Title: Accuracy and reliability of assessing periodontal parameters on intraoral ultrasound images

Presenting Author: Jiaqing Wang

Presenting Author's Level of Training: Ph.D. student

List of authors and affiliations: Jiaqing Wang¹, Lucas Graf-Alexiou², Kim Cuong Nguyen¹, Trang H. Hoang¹, Maria Alexiou³, Thanh-Giang La¹, Neelambar Kaipatur³, Kumaradevan Punithakumar¹, Edmond Lou⁴, Paul Major³, Lawrence H Le¹

- 1 Department of Radiology and Diagnostic Imaging
- 2 Department of Mechanical Engineering
- 3 School of Dentistry
- 4 Department of Electrical and Computer Engineering

Background and Objective: Intraoral ultrasonography (iUS) is emerging as a promising imaging modality in dentistry, valued for its non-invasiveness and non-ionizing radiation. However, the efficacy of iUS has not been fully examined. This study evaluated the accuracy and reliability of intraoral ultrasound (US) imaging.

Methods: A customized 20-MHz ultrasound system was used to scan teeth on cadavers and orthodontic patients. Two parameters were evaluated for accuracy: the alveolar bone level (ABL) between the cementum-enamel junction and the alveolar bone crest (ABC), and the thickness of the alveolar crestal bone (ABT). The measurements were performed on 50 pairs of US and micro-computed tomography (μ CT) images from 50 cadaver teeth by 2 trained raters. The mean absolute difference (MAD) and its standard deviation (SD), the Student's paired t-test, and Bland-Altman (BA) plots were used for quantitative and qualitative analyses. For reliability study, 134 teeth from 19 adolescents (age 13.8±1.8 years) were scanned by US with ethics approval and patient consent. Three raters measured four parameters on 134 images twice with 2 weeks apart: ABL, ABT, the gingiva thickness close to the ABC (GT1), and the gingiva thickness at 2 mm away from the gingival margin (GT2). The intra- and inter-rater reliabilities were evaluated using the intraclass correlation coefficient [ICC].

Results and Discussion: For accuracy analysis, the average measured US-ABL vs μ CT-ABL by R1 and R2 were 4.38 \pm 1.15 vs 4.39 \pm 1.11 mm, and 4.47 \pm 1.16 vs 4.44 \pm 1.14 mm, respectively. For US-ABT vs μ CT-ABT, the measurements from R1 and R2 were 0.34 \pm 0.13 vs 0.30 \pm 0.14 mm, and 0.33 \pm 0.13 vs 0.30 \pm 0.14 mm, respectively. Overall, the maximum MADs for ABL and ABT were 0.22 \pm 0.24 mm and 0.07 \pm 0.07 mm. There were no statistically significant differences between the measurements from iUS and μ CT (p > 0.2). The BA analysis showed almost no bias (0.03 mm max) for both ABL and ABT, and 46/50 measurements were within the 2SD. The intra-rater reliability for the measured ABL, GT1, and GT2 was excellent with ICC[2,1] \geq 0.93. For ABT, it showed good to excellent with the ICC[2,1] ranging from 0.84 to 0.90. For the inter-rater (R1vsR2vsR3) reliability, the GT1 showed excellent ICC[2,1] of 0.96, and good for ABL, ABT and GT2 with ICC[2,1] \geq 0.82.

Conclusion: The accuracy analysis on the cadavers showed no statistically significant difference in measurements between iUS and μ CT. The reliability analysis on clinical data demonstrated high intra- and inter-rater reliabilities for the periodontal measurements.