Dissolution Testing and Isothermal Microcalorimetry in QbD

Outline

- Quality by Design
- Product lifecycle
- Biowaivers
- Process knowledge
- Predictive Model
- Conclusions

Quality by Design

Product Quality Implementation Lifecycle Initiative (PQLI)

- Quality by Design is a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding based on sound science and quality risk management.
 - ICH Q8 Pharmaceutical Development
 - ICH Q9 Quality Risk Management
 - ICH Q10 Quality Systems
 - FDA Pharmaceutical cGMPs for the 21st Century A Risk-Based Approach. Final Report

Design Space: ICH Q8

 Multi-dimensional space that encompasses combinations of product design, manufacturing process design, manufacturing process parameters and raw material quality that provide assurance of suitable quality and performance

Key Elements of QbD

- Define design space
 - Properties
- Risk assessment
 - Critical vs. Non-Critical Parmeters
- Control strategy
 - Key raw material and excipient properties
 - Key processing parameters
 - Set points
 - Processing times
 - Process Analytical Technology (PAT)
 - Product testing requirements.

Design Space (PQLI)

Integration of prior knowledge

 Creation of a design space is to develop sufficient process understanding to describe the functional relationships between Process Parameters and Critical Quality Attributes.

Design Space (PQLI)

 The functional relationships between Process Parameters and CQAs are best described with a predictive model based upon sound scientific principles, simulations, or experimentation.

A Process is well understood when...

- All critical sources of variability are identified and explained;
- Variability is managed by the process; and,
- Product quality attributes can be accurately and reliably predicted over the design space
- An ability of continuous improvements
- "Real Time" assurance of quality

CONTROL SPACE

Evaluating Variability

- Utilize Process
 capability analysis –
 reduce/control
 "common cause"
 variability
- Develop effective
 Corrective Action and
 Preventive Action will
 eliminate "special
 cause" variability

Risk Assessment in QbD

- Probability the likelihood of a consequence.
- Severity the magnitude of the impact of a consequence.
- Detectability the level or ability at which a consequence can be measured.
- Sensitivity the attenuation of interactions between multivariate dimensions.

Start of the project

•Limited Knowledge

Defined Designed space

Broad Control space

3/2/2010

QbD & Lifecycle

The Six Things to Remember

- We know....
- We want to know...
- We learned
- We control
- We understand, agree & approve & revise
- We monitor and release!!!

Product Lifecycle Challenge

Regulatory Lifecycle of a Product

What do I have to do when a change is necessary?

SUPAC 1995

- ingredients, equipment dissolution test as surrogate
- Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls, In Vitro Dissolution Testing, and In Vivo Bioequivalence Documentation

IVIVC 1997 ER

- Modeling and dissolution as surrogate using a level A correlation
- Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations

Biowaiver 2000

- Drug classification as surrogate
- Waiver of in vivo bio-equivalence studies for immediate release solid oral dosage forms containing certain active moieties/active ingredients based on a Biopharmaceutics Classification System"

Biowaiver Today

3/2/2010

Biowaiver Tomorrow

3/2/2010

Example for an predictive model

In vitro/in vivo Correlation

USP: "the establishment of a rational relationship between a biological property, or a parameter derived from a biological property produced by a dosage form, and a physicochemical property of characteristic of the same dosage form" (USP 29)

FDA defines IVIVC as "A predictive mathematical model describing the relationship between an in vitro property of a dosage form (usually the rate and extent of drug dissolution or release) and a relevant in vivo response, e.g., plasma drug concentration or amount of drug absorbed" (FDA September 1997)

Deconvolution-based IVIVC methods

- These methods are two-stage modeling procedures
- In the first stage, a deconvolution method is used to estimate the time course of in-vivo absorption (fraction absorbed fabs vs. time t).
- In the second stage, the in-vivo absorption (or release) time profile obtained in this first stage is plotted vs. the time course of the in-vitro dissolution profile.
- Usually a point-to-point relationship is established between the in-vivo and in-vitro parameters of the same time point (e.g., in-vivo fraction absorbed fabs vs in-vitro fraction dissolved fdis);
- Linear or sigmoidal curves

Fig. 2. Development of in vivo/in vitro correlation.

Journal of Controlled Release 72 (2001) 127–132 Regulatory perspectives on in vitro (dissolution) / in vivo (bioavailability) correlations Venkata Ramana S. Uppoor

Convolution-based IVIVC methods

- Convolution-based IVIVC methods are onestage modeling approaches, and they directly relate the time course of the in-vivo measured plasma concentration to the time profile of the in-vitro dissolution.
- integral or differential equations

$$C(t) = r(t) * C_{\delta}(t) = \int\limits_{0}^{t} C_{\delta}(t-\tau)r(\tau)d\tau$$

Gillespie 1997; Modi et al 2000; Veng-Pedersen et al 2000; Balan et al 2001; O'Hara et al 2001; Pitsiu et al 2001; Gomeni et al 2002

GastroPlus Software

- Physicochemical Data as Input
- Dissolution Data as Input
- Permeability

Dynamic Dissolution of a Lipophilic Drug

- pKa = 2.8 and 5.7 Basic and Acetic
- logP = 7.01, highly lipophilic
- >99% bound to plasma proteins
- Oral bioavailability variable 58-70% (Cheng, et al 1996)

Solubility in Blank Buffers

Solubility in Biorelevant media.

Dose/Solubility Ratio

			Dose (mg)		
			4	10	
	рН	Solubility (mg/mL)	Dose/solubility ratio		
SGF (without enzymes)	1.2	0.00018	27777.8	55555.6	
SGF-0.25% SLS	2.0	0.240	16.7	41.7	
Acetate Buffer	4.1	0.002	2500.0	5000.0	
LQ-FeSSIF	5.0	0.030	133.3	333.3	
HQ-FeSSIF	5.0	0.015	266.7	666.7	
LQ-FaSSIF	6.5	0.020	200.0	500.0	
HQ-FaSSIF	6.5	0.205	19.5	48.8	
LQ-FaSSIF	7.5	3.370	1.2	3.0	
HQ-FaSSIF	7.5	4.690	0.9	2.1	

According to BCS, this drug is a poorly soluble drug

Dissolution Profiles

- 1. Fast and complete dissolution in 10 min H_2O -0.25% SLS.
- 2. Incomplete dissolution in biorelevant media (89, 77 and 69%) in FaSSIF 500-100 RPM, FaSSIF-900 & FaSSIF-500-75 RPM
- 3. SIF and Phosphate buffer <10%, and insignificant in blank FaSSIF
- 4. Insignificant difference between 500 and 900 mL at 75 RPM

Dynamic Dissolution

Dissolution rate relatively fast in SGF-SLS, slows down at pH 6.5, then increases when pH is Changed to 7.5

Simulations Results

- 1. AUC from Flow through, FaSSIF-500 mL-100 RPM, FaSSIF-900 ml, 75 RPM and H2O-0.25% SLS are not significantly different from observed mean value (p>0.05)
- 2. Cmax from H2O-0.25% SLS is significantly different from observed mean value (p<0.05

Prediction error statistics

Observed values	AUC=3.552 μ	ıg.h/mL	C _{max} =0.4796 μg/mL	
	Predicted Values		AUC	C _{max}
Media	AUC (ug.h/mL)	C _{max} (ug/mL)	%PE	%PE
Flow through cells	3.52	0.567	1.0+	(18.2*)
FaSSIF-500 mL-100 RPM	3.49	0.535	1.7+	11.6*
FaSSIF-900 mL-75 RPM	3.31	0.462	6.9+	3.6+
FaSSIF-500 mL-75 RPM	2.68	0.426	24.5+	11.2+
USP-SIF	0.64	0.061	81.9+	87.3+
H2O-0.25% SLS	3.54	0.803	0.4*	67.4+
Flow thru-No FPE	5.67	0.913	59.6*	90.3*

^{*}means %Higher, and + means %Lower than mean observed value

Example Conclusions

- Simulations showed that the drug is completely absorbed and throughout the GIT.
- Its bioavailability appears to be dissolution rate controlled.
- Level A IVIVC can best be established using the flow through cell dissolution
- The drug appears to be a BCS class 2 drug.

Dissolution Requirements

e time

% released

Conclusions

- The BCS has changed the way we look at drugs and the drug development process
- The BCS is the mechanistic foundation for Biowaivers
- BCS is a risk management tool
- BCS allows us to ask the right questions to find the solutions in drug development
- Software can assist to estimate critical formulations variables
- Fewer in vivo studies
- QbD is a product specific extension of SUPAC
- Need to educate students in QbD

Acknowledgements

- Faculty of Pharmacy University of Alberta
- SimulationsPlus
- NSERC
- Merck Frosst
- USP

- Dr. M. Di Maso
- Arthur Okumo