-drilling activity such as assessments of geology and seismic activity indicate that the risk of drilling is reduced and worth undertaking. Thus drilling success rates acquired through the GeoScout data are considered to be post seismic and/or other geological assessment, while those in the ultimate potential data are pre-seismic because they reflect the estimated proportion of sections within a play that resource will be found. Hence, the outcome of the initial exploration activity is an indicator that says drill or don't drill. In order to use both our success rates and the EUB/NEB rates we then had to assume that not all tracts would be drilled, and that the p^{success} rates we computed from the data downloaded from GeoScout were conditional on additional positive assessments of geology such as seismic happen at the predrilling phase of exploration. Hence, a new probability p^{sies} was computed by reconciling success rates found in the ERCB ultimate potential database with those found in the GeoScout analysis. In our model p^{seis} is interpreted as the probability that pre-drilling exploration activity including seismic activity indicates there are resources in a section and that it might be profitable to drill in a section. To compute p^{seis} we use the following formula: $p_{sm}^{seis} \times p_{sm}^{success} = p_{sm}^{EUB}$

$$p_{sm}^{seis} \times p_{sm}^{success} = p_{sm}^{EUI}$$

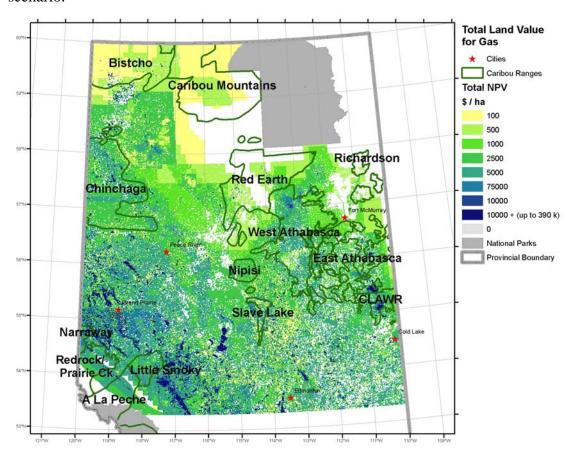
where p^{EUB} is the success rate found in ERCB's ultimate potential database for strata sand play m (see table 11). The probability p^{seis} can be determined by dividing through by $p^{success}$. This approach also ensures that assessments of NPV and aggregate volumes obtained in our model will match the ultimate potential estimates of ERCB on both an aggregate and spatial/regional level.

Table 11. Drilling success rates and probabilities that tracts have future resources.

	Table 11. Drilling success rates and probabilities that tracts have future resources. trat Play Median Success Proportion Probability that a tract has future resources for three scenarios (From EUB/NEB).												
Strat Inter	Play ID	Median # wells	Success	Proportion of Wells		•	ct has futur						
-val	עו	# wells	rate per tract	Successful	Future tra	ncts		Unconf	firmed tra	ncts	Bypass	ed tracts	
		tract		given	Low	Med.	High	Low	Med.	High	Low	Med.	High
				successful tract									
1	1	1	0.91	0.99	0.04	0.06	0.1	0.20	0.4	0.8	0.05	0.1	0.2
1	2	1	0.69	0.97	0.01	0.02	0.04	0.20	0.4	0.8	0.05	0.1	0.2
1	3	1	0.42	1.00	0.05	0.07	0.1	0.15	0.3	0.45	0.05	0.1	0.15
1	10	1	0.00	1.00	0	0.02	0.04	0.20	0.4	0.8	0.05	0.1	0.2
2	1	1	0.64	1.00	0.02	0.03	0.04	0.15	0.3	0.45	0.05	0.1	0.15
2	2	1	0.72	0.94	0.07	0.08	0.15	0.10	0.2	0.3	0.05	0.1	0.15
2	3	1	0.67	0.98	0.005	0.01	0.015	0.15	0.3	0.45	0.05	0.1	0.15
2	4	1	0.79	0.96	0.1	0.11	0.15	0.15	0.3	0.45	0.05	0.1	0.15
2	10	1	0.08	1.00	0	0.01	0.015	0.15	0.3	0.45	0.05	0.1	0.15
3	1	1	0.90	0.98	0.1	0.15	0.2	0.15	0.3	0.45	0.05	0.1	0.15
3	10	1	0.00	0.98	0.1	0.15	0.2	0.15	0.3	0.45	0.05	0.1	0.15
4	10	1	0.50	0.75	0.2	0.13	0.4	0.15	0.3	0.45	0.05	0.1	0.15
4	2	1	1.00	1.00	0.2	0.5	1	0.15	0.3	0.45	0.05	0.1	0.15
4	3	1	0.71	0.98	0.25	0.5	0.75	0.15	0.3	0.45	0.05	0.1	0.15
4	4	1	0.71	0.98	0.23	0.25	0.73	0.15	0.3	0.45	0.05	0.1	0.15
4	10	1	0.89	0.99	0.13	0.25	0.4	0.15	0.3	0.45	0.05	0.1	0.15
5				0.82					0.3				
	1	1	0.97		1	1	1	0.15		0.45	0.05	0.1	0.15
5	2	1	0.81	0.99	0.05	0.1	0.15	0.15	0.3	0.45	0.05	0.1	0.15
5	3	1	0.86	0.99	0.07	0.08	0.1	0.15	0.3	0.45	0.05	0.1	0.15
6	1	1	0.99	1.00	0.4	0.5	0.6	0.15	0.3	0.45	0.05	0.1	0.15
6	2	1	0.56	1.00	0.01	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
6	10	1	0.05	1.00	0	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
7	1	1	1.00	1.00	0.07	0.08	0.1	0.15	0.3	0.45	0.05	0.1	0.15
7	2	1	1.00	1.00	0.1	0.15	0.25	0.15	0.3	0.45	0.05	0.1	0.15
7	3	1	0.96	1.00	0.001	0.0025	0.005	0.15	0.3	0.45	0.05	0.1	0.15
7	10	1	0.00	1.00	0	0.0025	0.005	0.15	0.3	0.45	0.05	0.1	0.15
8	1	1	0.68	0.93	0.01	0.015	0.02	0.10	0.15	0.2	0	0.05	0.1
8	2	1	0.89	0.96	0.03	0.04	0.05	0.10	0.2	0.3	0.05	0.1	0.15
8	3	1	0.68	0.96	0.1	0.15	0.2	0.15	0.3	0.45	0.05	0.1	0.15
8	4	1	0.44	0.99	0.004	0.005	0.006	0.05	0.1	0.15	0.05	0.1	0.15
8	10	1	0.00	0.99	0	0.005	0.006	0.10	0.15	0.2	0	0.05	0.1
9	1	1	0.89	0.93	0.01	0.02	0.03	0.10	0.2	0.3	0.05	0.1	0.15
9	2	1	0.82	1.00	0.005	0.006	0.007	0.15	0.3	0.45	0.05	0.1	0.15
10	1	1	0.83	0.99	0.07	0.08	0.1	0.15	0.3	0.45	0.05	0.1	0.15
10	2	1	0.69	0.93	0.05	0.06	0.07	0.15	0.3	0.45	0.05	0.1	0.15
10	10	1	0.00	0.93	0	0.06	0.07	0.15	0.3	0.45	0.05	0.1	0.15
11	1	1	0.83	0.99	0.005	0.01	0.015	0.15	0.3	0.45	0.05	0.1	0.15
11	2	1	0.68	1.00	0.003	0.004	0.005	0.15	0.3	0.45	0.05	0.1	0.15
11	3	1	0.93	0.99	0.35	0.4	0.45	0.15	0.3	0.45	0.05	0.1	0.15
11	10	1	0.17	1.00	0	0.004	0.005	0.15	0.3	0.45	0.05	0.1	0.15
12	1	1	0.93	0.99	0.04	0.05	0.06	0.15	0.3	0.45	0.05	0.1	0.15
12	2	1	0.86	1.00	0.04	0.05	0.06	0.15	0.3	0.45	0.05	0.1	0.15
12	3	1	0.62	0.99	0.01	0.015	0.02	0.15	0.3	0.45	0	0.05	0.1
12	10	1	0.02	1.00	0	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
L	l							1	l		l	l	

Strat	Play	Median	Success	Proportion	Probabili	ty that a tra	ct has futui	re resourc	es for th	ree scena	rios (Fro	m EUB/N	NEB)
Inter	ID	# wells	rate per	of Wells	Future tra	acts		Unconf	irmed tra	ncts	Bypass	ed tracts	
-val		per tract	tract	Successful given	Low	Med.	High	Low	Med.	High	Low	Med.	High
				successful tract									
13	1	1	0.83	0.94	0.15	0.2	0.3	0.15	0.3	0.45	0.05	0.1	0.15
13	2	1	0.80	0.99	0.1	0.12	0.16	0.15	0.3	0.45	0.05	0.1	0.15
13	3	1	0.88	0.97	0.02	0.04	0.08	0.10	0.2	0.3	0	0.05	0.1
13	4	1	0.93	0.99	0.1	0.12	0.14	0.15	0.3	0.45	0.05	0.1	0.15
13	5	1	0.91	0.99	0.04	0.05	0.08	0.15	0.3	0.45	0.05	0.1	0.15
13	6	1	0.82	0.99	0.08	0.09	0.12	0.15	0.3	0.45	0.05	0.1	0.15
13	10	1	0.00	0.99	0	0.04	0.08	0.15	0.3	0.45	0.05	0.1	0.15
14	1	1	0.93	0.98	0.03	0.04	0.06	0.15	0.3	0.45	0.05	0.1	0.15
14	10	1	0.00	0.98	0	0.04	0.06	0.15	0.3	0.45	0.05	0.1	0.15
15	1	1	0.68	1.00	0.18	0.2	0.22	0.15	0.3	0.45	0.05	0.1	0.15
15	2	1	0.54	0.94	0.06	0.075	0.09	0.15	0.3	0.45	0.05	0.1	0.15
15	3	1	0.75	0.94	0.2	0.28	0.38	0.10	0.2	0.3	0.05	0.1	0.15
15	4	1	0.62	0.96	0.2	0.25	0.3	0.15	0.3	0.45	0.05	0.1	0.15
15	10	1	0.02	1.00	0	0.075	0.09	0.15	0.3	0.45	0.05	0.1	0.15
16	1	1	0.84	0.99	0.12	0.14	0.17	0.10	0.2	0.3	0.05	0.1	0.15
16	2	1	0.87	0.99	0.04	0.06	0.09	0.15	0.3	0.45	0.05	0.1	0.15
16	3	1	0.72	0.99	0.03	0.04	0.06	0.15	0.3	0.45	0.05	0.1	0.15
16	4	1	0.95	0.99	0.2	0.3	0.4	0.15	0.3	0.45	0.05	0.1	0.15
16	10	1	0.00	0.99	0	0.04	0.06	0.10	0.2	0.3	0.05	0.1	0.15
17	1	1	0.84	1.00	0.025	0.03	0.035	0.10	0.2	0.3	0	0.05	0.1
17	10	1	0.00	1.00	0	0.03	0.035	0.10	0.2	0.3	0	0.05	0.1
18	1	1	0.75	0.97	0.08	0.12	0.18	0.10	0.2	0.3	0.05	0.1	0.15
18	2	1	0.37	0.95	0.06	0.08	0.1	0.15	0.3	0.45	0	0.05	0.1
18	10	1	0.01	1.00	0	0.08	0.1	0.10	0.2	0.3	0.05	0.1	0.15
19	1	1	0.78	1.00	0.01	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
19	2	1	0.50	0.99	0.08	0.1	0.12	0.15	0.3	0.45	0.05	0.1	0.15
19	3	1	0.88	0.98	0.15	0.2	0.3	0.15	0.3	0.45	0.05	0.1	0.15
19	10	1	0.00	0.98	0	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
20	1	1	0.49	0.88	0.03	0.05	0.07	0.15	0.3	0.45	0.05	0.1	0.15
20	2	1	0.37	0.96	0.01	0.02	0.03	0.05	0.1	0.15	0	0.05	0.1
20	3	1	0.16	0.97	0.01	0.02	0.04	0.05	0.1	0.15	0	0.05	0.1
20	10	1	0.01	1.00	0	0.02	0.03	0.15	0.3	0.45	0.05	0.1	0.15
21	1	1	0.12	0.89	0.01	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15
21	2	1	0.48	0.75	0.08	0.1	0.15	0.10	0.2	0.3	0	0.05	0.1
21	3	1	0.16	0.89	0.01	0.02	0.03	0.10	0.2	0.3	0	0.05	0.1
21	4	1	0.68	0.98	0.14	0.18	0.25	0.10	0.2	0.3	0	0.05	0.1
21	5	1	0.25	1.00	0.0045	0.005	0.0055	0.15	0.3	0.45	0.05	0.1	0.15
21	10	1	0.00	1.00	0	0.005	0.0055	0.15	0.3	0.45	0.05	0.1	0.15
22	1	1	0.83	1.00	0.003	0.005	0.008	0.10	0.2	0.3	0	0.05	0.1
22	2	1	0.72	0.97	0.07	0.1	0.14	0.10	0.2	0.3	0.05	0.1	0.15
22	3	1	0.35	0.97	0.008	0.01	0.012	0.15	0.3	0.45	0.05	0.1	0.15
22	4	1	0.55	0.99	0.003	0.004	0.005	0.15	0.3	0.45	0.05	0.1	0.15
22	10	1	0.10	1.00	0	0.004	0.005	0.10	0.2	0.3	0	0.05	0.1
23	1	1	0.85	0.99	0.09	0.12	0.15	0.10	0.2	0.3	0.05	0.1	0.15
24	1	1	0.67	0.86	0.02	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15
	<u> </u>			<u> </u>				<u> </u>					

Strat	Play	Median	Success	Proportion	Probabili	ty that a tra	ct has futui	re resourc	es for th	ree scena	rios (Fro	m EUB/N	NEB)
Inter	ID	# wells	rate per	of Wells	Future tra	icts		Unconf	firmed tra	acts	Bypass	ed tracts	
-val		per tract	tract	Successful given	Low	Med.	High	Low	Med.	High	Low	Med.	High
				successful tract									
24	2	1	0.80	0.96	0.06	0.08	0.12	0.10	0.2	0.3	0.05	0.1	0.15
24	10	1	0.00	0.96	0	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15
25	1	1	0.74	0.93	0.03	0.05	0.08	0.10	0.2	0.3	0.05	0.1	0.15
25	10	1	0.00	0.93	0	0.05	0.08	0.10	0.2	0.3	0.05	0.1	0.15
26	1	1	0.90	0.97	0	0.07	0.13	0.15	0.3	0.45	0.05	0.1	0.15
26	2	1	0.90	0.97	0.12	0.14	0.2	0.10	0.2	0.3	0.05	0.1	0.15
26	10	1	0.36	1.00	0	0.07	0.13	0.15	0.3	0.45	0.05	0.1	0.15
27	1	1	1.00	1.00	0	0.2	0.4	0.15	0.3	0.45	0.05	0.1	0.15
27	2	1	0.31	0.95	0.01	0.02	0.03	0.10	0.2	0.3	0.05	0.1	0.15
27	10	1	0.05	1.00	0	0.02	0.03	0.15	0.3	0.45	0.05	0.1	0.15
28	1	1	0.69	1.00	0.01	0.03	0.05	0.15	0.3	0.45	0.05	0.1	0.15
28	2	1	0.41	0.95	0.04	0.06	0.1	0.10	0.2	0.3	0.05	0.1	0.15
28	10	1	0.10	1.00	0	0.03	0.05	0.15	0.3	0.45	0.05	0.1	0.15
29	1	1	0.80	1.00	0.01	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
29	2	1	0.27	0.97	0.01	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
29	10	1	0.00	0.97	0	0.015	0.02	0.15	0.3	0.45	0.05	0.1	0.15
30	1	1	0.74	0.97	0.02	0.03	0.05	0.15	0.3	0.45	0.05	0.1	0.15
30	10	1	0.00	0.97	0	0.03	0.05	0.15	0.3	0.45	0.05	0.1	0.15
31	1	1	0.78	0.89	0.015	0.025	0.06	0.10	0.2	0.3	0	0.05	0.1
31	2	1	0.05	0.77	0.015	0.025	0.045	0.15	0.3	0.45	0.05	0.1	0.15
31	3	1	0.52	0.95	0.05	0.07	0.12	0.15	0.3	0.45	0.05	0.1	0.15
31	4	1	0.41	0.93	0.01	0.02	0.04	0.15	0.3	0.45	0.05	0.1	0.15
31	5	1	0.04	0.97	0.004	0.005	0.006	0.15	0.3	0.45	0.05	0.1	0.15
31	10	1	0.00	0.97	0	0.005	0.006	0.10	0.2	0.3	0	0.05	0.1
32	1	1	0.33	0.97	0.025	0.04	0.05	0.15	0.3	0.45	0.05	0.1	0.15
32	2	1	0.06	1.00	0.0001	0.0009	0.0015	0.15	0.15	0.15	0.05	0.1	0.15
32	10	1	0.02	0.80	0	0.0009	0.0015	0.15	0.3	0.45	0.05	0.1	0.15
33	1	1	0.50	1.00	0.02	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15
33	2	1	0.15	0.85	0.03	0.035	0.07	0.10	0.2	0.3	0.05	0.1	0.15
33	3	1	0.68	0.94	0.06	0.1	0.15	0.10	0.2	0.3	0.05	0.1	0.15
33	4	1	0.29	0.96	0.001	0.003	0.01	0.15	0.3	0.45	0.05	0.1	0.15
33	5	1	0.63	1.00	0.04	0.06	0.08	0.15	0.3	0.45	0.05	0.1	0.15
33	10	1	0.00	1.00	0	0.003	0.01	0.15	0.3	0.45	0.05	0.1	0.15
34	1	1	0.11	0.87	0.02	0.025	0.03	0.10	0.2	0.3	0.05	0.1	0.15
34	2	1	0.15	0.85	0.02	0.03	0.05	0.10	0.2	0.3	0	0.05	0.1
34	3	1	0.16	0.96	0.008	0.012	0.018	0.15	0.3	0.45	0.05	0.1	0.15
34	4	1	0.19	0.98	0.002	0.004	0.01	0.15	0.3	0.45	0.05	0.1	0.15
34	10	1	0.03	1.00	0	0.004	0.01	0.10	0.2	0.3	0.05	0.1	0.15
35	1	1	0.57	0.95	0.04	0.06	0.1	0.15	0.3	0.45	0.05	0.1	0.15
35	10	1	0.00	0.95	0	0.06	0.1	0.15	0.3	0.45	0.05	0.1	0.15
36	1	1	0.54	0.91	0.01	0.02	0.03	0.10	0.2	0.3	0	0.05	0.1
36	2	1	0.70	0.89	0.04	0.06	0.1	0.15	0.3	0.45	0.05	0.1	0.15
36	3	1	0.19	0.92	0.02	0.03	0.04	0.15	0.3	0.45	0.05	0.1	0.15
36	4	1	0.65	0.94	0.02	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15
36	5	1	0.50	1.00	0.02	0.03	0.06	0.15	0.3	0.45	0.05	0.1	0.15


Strat	Play	Median	Success	Proportion	Probabili	ty that a tra	ct has futur	e resourc	es for th	ree scena	rios (Fro	m EUB/I	NEB)
Inter -val	ID	# wells per	rate per tract	of Wells Successful	Future tra	acts		Uncon	firmed tra	acts	Bypass	sed tracts	
vai		tract	tract	given successful tract	Low	Med.	High	Low	Med.	High	Low	Med.	High
36	6	1	0.40	0.84	0.03	0.05	0.1	0.10	0.2	0.3	0.05	0.1	0.15
36	7	1	0.40	0.98	0.005	0.009	0.015	0.15	0.3	0.45	0.05	0.1	0.15
36	8	1	0.55	1.00	0.005	0.01	0.015	0.15	0.3	0.45	0.05	0.1	0.15
36	10	1	0.01	1.00	0	0.009	0.015	0.10	0.2	0.3	0	0.05	0.1
37	1	1	0.33	0.97	0.01	0.02	0.04	0.10	0.2	0.3	0.05	0.1	0.15
37	2	1	0.62	0.93	0.005	0.01	0.03	0.10	0.2	0.3	0.05	0.1	0.15
37	3	1	0.28	0.94	0.03	0.05	0.08	0.10	0.2	0.3	0.05	0.1	0.15
37	4	1	0.43	0.98	0.02	0.03	0.06	0.10	0.2	0.3	0.05	0.1	0.15
37 37	5	1	0.37 0.52	0.95 0.99	0.005 0.001	0.008 0.002	0.015 0.005	0.15 0.05	0.3	0.45 0.15	0.05	0.1	0.15 0.1
37	6 7	1	0.32	0.99	0.001	0.002	0.003	0.03	0.1	0.13	0.05	0.03	0.15
37	10	1	0.78	0.93	0.04	0.002	0.005	0.10	0.2	0.3	0.05	0.1	0.15
38	10	1	0.59	0.95	0.02	0.002	0.003	0.10	0.2	0.3	0.03	0.05	0.13
38	2	1	0.44	0.96	0.05	0.1	0.2	0.15	0.3	0.45	0.05	0.1	0.15
38	3	1	0.55	0.95	0.01	0.02	0.05	0.15	0.3	0.45	0.05	0.1	0.15
38	4	1	0.48	0.93	0.01	0.02	0.03	0.15	0.3	0.45	0.05	0.1	0.15
38	5	1	0.50	0.85	0.01	0.02	0.05	0.10	0.2	0.3	0.05	0.1	0.15
38	6	1	0.48	0.82	0.02	0.03	0.05	0.10	0.2	0.3	0.05	0.1	0.15
38	7	1	0.87	1.00	0.05	0.1	0.2	0.15	0.3	0.45	0.05	0.1	0.15
38	8	1	0.22	0.89	0.002	0.003	0.01	0.10	0.2	0.3	0.05	0.1	0.15
38	9	1	0.05	0.93	0.0001	0.0002	0.0003	0.15	0.15	0.15	0.05	0.1	0.15
38	10	1	0.02	0.85	0	0.0002	0.0003	0.10	0.2	0.3	0	0.05	0.1
39	1	1	0.49	0.96	0.003	0.005	0.01	0.15	0.3	0.45	0.05	0.1	0.15
39	2	1	0.79	0.90	0.01	0.02	0.04	0.10	0.2	0.3	0.05	0.1	0.15
39	3	1	0.90	0.96	0.01	0.02	0.04	0.10	0.2	0.3	0.05	0.1	0.15
39	4	1	0.80	0.96	0.02	0.03	0.08	0.15	0.3	0.45	0.05	0.1	0.15
39 39	5	1	0.50 0.60	0.96 0.98	0.03 0.01	0.05 0.02	0.12 0.03	0.15 0.15	0.3	0.45	0.05	0.1	0.15 0.15
39	6 7	1	0.60	1.00	0.01	0.02	0.03	0.15	0.3	0.45 0.45	0.05	0.1	0.15
39	8	1	0.56	0.95	0.01	0.013	0.06	0.10	0.3	0.43	0.05	0.1	0.15
39	9	1	0.82	0.92	0.03	0.05	0.1	0.10	0.2	0.3	0.05	0.1	0.15
39	10	1	0.00	1.00	0	0.005	0.01	0.15	0.3	0.45	0.05	0.1	0.15
40	1	1	0.10	0.96	0.002	0.0035	0.0045	0.15	0.3	0.45	0.05	0.1	0.15
40	2	1	0.41	0.79	0.02	0.04	0.08	0.10	0.2	0.3	0.05	0.1	0.15
40	10	1	0.00	1.00	0	0.0035	0.0045	0.15	0.3	0.45	0.05	0.1	0.15
41	1	1	0.87	0.99	0.03	0.05	0.12	0.15	0.3	0.45	0.05	0.1	0.15
41	2	1	0.74	1.00	0.005	0.01	0.02	0.15	0.3	0.45	0.05	0.1	0.15
42	1	1	0.52	0.87	0.01	0.02	0.04	0.10	0.2	0.3	0.05	0.1	0.15
42	2	1	0.86	0.91	0.04	0.08	0.16	0.10	0.2	0.3	0.05	0.1	0.15
42	3	1	0.77	0.91	0.1	0.2	0.4	0.10	0.2	0.3	0.05	0.1	0.15
42	4	1	0.12	0.95	0.01	0.02	0.04	0.10	0.2	0.3	0.05	0.1	0.15
42	5	1	0.09	1.00	0	0.001	0.006	0.15	0.3	0.45	0.05	0.1	0.15
42	10	1	0.01	0.93	0	0.001	0.006	0.10	0.2	0.3	0.05	0.1	0.15

3. Results

Net present values for each tract were computed using equations 1, 2 and 3 and using data as discussed in the previous sections and where the discount rate $\beta_t = 1/(1+i)^t$ with i was set at 0.04. This reflects a risk free real return on capital and is lower than gas companies would use. Hence, our NPVs will be higher than what gas exploration and development companies would obtain with a discount rate of say 0.10.

For each land section, the NPVs for each tract that were greater than zero were added up across all the tracts in the section (i.e., that is for each stratigraphic interval present below the section's land surface. This yielded a total land value for the section. Land values were developed for each of the three EUB/NEB ultimate potential scenarios, which in terms of the equation 1 to 3 means three different p^{seis} scenarios for each play area. A map showing the total land values by section is presented in Figure 10.

Figure 10. Natural gas net present values for the EUB/NEB medium ultimate potential scenario.

The areas in the map where NPVs are shown to be relatively homogeneous reflect areas where there are a many tracts classified as future, which means they will have all the same estimated reserves and thus NPVs. The straight lines, particularly in the north-

western part of the map reflect play area boundaries. The map also shows areas of white areas speckled within the coloured areas on the map. These are areas where gas has already been fully exploited. The map suggests that lowest value gas areas are in the Bistcho, Caribou Mountains, Red Earth and Richardson herds.

The NPVs shown here are computed as if the initial investment would proceed immediately. This is not a realistic assumption because of the many constraints that face energy producers, such as drilling capacity, which will mean the gas wells will be built over a period of time. However, the output as presented in this fashion does give an indication of what priority areas would be if an optimal schedule of drilling were to be developed. We develop a schedule of drilling for natural gas, oil and bitumen in another paper.

The value of gas resources in each caribou herd

The unscheduled NPVs, may be added up within and outside the herds, to give a preliminary estimation of the relative value of resources in each herd. In addition, we can compute NPVs of royalties and taxes separately using equations 5 and 6. Again, these NPVs will overestimate the value because wells as assumed to be drilled immediately.

Tables 12, 13, and 14 show NPVs by herd and broken down by profits, computed from equations 1-3, royalties (equation 5), and taxes (equation 6). The total value is also reported. The NPVs are also computed for each ERCB ultimate potential scenario for natural gas. Table 12 gives the values for wells that already exist (equation 2). Table 13 gives NPVs for future wells (equations 1 and 3). Finally, Table 14 gives total NPVs over existing and future wells. In each of the tables the herds have been sorted with the smallest value herd in the medium ultimate potential scenario appearing first and the highest value herd appearing last.

The herds with the smallest gas values are Richardson, Caribou Mountains and Slave Lake. The caribou herds with the largest gas values are Chinchaga, West Athabasca and East Athabasca herds (See Table 15). A major reason for the larger NPVs in many of the herds is herd size. This is appropriate if each herd is considered an indivisible conservation unit. However, this is probably not realistic given the size of the values for some herds. In addition, there is substantial heterogeneity in the values within each herd. The marginal value per unit area (e.g. \$/ha) or value per unit of some appropriate measure of conservation that incorporates the quality of habitat will be a more appropriate criterion if herds are divisible. This suggests a cost curves should be developed for each herd and a global cost curve should be developed across all herds. We do not pursue this here. However, computed average \$/ha values for each herd to demonstrat how the objectives of caribou conservation might affect the ranking of lands within caribou herds for conservation. These averages are show in Table 16. The results indicate that average \$/ha values are highest for Narraway, Little Smokey and Redrock-Prairie Creek. Cost curves will be developed in future papers.

Tables 12 to 14 also show how NPVs change with the ERCB ultimate potential scenarios. In most cases the NPVs increase for each category of NPV (profits, royalties, taxes and total) as we move from low to medium to high scenarios. However, this is not true in all cases. For example, Slave Lake total NPVs are lowest for the medium scenario and highest for the low scenario. This is due to the nature of the royalty system, which charges higher royalties for wells that are larger and our assumption that the number of wells used for extraction stays constant across the scenarios. The effect of the royalty assumption, which tries to capture more rent for larger wells, can be seen for the Slave Lake case. More royalties and taxes are collected as the estimate of future resources increases from low to high, while at the same time profits and total NPVs fall and then rise again only slightly (see Table 13 and 14). In other cases, while total NPVs increase with increases in estimated reserves, profits decrease as the royalty system captures more of the rents. This can be observed in the Narraway, and East Athabasca ranges and areas outside the caribou herd ranges.

Table 15 shows how the expected total gas extraction and the number of wells need to extract the gas change as the ultimate potential scenarios changes. The amount of gas extracted and the number increases from low to high scenarios as expected. In addition, the estimated future wells increase because the increase in expected future volumes increase the profitability of tracts from negative to positive.

Table 12. Net present values of profits, royalties, and taxes for existing wells for each ERCB ultimate potential scenario for conventional natural gas.

	Lo	ow ERCI Scen		ntial	Med	lium ER	CB Pot	tential	High ER	RCB Po	tential S	Scenario
HerdName	Prof.		Гах	Tot.	Prof.	Roy.	Tax	Tot.	Prof.	Roy.	Tax	Tot.
Richardson	0		0	0			0	0		0	0	0
Caribou	1	1	0	2	1	1	0	2	1	1	0	2
Mountains												
Nipisi	15	3	5	23	16	3	5	24	17	4	5	26
SlaveLake	30	6	9	45	32	6	10	48	34	7	10	51
RedEarth	49	16	15	79	52	16	16	84	54	17	17	88
Bistcho	55	24	16	95	59	25	17	101	63	26	18	107
ALaPeche	68	21	11	101	71	22	11	104	72	23	12	107
Narraway	83	21	22	126	92	22	23	137	99	24	25	148
Little	115	33	28	175	124	35	30	190	131	40	33	204
Smoky												
CLAWR	141	28	46	215	145	28	46	219	148	29	47	223
Redrock-	160	34	28	222	165	34	28	227	168	35	29	232
PrairieCk												
West	192	55	55	302	207	57	60	324	220	61	65	346
Athabasca	202	4.77	07	126	222	50	0.2	47.4	256	5 .0	100	510
East	302	47	87	436	332	50	93	474	356	56	100	512
Athabasca Chinchaga	408	143	131	681	427	155	138	720	447	165	145	756
Outside	7,439		1,984	11,621	8,128		2,119			2,519	_	13,535
Herds	1,437	2,179	1,704	11,021	0,120	2,540	2,119	12,567	6,737	2,319	2,219	13,333
Total	9,059	2,629	2,437	14,125	9,851	2,794	2,597	15,242	10,548	3,005	2,785	16,338

Table 13. Net present values of profits, royalties and taxes for future wells for each ERCB ultimate potential

scenario for conventional natural gas.

				otential		1edium	ERCB P	otential		High I	ERCB P	otential
			S	cenario			S	cenario			S	cenario
Herd	Prof.	Roy.	Tax	Tot.	Prof.	Roy.	Tax	Tot.	Prof.	Roy.	Tax	Tot.
Name												
Richardson	2	6	9	17	12	8	13	34	18	12	17	46
Slave	552	73	89	713	194	87	108	390	253	111	140	504
Lake												
Caribou	9	59	52	120	186	117	103	407	368	231	204	803
Mountains												
Nipisi	241	99	101	440	212	124	127	463	283	164	168	615
Red Earth	116	162	144	422	355	232	209	796	551	354	316	1,221
Bistcho	325	232	155	711	339	307	207	853	462	429	296	1,186
CLAWR	1,336	271	284	1,892	610	299	321	1,230	696	335	369	1,400
Narraway	817	368	207	1,392	470	501	278	1,249	709	772	418	1,900
ALaPeche	373	615	279	1,267	588	939	422	1,949	1,064	1,741	765	3,570
Little	959	727	421	2,106	921	969	558	2,448	1,378	1,491	842	3,711
Smoky												
Redrock	840	861	398	2,099	868	1,254	570	2,692	1,414	2,150	952	4,516
-PrairieCk												
East	2,791	698	796	4,284	1,736	840	991	3,568	2,228	1,046	1,266	4,540
Athabasca												
West	1,732	626	850	3,208	1,894	859	1,140	3,893	2,633	1,205	1,554	5,392
Athabasca												
Chinchaga	2,828	1,927	1,295	6,050	3,223	2,539	1,729	7,490	5,022	4,107	2,683	11,812
Outside	56,855	31,113	22,610	110,578	51,223	38,400	28,219	117,842	68,183	52,005	37,910	158,098
Herds												
Total	69,776	37,835	27,690	135,301	62,831	47,477	34,996	145,304	85,261	66,152	47,900	199,314

Table 14. Net present values of profits, royalties, and taxes for all wells for each ERCB ultimate potential scenario for conventional gas.

scenario id			3 Poten		Mediu	ım ERC	CB Pote	ntial	Hig	gh ERC	B Poter	ntial
		Scen	ario			Scena	ario			Sce	nario	
HerdName	Prof.	Roy.	Tax	Tot.	Prof.	Roy.	Tax	Tot.	Prof.	Roy.	Tax	Tot.
Richardson	2	6	9	17	12	8	13	34	18	12	17	46
Caribou	10	60	53	122	187	118	104	409	369	232	205	806
Mountains												
Slave	581	79	97	757	226	94	118	438	288	117	150	555
Lake												
Nipisi	256	102	105	463	228	127	132	487	300	167	173	641
Red Earth	165	178	159	501	407	248	225	880	605	371	333	1,309
Bistcho	380	256	171	806	398	331	224	954	524	455	314	1,293
Narraway	900	389	229	1,518	562	523	301	1,386	808	796	444	2,048
CLAWR	1,477	299	330	2,106	754	326	368	1,449	844	364	416	1,623
ALaPeche	442	636	291	1,369	658	962	434	2,053	1,136	1,764	777	3,677
Little	1,073	760	449	2,282	1,045	1,005	589	2,638	1,509	1,531	875	3,915
Smoky												
Redrock	1,000	894	426	2,321	1,033	1,289	598	2,920	1,582	2,185	981	4,748
-PrairieCk												
East	3,093	745	882	4,720	2,068	890	1,084	4,042	2,584	1,102	1,366	5,051
Athabasca												
West	1,923	681	905	3,510	2,101	916	1,200	4,217	2,853	1,266	1,619	5,738
Athabasca												
Chinchaga	3,236	2,069	1,426	6,731	3,650	2,694	1,866	8,210	5,469	4,272	2,828	12,568
Outsided	64,294	33,311	24,594	122,199	59,351	40,740	30,338	130,429	76,921	54,524	40,189	171,633
Herds												
Total	78,834	40,464	30,127	149,425	72,682	50,271	37,593	160,546	95,809	69,158	50,686	215,652

Table 15. Estimated gas extraction and numbers of wells, past and future, for each herd and ERCB ultimate potential scenario for conventional gas.

and EKCD	ERCB Low ERCB Medium ERCB High													
	ERCB Lo	W		ERCB Me	edium		ERCB Hi	gh						
	Scenario			Scenario			Scenario							
HerdName	Gas	Est.	Existing	Gas	Est.	Existing	Gas	Est.	Existing					
	million	Future	Wells	million	Future	Wells	million	Future	Wells					
	m3	Wells		m3	Wells		m3	Wells						
Richardson	282	117	15	389	151	15	515	187	15					
Caribou	1,760	213	3	3,462	420	3	6,772	828	3					
Mountains														
Slave Lake	3,497	548	211	4,167	621	211	5,133	739	211					
Nipisi	3,710	659	194	4,624	797	194	6,021	983	194					
RedEarth	6,017	930	279	8,400	1,233	279	12,267	1,650	279					
Bistcho	6,567	711	169	8,821	976	169	13,061	1,394	169					
Narraway	10,304	637	374	13,543	697	374	19,826	791	374					
CLAWR	11,213	1,941	1,039	12,458	2,102	1,039	14,028	2,295	1,039					
ALaPeche	17,506	347	153	25,584	431	153	42,576	589	153					
Little	23,437	1,283	690	31,773	1,487	690		1,803	690					
Smoky							46,326							
Redrock-	26,187	688	347	35,748	811	347		1,021	347					
PrairieCk							55,213							
East	31,888	5,767	2,386	38,637	6,816	2,386		8,018	2,386					
Athabasca							47,657							
West	30,997	5,526	1,282	40,604	7,088	1,282		8,898	1,282					
Athabasca							53,658							
Chinchaga	53,456	4,273	1,289	69,425	5,436	1,289	103,951	7,398	1,289					
Outside	953,477	92,487	37,669	1,182,746	109,143	37,669	1,565,263	133,647	37,669					
Herds														
Grand	1,180,297	116,125	46,100	1,480,382	138,208	46,100	1,992,267	170,242	46,100					
Total														

Table 16. NPVs per unit area (\$/ha) for each herd and ERCB ultimate potential scenario.

	Herd	\$/ha Profits	by herd		\$/ha Profi	its+Royalties+T	axes by
	Area				herd		
HerdName	1000 ha	Low	Medium	High	Low	Medium	High
Richardson	270	8	46	65	64	124	170
CaribouMountains	1,866	5	100	198	66	219	432
SlaveLake	134	4,338	1,689	2,146	5,652	3,267	4,140
Nipisi	208	1,231	1,097	1,442	2,226	2,341	3,081
RedEarth	1,600	103	255	378	313	550	818
Bistcho	1,280	296	311	410	630	745	1,011
Narraway	102	8,828	5,510	7,925	14,885	13,591	20,078
CLAWR	269	5,492	2,804	3,137	7,831	5,385	6,035
ALaPeche	625	707	1,053	1,818	2,190	3,285	5,884
LittleSmoky	292	3,676	3,577	5,168	7,815	9,034	13,406
Redrock-	465	2,152	2,221	3,402	4,991	6,279	10,211
PrairieCk							
EastAthabasca	1,473	2,100	1,404	1,754	3,205	2,744	3,429
WestAthabasca	1,504	1,279	1,397	1,897	2,334	2,804	3,815
Chinchaga	1,710	1,892	2,135	3,198	3,936	4,801	7,350

4 Discussion and Conclusions

In this paper we developed a NPV model of conventional natural gas drilling. We then proceeded to describe the data and computations that were required for each variable and parameter in the model. The net present value model is written from the perspective of a gas company that explores for gas using seismic and drilling and then develops gas resources by completing wells and then extracting the gas.

Several weaknesses exist in the model. One is that it describes only marginal activities of the gas company. Hence, computation of corporate taxes can only be approximated. Royalty calculations are restricted to the main aspects of Alberta's new royalty system, implemented starting in January 2009. Elements such as the transition well program, which features reduced royalty rates, are ignored here for the sake of simplicity. Other issues relate to data. First, the ultimate potential data is up to date to the end of 2004 so there have been several years of activity since then. In this paper, we made no attempt to update the data as this would have entailed more resources than were available. Another problem with the ultimate potential database developed by ERCB and NEB is that it does not contain depth data. Since drilling depth is a major determinant of cost we need to find a way of estimating depths for each layer. Hence, we developed the matching procedure described in section 2 which may not have accurately matched wells to strata in all cases.

In section three we presented a sensitivity analysis on the ERCB ultimate potential scenarios to see the effect of increasing expected reserves sizes by increasing the a priori probability of discovery p_{sm}^{EUB} . This was an obvious analysis to perform due to the inherent uncertainties in the data we obtained from the ERCB ultimate potential database.

However, there are other sensitivity analyses we could perform on other variables in the model which include price forecasts, success rates, numbers of wells need to extract gas, size of future reserves and so on. Since the main purpose of the this paper was to present the methods used to estimate the value of natural gas reserves for use in subsequent models we leave these sensitivity analyses for future papers.

The analysis presented here, although incomplete, does show substantial differences in gas resource values across the herds. However, the ranking of herds by NPV of resources does significantly differ if one uses total herd values and \$/ha values. The former is relevant if herds are considered indivisible for conservation purposes while the latter is relevant if herds are divisible. Hence, in future analyses it will be important to consider the specific objectives of caribou conservation and recovery, such as whether all herds must be recovered, whether some herds may be allowed to extirpate as long as others are recovered, and to what extent herds (particularly the large ones) may be subdivided into areas of development and areas of protection.

Table A1. Gas production profiles from representative wells by PSAC region. Taken from profiles given in Alberta Department of Energy (2007a) and converted to m3.

Irom j	from profiles given in Alberta Department of Energy (2007a) and converted to m3.												
			Total Flow	Gas	Proportion				Total Flow		Proportion		
Cumus	DCAC	tim o	over Well	Flow	of Flow	Cumia	DCAC	tim o	over Well	Flow	of Flow		
Curve #	PSAC Region	time years	Life 1000 m3	1000 m3	over Life of Well	Curve #	PSAC Region	time years	Life 1000 m3	1000 m3	over Life of Well		
1	3	<u> </u>	1133	198	0.175	7	3	<u> </u>	3681	736	0.200		
1	3	2	1133	170	0.150	7	3	2	3681	566	0.154		
1	3	3	1133	170	0.150	7	3	3	3681	481	0.131		
1	3	4	1133	113	0.100	7	3	4	3681	396	0.101		
1	3	5	1133	85	0.100	7	3	5	3681	340	0.092		
1	3	6	1133	57	0.073	7	3	6	3681	255	0.092		
1	3	7	1133	142	0.030	7	3	7	3681	227	0.069		
1	3	8	1133	113	0.123	7	3	8	3681	170	0.002		
1	3	9	1133	85	0.100	7	3	9	3681	142	0.040		
1	3	10		0	0.075	7	3	10	3681	113	0.036		
			1133			ĺ							
2	4	1	1133	538	0.475	7	3	11	3681	85	0.023		
2	4	2	1133	396	0.350	7	3	12	3681	28	0.008		
2	4	3	1133	198	0.175	7	3	13	3681	28	0.008		
2	4	4	1133	0	0.000	7	3	14	3681	28	0.008		
3	5	1	2152	821	0.382	7	3	15	3681	28	0.008		
3	5	2	2152	510	0.237	7	3	16	3681	28	0.008		
3	5	3	2152	283	0.132	7	3	17	3681	28	0.008		
3	5	4	2152	227	0.105	7	3	18	3681	0	0.000		
3	5	5	2152	170	0.079	8	7	1	3681	1218	0.331		
3	5	6	2152	142	0.066	8	7	2	3681	906	0.246		
3	5	7	2152	0	0.000	8	7	3	3681	651	0.177		
4	3	1	2464	510	0.207	8	7	4	3681	368	0.100		
4	3	2	2464	396	0.161	8	7	5	3681	255	0.069		
4	3	3	2464	368	0.149	8	7	6	3681	227	0.062		
4	3	4	2464	227	0.092	8	7	7	3681	57	0.015		
4	3	5	2464	142	0.057	8	7	8	3681	0	0.000		
4	3	6	2464	113	0.046	9	5	1	4332	1614	0.373		
4	3	7	2464	255	0.103	9	5	2	4332	1076	0.248		
4	3	8	2464	283	0.115	9	5	3	4332	538	0.124		
4	3	9	2464	170	0.069	9	5	4	4332	425	0.098		
4	3	10	2464	0	0.000	9	5	5	4332	340	0.078		
5	6	1	2464	821	0.333	9	5	6	4332	311	0.072		
5	6	2	2464	623	0.253	9	5	7	4332	28	0.007		
5	6	3	2464	255	0.103	9	5	8	4332	0	0.000		
5	6	4	2464	198	0.080	10	6	1	4757	1614	0.339		
5	6	5	2464	198	0.080	10	6	2	4757	1189	0.250		
5	6	6	2464	198	0.080	10	6	3	4757	481	0.101		
5	6	7	2464	170	0.069	10	6	4	4757	368	0.077		
5	6	8	2464	0	0.000	10	6	5	4757	396	0.083		
6	4	1	3002	1303	0.434	10	6	6	4757	396	0.083		
6	4	2	3002	1048	0.349	10	6	7	4757	311	0.065		
6	4	3	3002	566	0.189	10	6	8	4757	0	0.000		
6	4	4	3002	85	0.028								
6	4	5	3002	0	0.000								
U			3002	- 0	0.000								

Table	AICOI	n a. C	jas produc Total Flow	Gas	Proportion	птерг	esentan	ve wei	Total	Gas	Proportion
			over Well	Flow	of Flow				Flow over	Flow	of Flow
Curve	PSAC	time	Life 1000	1000	over Life	Curve	PSAC	time	Well Life	1000	over Life
#	Region	years	m3	m3	of Well	# 45	Region	years	1000 m3	m3	of Well
11	3	1	4814	963	0.200	15	7	1	8099	2662	0.329
11	3	2	4814	736	0.153	15	7	2	8099	2067	0.255
11	3	3	4814	623	0.129	15	7	3	8099	1472	0.182
11	3	4	4814	510	0.106	15	7	4	8099	906	0.112
11	3	5	4814	425	0.088	15	7	5	8099	453	0.056
11	3	6 7	4814	340	0.071	15 15	7 7	6	8099	453	0.056
11 11	3	8	4814 4814	255 198	0.053 0.041	15	7	7	8099 8099	113 0	0.014 0.000
11	3	9	4814	170	0.041	16	4	8 1	9401	2548	0.000
11	3	10	4814	142	0.033	16	4	2	9401	2095	0.271
11	3	11	4814	142	0.029	16	4	3	9401	1699	0.223
11	3	12	4814	85	0.029	16	4	4	9401	1189	0.181
11	3	13	4814	57	0.018	16	4	4 5	9401	821	0.127
11	3	14	4814	57 57	0.012	16	4	5 6	9401	453	0.087
11	3	15	4814	57 57	0.012	16	4	7	9401	283	0.046
11	3	16	4814	28	0.012	16	4	8	9401	142	0.030
11	3	17	4814	28	0.006	16	4	9	9401	142	0.015
11	3	18	4814	0	0.000	16	4	10	9401	57	0.006
12	2	10	5125	1586	0.309	16	4	11	9401	0	0.000
12	2	2	5125	1161	0.309	17	5	1	10590	2605	0.000
12	2	3	5125	934	0.227	17	5	2	10590	1982	0.246
12	2	4	5125	623	0.102	17	5	3	10590	1614	0.157
12	2	5	5125	396	0.077	17	5	4	10590	1331	0.132
12	2	6	5125	255	0.050	17	5	5	10590	1019	0.096
12	2	7	5125	142	0.028	17	5	6	10590	566	0.053
12	2	8	5125	28	0.026	17	5	7	10590	396	0.033
12	2	9	5125	0	0.000	17	5	8	10590	283	0.027
13	4	1	6541	1784	0.273	17	5	9	10590	198	0.019
13	4	2	6541	1472	0.275	17	5	10	10590	198	0.019
13	4	3	6541	1189	0.223	17	5	11	10590	113	0.019
13	4	4	6541	821	0.102	17	5	12	10590	57	0.005
13	4	5	6541	566	0.120	17	5	13	10590	57	0.005
13	4	6	6541	340	0.057	17	5	14	10590	57	0.005
13	4	7	6541	227	0.032	17	5	15	10590	57	0.005
13	4	8	6541	85	0.033	17	5	16	10590	28	0.003
13	4	9	6541	57	0.009	17	5	17	10590	0	0.000
13	4	10	6541	28	0.003	.,		•••	.0000		0.000
13	4	11	6541	0	0.004						
14	2	1	7532	2350	0.312						
14	2	2	7532	1699	0.226						
14	2	3	7532	1388	0.220						
14	2	4	7532	934	0.124						
14	2	5	7532	538	0.124						
14	2	6	7532	368	0.049						
14	2	7	7532	198	0.049						
14	2	8	7532	57	0.020						
14	2	9	7532	0	0.000						
1-7	l -	5	1002	J	0.000						

Table	AI cor	it a. C	jas produc			m repre	esentati	ve wei			
			Total Flow over Well	Gas Flow	Proportion of Flow				Total Flow over Well	Gas Flow	Proportion of Flow
Curve	PSAC	time	Life 1000	1000	over Life	Curve	PSAC	time	Life 1000	1000	over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
18	3	1	12091	2464	0.204	20	7	1	13903	3596	0.259
18	3	2	12091	1727	0.143	20	7	2	13903	2775	0.200
18	3	3	12091	1331	0.110	20	7	3	13903	2237	0.161
18	3	4	12091	1104	0.091	20	7	4	13903	1586	0.114
18	3	5	12091	934	0.077	20	7	5	13903	1161	0.084
18	3	6	12091	736	0.061	20	7	6	13903	793	0.057
18	3	7	12091	595	0.049	20	7	7	13903	538	0.039
18	3	8	12091	481	0.040	20	7	8	13903	425	0.031
18	3	9	12091	396	0.033	20	7	9	13903	283	0.020
18	3	10	12091	340	0.028	20	7	10	13903	170	0.012
18	3	11	12091	311	0.026	20	7	11	13903	113	0.008
18	3	12	12091	255	0.021	20	7	12	13903	113	0.008
18	3	13	12091	227	0.019	20	7	13	13903	113	0.008
18	3	14	12091	170	0.014	20	7	14	13903	28	0.002
18	3	15	12091	142	0.012	20	7	15	13903	0	0.000
18	3	16	12091	142	0.012	21	3	1	14895	3002	0.202
18	3	17	12091	142	0.012	21	3	2	14895	2152	0.144
18	3	18	12091	113	0.009	21	3	3	14895	1671	0.112
18	3	19	12091	113	0.009	21	3	4	14895	1388	0.093
18	3	20	12091	113	0.009	21	3	5	14895	1133	0.076
18	3	21	12091	57	0.005	21	3	6	14895	906	0.061
18	3	22	12091	28	0.002	21	3	7	14895	736	0.049
18	3	23	12091	28	0.002	21	3	8	14895	595	0.040
18	3	24	12091	28	0.002	21	3	9	14895	510	0.034
18	3	25	12091	28	0.002	21	3	10	14895	425	0.029
18	3	26	12091	28	0.002	21	3	11	14895	340	0.023
18	3	27	12091	28	0.002	21	3	12	14895	311	0.021
18	3	28	12091	28	0.002	21	3	13	14895	255	0.017
18	3	29	12091	28	0.002	21	3	14	14895	198	0.013
18	3	30	12091	0	0.000	21	3	15	14895	170	0.011
19	5	1	13620	3398	0.249	21	3	16	14895	142	0.010
19	5	2	13620	2520	0.185	21	3	17	14895	142	0.010
19	5	3	13620	2067	0.152	21	3	18	14895	113	0.010
19	5	4	13620	1727	0.132	21	3	19	14895	113	0.008
19	5	5	13620	1274	0.094	21	3	20	14895	113	0.008
19	5	6	13620	765	0.056	21	3	21	14895	85	0.006
19	5	7	13620	510	0.037	21	3	22	14895	57	0.004
19	5	8	13620	340	0.037	21	3	23	14895	57 57	0.004
19	5	9	13620	255	0.023	21	3	24	14895	57	0.004
19	5	10	13620	198	0.019	21	3	25	14895	57 57	0.004
19	5	11	13620	142	0.013	21	3	26	14895	57 57	0.004
19	5	12	13620	113	0.010	21	3	27	14895	57 57	0.004
19	5	13	13620	113	0.008	21	3	28	14895	57 57	0.004
19	5	14	13620	113	0.008	21	3	28 29	14895	28	0.004
19	5	15	13620	113	0.008	21	3	30	14895	28 0	0.002
	II .					۷1	3	30	14090	U	0.000
19	5	16	13620	28	0.002						
19	5	17	13620	0	0.000						

			Total Flow	Gas	Proportion	F	, , , , , , , , , , , , , , , , , , , ,	. ,, СП	Total Flow	Gas	Proportion
			over Well	Flow	of Flow				over Well	Flow	of Flow
Curve	PSAC	time	Life 1000	1000	over Life of	Curve	PSAC	time	Life 1000	1000	over Life of
#	Region	years	m3	m3	Well	#	Region	years	m3	m3	Well
22	6	1	15404	4078	0.265	25	1	1	21804	6116	0.281
22	6	2	15404	2860	0.186	25	1	2	21804	4984	0.229
22	6	3	15404	2124	0.138	25	1	3	21804	3540	0.162
22	6	4	15404	1614	0.105	25	1	4	21804	2265	0.104
22	6	5	15404	1218	0.079	25	1	5	21804	1472	0.068
22	6	6	15404	906	0.059	25	1	6	21804	1557	0.071
22	6	7	15404	708	0.046	25	1	7	21804	963	0.044
22	6	8	15404	510	0.033	25	1	8	21804	566	0.026
22	6	9	15404	396	0.026	25	1	9	21804	311	0.014
22	6	10	15404	283	0.018	25	1	10	21804	28	0.001
22	6	11	15404	198	0.013	25	1	11	21804	0	0.000
22	6	12	15404	170	0.011	26	1	1	26957	7561	0.280
22	6	13	15404	113	0.007	26	1	2	26957	6145	0.228
22	6	14	15404	57	0.004	26	1	3	26957	4389	0.163
22	6	15	15404	57	0.004	26	1	4	26957	2803	0.104
22	6	16	15404	57	0.004	26	1	5	26957	1812	0.067
22	6	17	15404	28	0.002	26	1	6	26957	1897	0.070
22	6	18	15404	0	0.000	26	1	7	26957	1189	0.044
23	6	1	19397	5097	0.263	26	1	8	26957	680	0.025
23	6	2	19397	3596	0.185	26	1	9	26957	396	0.015
23	6	3	19397	2662	0.137	26	1	10	26957	28	0.001
23	6	4	19397	2010	0.104	26	1	11	26957	0	0.000
23	6	5	19397	1557	0.080	27	2	1	30101	8070	0.268
23	6	6	19397	1133	0.058	27	2	2	30101	5522	0.183
23	6	7	19397	878	0.045	27	2	3	30101	4389	0.146
23	6	8	19397	651	0.034	27	2	4	30101	3653	0.121
23	6	9	19397	510	0.026	27	2	5	30101	2917	0.097
23	6	10	19397	340	0.018	27	2	6	30101	2039	0.068
23	6	11	19397	283	0.015	27	2	7	30101	1331	0.044
23	6	12	19397	198	0.010	27	2	8	30101	821	0.027
23	6	13	19397	170	0.009	27	2	9	30101	481	0.016
23	6	14	19397	113	0.006	27	2	10	30101	311	0.010
23	6	15	19397	113	0.006	27	2	11	30101	198	0.007
23	6	16	19397	113	0.006	27	2	12	30101	142	0.005
23	6	17	19397	57	0.003	27	2	13	30101	85	0.003
23	6	18	19397	0	0.000	27	2	14	30101	57	0.002
24	7	1	21492	5550	0.258	27	2	15	30101	57	0.002
24	7	2	21492	4304	0.200	27	2	16	30101	28	0.001
24	7	3	21492	3483	0.162	27	2	17	30101	0	0.000
24	7	4	21492	2464	0.115						
24	7	5	21492	1812	0.084						
24	7	6	21492	1189	0.055						
24	7	7	21492	821	0.038						
24	7	8	21492	623	0.029						
24	7	9	21492	425	0.020						
24	7	10	21492	311	0.014						
24	7	11	21492	198	0.009						
24	7	12	21492	142	0.007						
24	7	13	21492	142	0.007						
24	7	14	21492	57	0.003						

Table	AI COL	ii u. G			rofiles fron	repres	semany	e wens			
			Total	Gas	Proportion				Total Flow	Gas	Proportion
Curve	PSAC	time	Flow over Well Life	Flow 1000	of Flow over Life of	Curve	PSAC	time	over Well Life 1000	Flow 1000	of Flow over Life of
#	Region	years	1000 m3	m3	Well	#	Region	years	m3	m3	Well
28	4	1	33782	7249	0.215	30	4	1	37576	8212	0.219
28	4	2	33782	5522	0.163	30	4	2	37576	6230	0.166
28	4	3	33782	4531	0.134	30	4	3	37576	5125	0.136
28	4	4	33782	3483	0.103	30	4	4	37576	3908	0.104
28	4	5	33782	2775	0.103	30	4	5	37576	3115	0.083
28		6	33782	2152	0.062	30	4		37576	2407	0.063
	4							6			
28	4	7	33782 33782	1642	0.049 0.039	30	4	7	37576	1869	0.050
28	4	8		1303		30	4	8	37576	1472	0.039
28	4	9	33782	1048	0.031	30	4	9	37576	1161	0.031
28	4	10	33782	821	0.024	30	4	10	37576	934	0.025
28	4	11	33782	651	0.019	30	4	11	37576	736	0.020
28	4	12	33782	538	0.016	30	4	12	37576	595	0.016
28	4	13	33782	425	0.013	30	4	13	37576	453	0.012
28	4	14	33782	311	0.009	30	4	14	37576	368	0.010
28	4	15	33782	255	0.008	30	4	15	37576	227	0.006
28	4	16	33782	227	0.007	30	4	16	37576	170	0.005
28	4	17	33782	170	0.005	30	4	17	37576	142	0.004
28	4	18	33782	113	0.003	30	4	18	37576	142	0.004
28	4	19	33782	113	0.003	30	4	19	37576	113	0.003
28	4	20	33782	85	0.003	30	4	20	37576	57	0.002
28	4	21	33782	57	0.002	30	4	21	37576	57	0.002
28	4	22	33782	57	0.002	30	4	22	37576	57	0.002
28	4	23	33782	57	0.002	30	4	23	37576	57	0.002
28	4	24	33782	57	0.002	30	4	24	37576	57	0.002
28	4	25	33782	57	0.002	30	4	25	37576	57	0.002
28	4	26	33782	57	0.002	30	4	26	37576	28	0.001
28	4	27	33782	0	0.000	30	4	27	37576	0	0.000
29	2	1	34320	9203	0.268						0.000
29	2	2	34320	6286	0.183						
29	2	3	34320	5040	0.147						
29	2	4	34320	4191	0.122						
29	2	5	34320	3313	0.122						
29	2	6	34320	2350	0.097						
29	2	7	34320	1501	0.066						
				934	0.044						
29	2	8	34320								
29	2	9	34320	566	0.017						
29	2	10	34320	368	0.011						
29	2	11	34320	227	0.007						
29	2	12	34320	142	0.004						
29	2	13	34320	85	0.002						
29	2	14	34320	57	0.002						
29	2	15	34320	57	0.002						
29	2	16	34320	28	0.001						
29	2	17	34320	0	0.000						

Curve #	PSAC Region	time years	Total Flow over Well Life 1000 m3	Gas Flow 1000 m3	Proportion of Flow over Life of Well	Curve #	PSAC Region	time years	Total Flow over Well Life 1000 m3	Gas Flow 1000 m3	Proportion of Flow over Life of Well
31	5	1	50913	11723	0.230	33	6	1	62750	10902	0.174
31	5	2	50913	8183	0.161	33	6	2	62750	9118	0.145
31	5	3	50913	6400	0.126	33	6	3	62750	7447	0.119
31	5	4	50913	5324	0.105	33	6	4	62750	6088	0.097
31	5	5	50913	4247	0.083	33	6	5	62750	4870	0.078
31	5	6	50913	3341	0.066	33	6	6	62750	4078	0.065
31	5	7	50913	2605	0.051	33	6	7	62750	3313	0.053
31	5	8	50913	2010	0.039	33	6	8	62750	2690	0.043
31	5	9	50913	1501	0.029	33	6	9	62750	2237	0.036
31	5	10	50913	1161	0.023	33	6	10	62750	1897	0.030
31	5	11	50913	934	0.018	33	6	11	62750	1586	0.025
31	5	12	50913	736	0.014	33	6	12	62750	1359	0.022
31	5	13	50913	595	0.012	33	6	13	62750	1133	0.018
31	5	14	50913	453	0.009	33	6	14	62750	934	0.015
31	5	15	50913	340	0.007	33	6	15	62750	793	0.013
31	5	16	50913	255	0.005	33	6	16	62750	708	0.011
31	5	17	50913	227	0.004	33	6	17	62750	595	0.009
31	5	18	50913	198	0.004	33	6	18	62750	510	0.008
31	5	19	50913	142	0.003	33	6	19	62750	425	0.007
31	5	20	50913	85	0.002	33	6	20	62750	368	0.006
31	5	21	50913	57	0.001	33	6	21	62750	311	0.005
31	5	22	50913	57	0.001	33	6	22	62750	255	0.004
31	5	23	50913	57	0.001	33	6	23	62750	227	0.004
31	5	24	50913	57	0.001	33	6	24	62750	198	0.003
31	5	25	50913	57	0.001	33	6	25	62750	142	0.002
31	5	26	50913	57	0.001	33	6	26	62750	142	0.002
31	5	27	50913	57	0.001	33	6	27	62750	113	0.002
31	5	28	50913	28	0.001	33	6	28	62750	113	0.002
31	5	29	50913	0	0.000	33	6	29	62750	85	0.001
						33	6	30	62750	85	0.001
						33	6	31	62750	57	0.001
						33	6	32	62750	28	0.000
						33	6	33	62750	0	0.000

Curve	PSAC	time	Total Flow over Well Life 1000	Gas Flow 1000	Proportion of Flow over Life	Curve	PSAC	time	Total Flow over Well Life 1000	Gas Flow 1000	Proportion of Flow over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
32	5	1	55444	12771	0.230	34	6	1	65638	11242	0.171
32	5	2	55444	8948	0.161	34	6	2	65638	9514	0.145
32	5	3	55444	7023	0.127	34	6	3	65638	7759	0.118
32	5	4	55444	5805	0.105	34	6	4	65638	6343	0.097
32	5	5	55444	4644	0.084	34	6	5	65638	5097	0.078
32	5	6	55444	3681	0.066	34	6	6	65638	4247	0.065
32	5	7	55444	2832	0.051	34	6	7	65638	3455	0.053
32	5	8	55444	2180	0.039	34	6	8	65638	2832	0.043
32	5	9	55444	1642	0.030	34	6	9	65638	2350	0.036
32	5	10	55444	1274	0.023	34	6	10	65638	1982	0.030
32	5	11	55444	1019	0.018	34	6	11	65638	1642	0.025
32	5	12	55444	793	0.014	34	6	12	65638	1416	0.022
32	5	13	55444	623	0.011	34	6	13	65638	1161	0.018
32	5	14	55444	481	0.009	34	6	14	65638	991	0.015
32	5	15	55444	368	0.007	34	6	15	65638	849	0.013
32	5	16	55444	283	0.005	34	6	16	65638	736	0.011
32	5	17	55444	227	0.004	34	6	17	65638	623	0.009
32	5	18	55444	198	0.004	34	6	18	65638	538	0.008
32	5	19	55444	142	0.003	34	6	19	65638	425	0.006
32	5	20	55444	85	0.002	34	6	20	65638	368	0.006
32	5	21	55444	57	0.001	34	6	21	65638	311	0.005
32	5	22	55444	57	0.001	34	6	22	65638	283	0.004
32	5	23	55444	57	0.001	34	6	23	65638	227	0.003
32	5	24	55444	57	0.001	34	6	24	65638	198	0.003
32	5	25	55444	57	0.001	34	6	25	65638	170	0.003
32	5	26	55444	57	0.001	34	6	26	65638	170	0.003
32	5	27	55444	57	0.001	34	6	27	65638	113	0.002
32	5	28	55444	28	0.001	34	6	28	65638	113	0.002
32	5	29	55444	0	0.000	34	6	29	65638	113	0.002
						34	6	30	65638	85	0.001
						34	6	31	65638	85	0.001
						34	6	32	65638	57	0.001
						34	6	33	65638	57	0.001
						34	6	34	65638	57	0.001
						34	6	35	65638	28	0.000

1 abic	AI COIII	u. U.	Total Flow	Gas	Proportion	leprese	Illative	wens t	Total Flow	Gas	Proportion
			over Well	Flow	of Flow				over Well	Flow	of Flow
Curve	PSAC	time	Life 1000	1000	over Life	Curve	PSAC	time	Life 1000	1000	over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
35	7	1	78437	17981	0.229	36	7	1	93671	21492	0.229
35	7	2	78437	13734	0.175	36	7	2	93671	16452	0.176
35	7	3	78437	10704	0.136	36	7	3	93671	12799	0.137
35	7	4	78437	8297	0.106	36	7	4	93671	9911	0.106
35	7	5	78437	6371	0.081	36	7	5	93671	7645	0.082
35	7	6	78437	4927	0.063	36	7	6	93671	5890	0.063
35	7	7	78437	3709	0.047	36	7	7	93671	4446	0.047
35	7	8	78437	2832	0.036	36	7	8	93671	3370	0.036
35	7	9	78437	2152	0.027	36	7	9	93671	2577	0.028
35	7	10	78437	1642	0.021	36	7	10	93671	1954	0.021
35	7	11	78437	1246	0.016	36	7	11	93671	1501	0.016
35	7	12	78437	963	0.012	36	7	12	93671	1133	0.012
35	7	13	78437	736	0.009	36	7	13	93671	878	0.009
35	7	14	78437	566	0.007	36	7	14	93671	708	0.008
35	7	15	78437	481	0.006	36	7	15	93671	566	0.006
35	7	16	78437	396	0.005	36	7	16	93671	481	0.005
35	7	17	78437	340	0.004	36	7	17	93671	368	0.004
35	7	18	78437	283	0.004	36	7	18	93671	311	0.003
35	7	19	78437	227	0.003	36	7	19	93671	227	0.002
35	7	20	78437	198	0.003	36	7	20	93671	198	0.002
35	7	21	78437	142	0.002	36	7	21	93671	170	0.002
35	7	22	78437	142	0.002	36	7	22	93671	170	0.002
35	7	23	78437	113	0.001	36	7	23	93671	113	0.001
35	7	24	78437	57	0.001	36	7	24	93671	57	0.001
35	7	25	78437	57	0.001	36	7	25	93671	57	0.001
35	7	26	78437	57	0.001	36	7	26	93671	57	0.001
35	7	27	78437	28	0.000	36	7	27	93671	57	0.001
35	7	28	78437	28	0.000	36	7	28	93671	57	0.001
35	7	29	78437	28	0.000	36	7	29	93671	28	0.000
35	7	30	78437	0	0.000	36	7	30	93671	0	0.000

13310			Total Flow over Well	Gas Flow	Proportion of Flow	- Topics		2115	Total Flow over Well	Gas Flow	Proportion of Flow
Curve	PSAC	time	Life 1000	1000	over Life	Curve	PSAC	time	Life 1000	1000	over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
37	1	1	129407	19652	0.152	38	1	1	135013	20473	0.152
37	1	2	129407	26476	0.205	38	1	2	135013	27637	0.205
37	1	3	129407	20331	0.157	38	1	3	135013	21209	0.157
37	1	4	129407	15914	0.123	38	1	4	135013	16622	0.123
37	1	5	129407	13054	0.101	38	1	5	135013	13620	0.101
37	1	6	129407	9175	0.071	38	1	6	135013	9571	0.071
37	1	7	129407	7107	0.055	38	1	7	135013	7447	0.055
37	1	8	129407	4899	0.038	38	1	8	135013	5097	0.038
37	1	9	129407	3851	0.030	38	1	9	135013	4049	0.030
37	1	10	129407	2803	0.022	38	1	10	135013	2917	0.022
37	1	11	129407	1926	0.015	38	1	11	135013	2010	0.015
37	1	12	129407	1472	0.011	38	1	12	135013	1557	0.012
37	1	13	129407	708	0.005	38	1	13	135013	708	0.005
37	1	14	129407	453	0.004	38	1	14	135013	425	0.003
37	1	15	129407	340	0.003	38	1	15	135013	340	0.003
37	1	16	129407	311	0.002	38	1	16	135013	311	0.002
37	1	17	129407	227	0.002	38	1	17	135013	255	0.002
37	1	18	129407	142	0.001	38	1	18	135013	170	0.001
37	1	19	129407	142	0.001	38	1	19	135013	170	0.001
37	1	20	129407	113	0.001	38	1	20	135013	113	0.001
37	1	21	129407	113	0.001	38	1	21	135013	113	0.001
37	1	22	129407	85	0.001	38	1	22	135013	85	0.001
37	1	23	129407	57	0.000	38	1	23	135013	57	0.000
37	1	24	129407	28	0.000	38	1	24	135013	57	0.000
37	1	25	129407	28	0.000	38	1	25	135013	0	0.000
37	1	26	129407	0	0.000						

Table	Arcon	it u. O	Total Flow	Gas	Proportion	represe	manve	wenst	Total Flow	Gas	Proportion
			over Well	Flow	of Flow				over Well	Flow	of Flow
Curve	PSAC	time	Life 1000	1000	over Life	Curve	PSAC	time	Life 1000	1000	over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
39	2	1	144924	34433	0.238	40	2	1	152003	36160	0.238
39	2	2	144924	23220	0.160	40	2	2	152003	24409	0.161
39	2	3	144924	17415	0.120	40	2	3	152003	18293	0.120
39	2	4	144924	13365	0.092	40	2	4	152003	14045	0.092
39	2	5	144924	10760	0.074	40	2	5	152003	11298	0.074
39	2	6	144924	8637	0.060	40	2	6	152003	9090	0.060
39	2	7	144924	7192	0.050	40	2	7	152003	7561	0.050
39	2	8	144924	5862	0.040	40	2	8	152003	6145	0.040
39	2	9	144924	4786	0.033	40	2	9	152003	4984	0.033
39	2	10	144924	3794	0.026	40	2	10	152003	3964	0.026
39	2	11	144924	3058	0.021	40	2	11	152003	3200	0.021
39	2	12	144924	2435	0.017	40	2	12	152003	2577	0.017
39	2	13	144924	2039	0.014	40	2	13	152003	2124	0.014
39	2	14	144924	1586	0.011	40	2	14	152003	1642	0.011
39	2	15	144924	1246	0.009	40	2	15	152003	1303	0.009
39	2	16	144924	1048	0.007	40	2	16	152003	1104	0.007
39	2	17	144924	821	0.006	40	2	17	152003	878	0.006
39	2	18	144924	680	0.005	40	2	18	152003	708	0.005
39	2	19	144924	595	0.004	40	2	19	152003	595	0.004
39	2	20	144924	453	0.003	40	2	20	152003	453	0.003
39	2	21	144924	340	0.002	40	2	21	152003	340	0.002
39	2	22	144924	283	0.002	40	2	22	152003	255	0.002
39	2	23	144924	227	0.002	40	2	23	152003	255	0.002
39	2	24	144924	198	0.001	40	2	24	152003	198	0.001
39	2	25	144924	142	0.001	40	2	25	152003	170	0.001
39	2	26	144924	113	0.001	40	2	26	152003	113	0.001
39	2	27	144924	113	0.001	40	2	27	152003	57	0.000
39	2	28	144924	57	0.000	40	2	28	152003	57	0.000
39	2	29	144924	28	0.000	40	2	29	152003	28	0.000
39	2	30	144924	0	0.000	40	2	30	152003	0	0.000

Curve	PSAC	time	Total Flow over Well Life 1000	Gas Flow 1000	Proportion of Flow over Life	Curve	PSAC	time	Total Flow over Well Life 1000	Gas Flow 1000	Proportion of Flow over Life
#	Region	years	m3	m3	of Well	#	Region	years	m3	m3	of Well
41	1	1	462976	72717	0.157	42	1	1	477276	74982	0.157
41	1	2	462976	71216	0.154	42	1	2	477276	73425	0.154
41	1	3	462976	61900	0.134	42	1	3	477276	63826	0.134
41	1	4	462976	49327	0.107	42	1	4	477276	50857	0.107
41	1	5	462976	38482	0.083	42	1	5	477276	39672	0.083
41	1	6	462976	30072	0.065	42	1	6	477276	31007	0.065
41	1	7	462976	25145	0.054	42	1	7	477276	25938	0.054
41	1	8	462976	21492	0.046	42	1	8	477276	22172	0.046
41	1	9	462976	17528	0.038	42	1	9	477276	18066	0.038
41	1	10	462976	14272	0.031	42	1	10	477276	14725	0.031
41	1	11	462976	11723	0.025	42	1	11	477276	12091	0.025
41	1	12	462976	9741	0.021	42	1	12	477276	10052	0.021
41	1	13	462976	8042	0.017	42	1	13	477276	8297	0.017
41	1	14	462976	6513	0.014	42	1	14	477276	6711	0.014
41	1	15	462976	5493	0.012	42	1	15	477276	5663	0.012
41	1	16	462976	4361	0.009	42	1	16	477276	4502	0.009
41	1	17	462976	3653	0.008	42	1	17	477276	3766	0.008
41	1	18	462976	2945	0.006	42	1	18	477276	3030	0.006
41	1	19	462976	2209	0.005	42	1	19	477276	2265	0.005
41	1	20	462976	1586	0.003	42	1	20	477276	1614	0.003
41	1	21	462976	1218	0.003	42	1	21	477276	1246	0.003
41	1	22	462976	793	0.002	42	1	22	477276	821	0.002
41	1	23	462976	680	0.001	42	1	23	477276	736	0.002
41	1	24	462976	595	0.001	42	1	24	477276	623	0.001
41	1	25	462976	453	0.001	42	1	25	477276	481	0.001
41	1	26	462976	255	0.001	42	1	26	477276	255	0.001
41	1	27	462976	227	0.000	42	1	27	477276	227	0.000
41	1	28	462976	198	0.000	42	1	28	477276	198	0.000
41	1	29	462976	113	0.000	42	1	29	477276	28	0.000
41	1	30	462976	28	0.000	42	1	30	477276	0	0.000
41	1	31	462976	0	0.000						

References

Alberta Energy and Utilities Board and National Energy Board. 2005. Alberta's ultimate potential for conventional natural gas. EUB/NEB report 2005-A. Alberta Energy and Utilities Board and National Energy Board, Edmonton, Alberta.

Alberta Department of Energy. 2007a. Technical royalty report OG#2: Alberta's conventional oil and gas industry: investor economics and fiscal system comparison. Alberta Department of Energy, Edmonton, Alberta.

Alberta Department of Energy. 2007b. Technical royalty report OS#1: Alberta's oil sands fiscal system – historical context and system performance. Alberta Department of Energy, Edmonton, Alberta.

Alberta Department of Energy. 2007c. Gas royalty calculation information bulletin, January-December 2007. Alberta Department of Energy, Edmonton, Alberta.

Alberta Department of Energy. 2008a. Gas royalty calculation information bulletin, January - September 2008. Alberta Department of Energy, Edmonton, Alberta.

Herchen, Leonard. 2009. Product price and market forecasts for the Canadian oil and gas industry. GLJ Petroleum Consultants. http://www.GLJPC.com