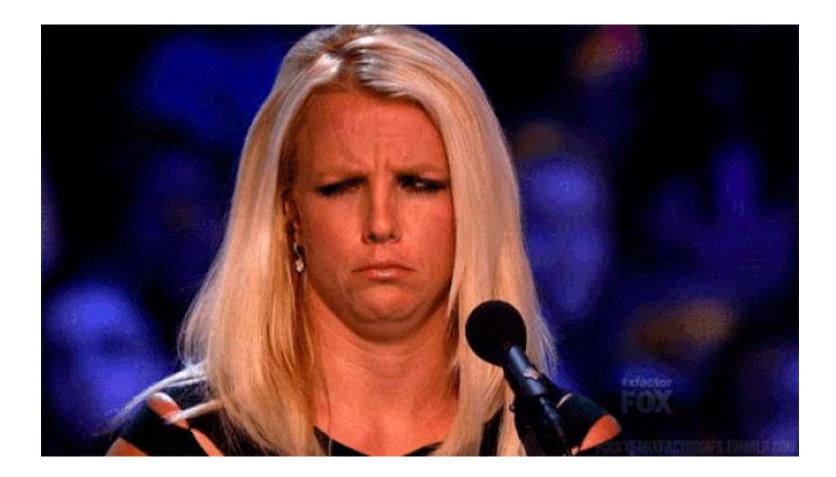


Using Pharmacometrics to Optimize Sparse Sampling Study Designs in Paediatric and Special Population Studies.

Patrick Mayo, BSc(Pharm), PhD, MTS

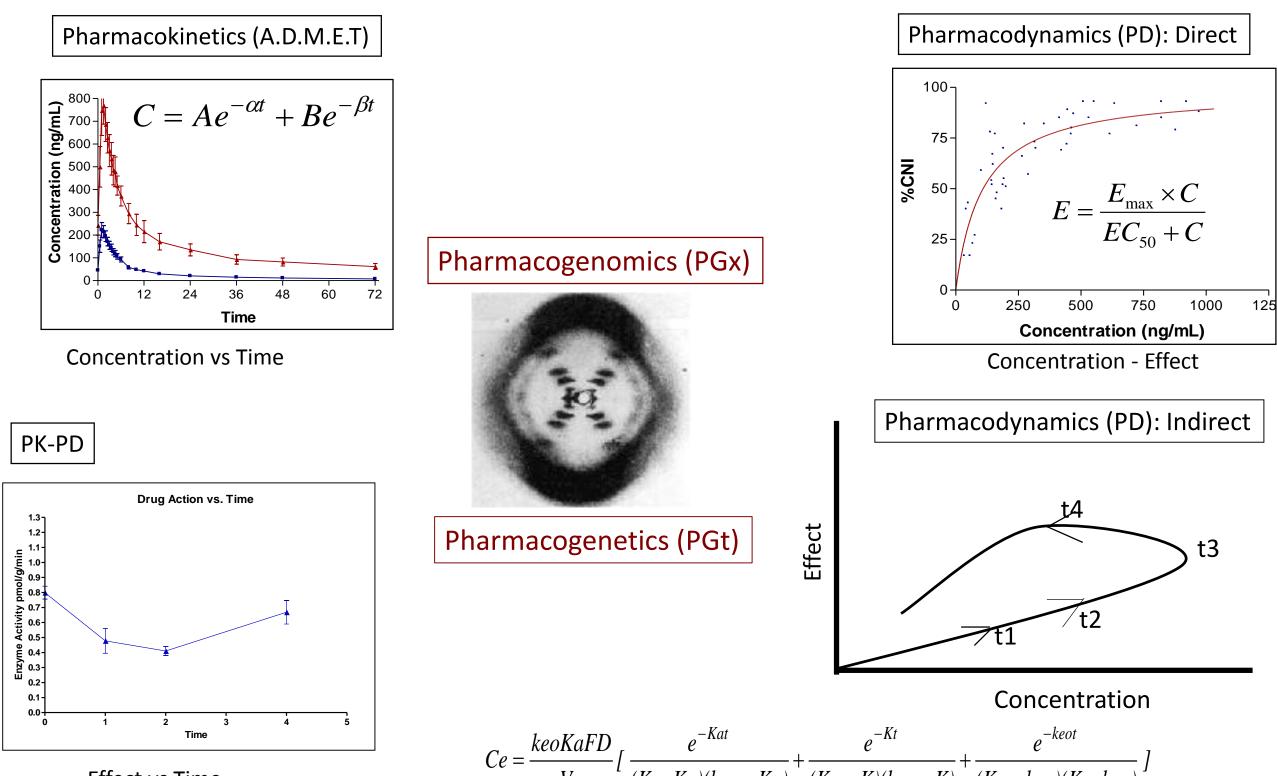

Clinical Associate Professor

Clinical Pharmacology/Pharmacometrics

Faculty of Pharmacy and Pharmaceutical Sciences

Clinical Pharmacist Palliative Care UAH

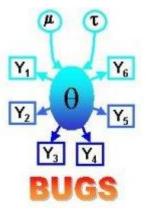
Chief Scientific Officer Applied Pharmaceutical Innovation

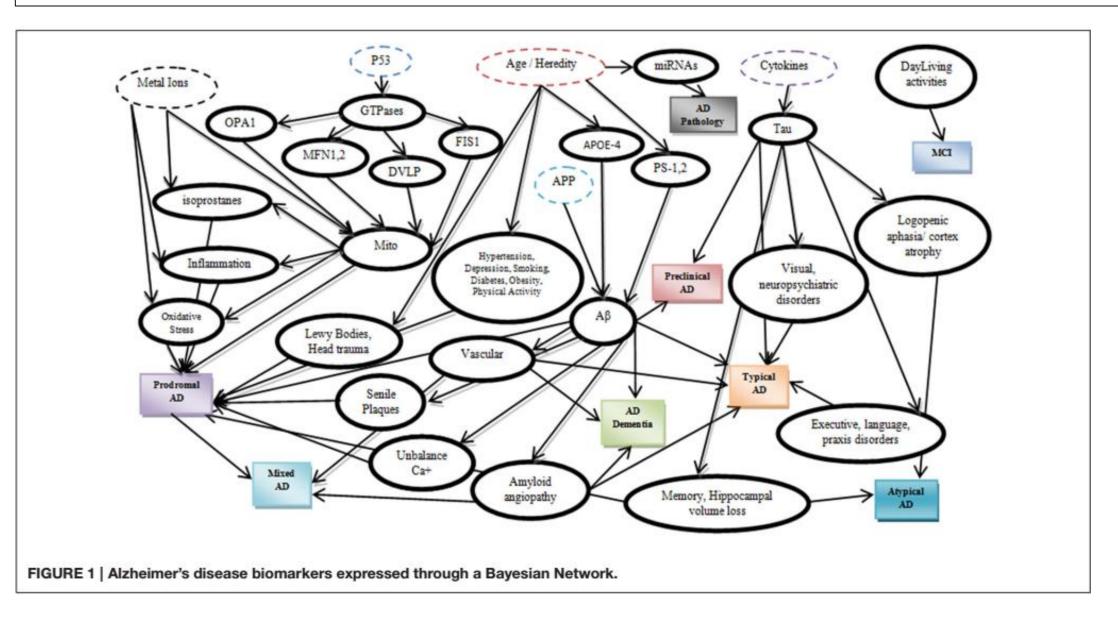


I've heard of pharmacokinetics and pharmacodynamics maybe even pharmacogenomics, but what is pharmacometrics?

Pharmacometrics: The Science of Quantitative Pharmacology

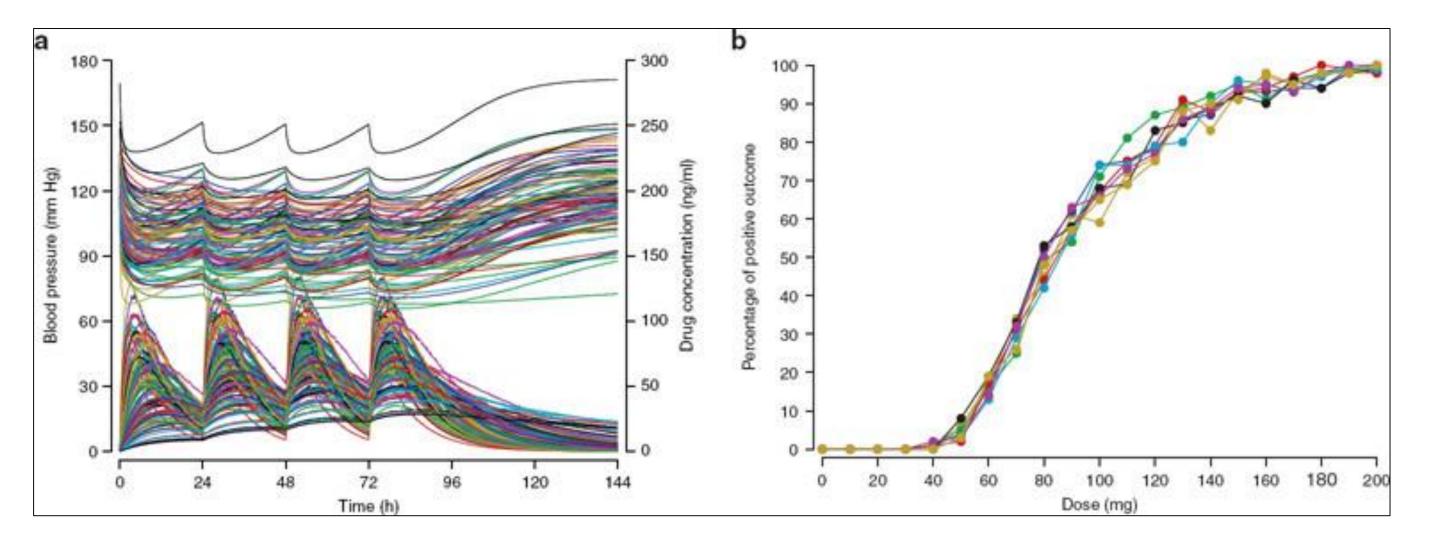
- The science that quantifies drug, disease and trial information to aid efficient drug development, regulatory decisions and clinical decisions.
- Drug models describe the relationship between exposure (or pharmacokinetics), response (or pharmacodynamics) for both desired and undesired effects, and individual patient characteristics.
- Disease models describe the relationship between biomarkers and clinical outcomes, time course of disease and placebo effects.
- The trial models describe the inclusion/exclusion criteria, patient discontinuation and adherence.


-Adapted from FDA https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm167032.htm#Overview

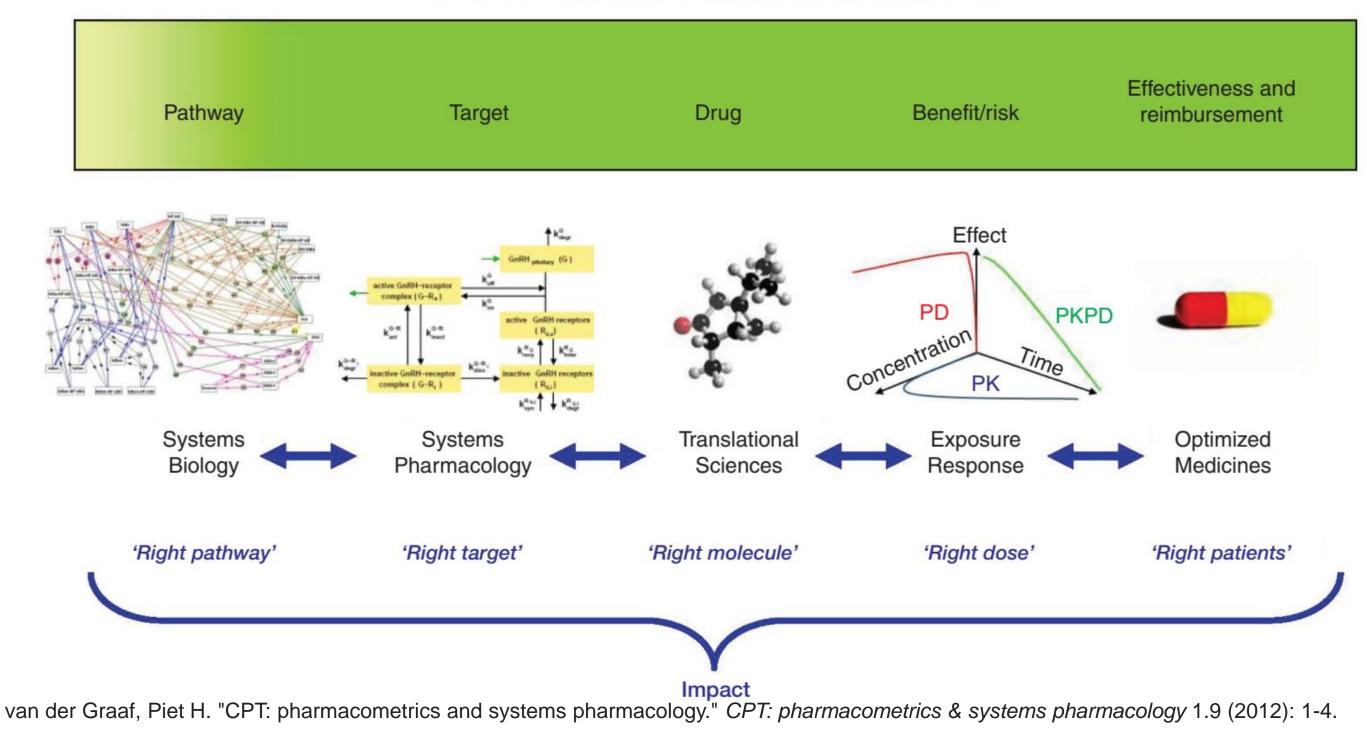

Vc

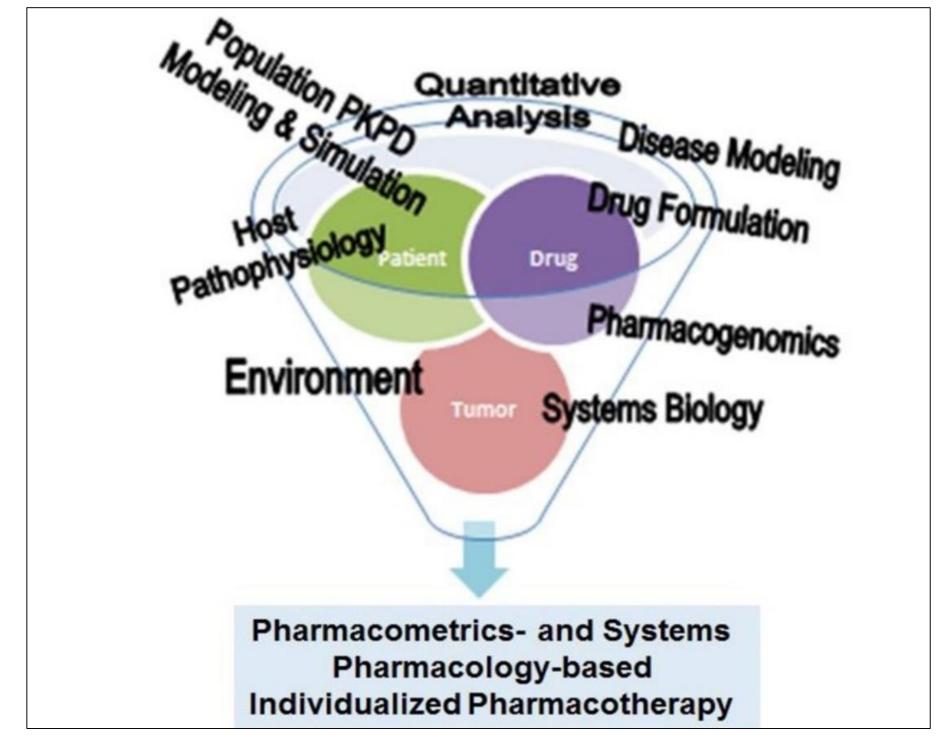
Effect vs Time

(K - Ka)(keo - Ka) (Ka - K)(keo - K) (Ka - keo)(K - keo)

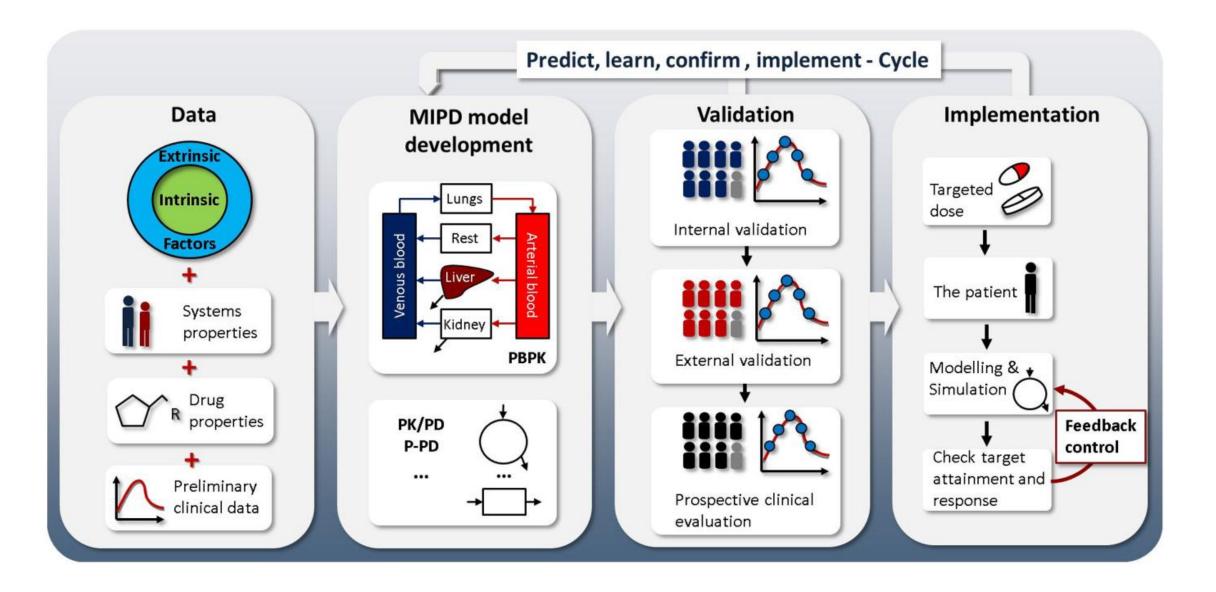


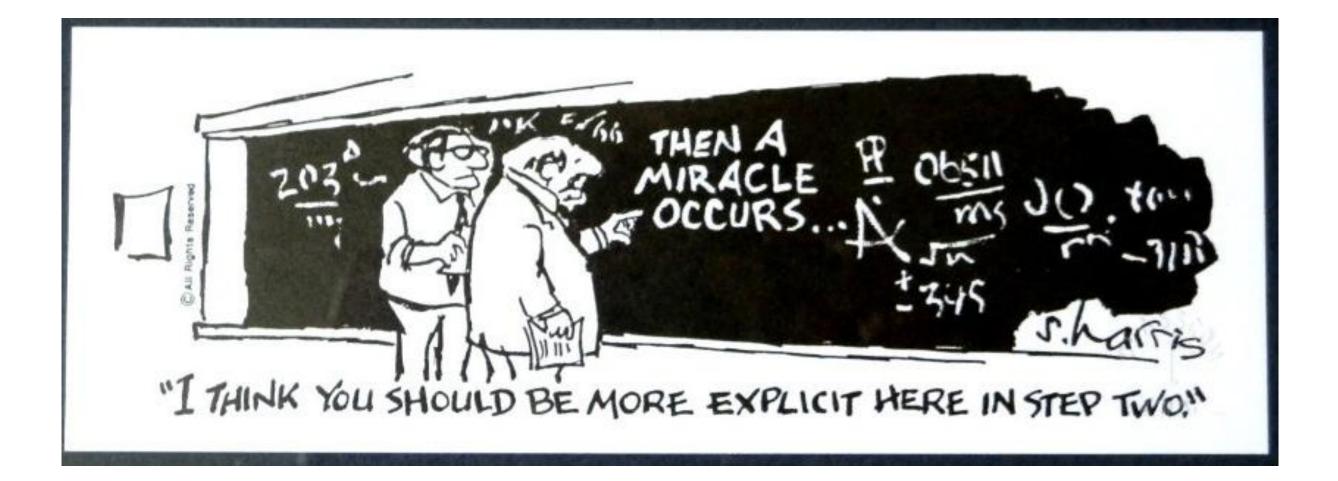
Disease Progression Model: Bayesian Network


Alexiou, Athanasios, et al. "A Bayesian model for the prediction and early diagnosis of Alzheimer's disease." *Frontiers in aging neuroscience* 9 (2017): 77.


Clinical Trial Simulation: Blood Pressure Drug

-Andrea Krause & PJ Lowe: Visualization and Communication of Pharmacometric Models with Berkeley Madonna


Pharmacometrics & Systems Pharmacology: Integration of model-based drug discovery and development



Danhof, Meindert. "Systems pharmacology–towards the modeling of network interactions." European Journal of Pharmaceutical Sciences 94 (2016): 4-14.

Why Has Model-Informed Precision Dosing Not Yet Become **Common Clinical Reality**? Lessons From the Past and a Roadmap for the Future

Clinical Pharmacology & Therapeutics, Volume: 101, Issue: 5, Pages: 646-656, First published: 09 February 2017, DOI: (10.1002/cpt.659)

If you can use Pharmacometrics to determine the right dose for the right patient, could you just take that information from adults and apply it to children or other special populations?

Why Pediatric & Special Population Pharmacometrics

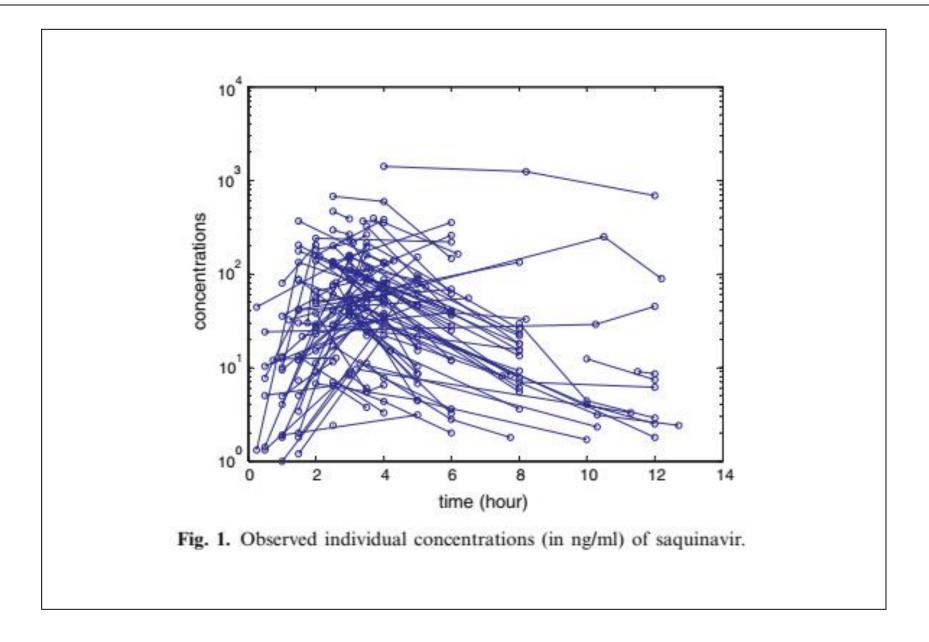
- Off-label drug accounts for 50-60% of drugs used in children and up to 90% in (premature) neonates.
- We lack information on pharmacokinetics, pharmacodynamics, efficacy and safety.
- Lack informative pediatric drug labels.
- Missing age-appropriate dosage forms for the pediatric population.

What about other special populations?

• Frail elderly

- Rare diseases in very sick patients
- Renal failure: Small sample sizes:
 - Decreasing GFR and Dialysis required for NDA
 - Especially important for drugs with high renal clearance
- Hepatic Failure: Small sample sizes Pugh-Child A,B,C
 - Especially important for drugs with high hepatic clearance
 - Required for NDA

Typical Phase 1 Study Designs


- Phase 1: Single Ascending Dose
 - Healthy volunteers
 - PK Sampling: Pre-Dose, 0.5, 1.0, 1.5, 2, 4, 6, 8, 12, 16, 18, 24, 36, 48, 72 h
 - 15 Blood Samples:
- Phase 1: Multiple Ascending Dose

Healthy volunteers

- PK Sampling: Pre-Dose, 0.5, 1.0, 1.5, 2, 4, 6, 8, 12, 16, 18, 24, 36, 48, 72 h
- 15 Blood Samples: on Day 1 and then accumulation to steady state Day 10 or longer
- Trough samples during accumulation phase
- Phase 2: Pivotal First Dose in Disease State: Rich or Sparse Sample
- Phase 3: Pivotal Trial for Approval: Rich or Sparse Sample

PopPK model required for NDA

PopPK: Spaghetti Plot of Raw Data

Model Building: The Quest for the Ultimate Covariate Model!

Model	Cov 1	Cov 2	Cov 3	LL	BIC	β_1	p _{val1}	β_2	p_{val2}	β_3	pval3
1				-1241.48	2482.96						
2	Sex			-1240.85	2487.18	0.416	0.2651				
3	Age			-1240.82	2487.12	-0.013	0.4475				
4*	BMI			-1236.83	2479.14	0.107	0.0024				
5	CL _{CR}			-1239.61	2484.70	0.013	0.0211				
6*	Diarrhea			-1237.00	2479.48	-0.982	0.0027				
7	CD4			-1238.40	2482.28	0.002	0.0144				
8	Xylose			-1239.95	2485.38	0.599	0.0367				
9	L/M			-1240.05	2485.58	-4.677	0.0326				
10	St. weight			-1240.61	2486.70	-0.001	0.2333				
11	APL			-1239.98	2485.44	-0.001	0.1606				
12	Albumine			-1240.13	2485.74	0.029	0.1590				
13	CL _{CR}	BMI		-1236.13	2483.22	0.007	0.2124	0.093	0.0097		
14	Diarrhea	BMI		-1235.14	2481.24	-0.677	0.0590	0.078	0.0368		
15	CD4	BMI		-1236.28	2483.52	0.001	0.0875	0.093	0.0090		
16	Xylose	BMI		-1236.28	2483.52	0.360	0.2178	0.095	0.0131		
17	L/M	BMI		-1236.30	2483.56	-2.263	0.2940	0.099	0.0076		
18	CL _{CR}	Diarrhea		-1235.39	2481.74	0.010	0.0873	0.897	0.0076		
19	CD4	Diarrhea		-1235.53	2482.02	0.001	0.0986	-0.820	0.0155		
20	Xylose	Diarrhea		-1236.74	2484.44	0.274	0.3482	-0.845	0.0180		
21	L/M	Diarrhea		-1237.16	2485.28	-2.524	0.2961	-0.830	0.0295		
22	CL _{CR}	BMI	Diarrhea	-1234.28	2485.00	0.006	0.2692	0.062	0.1129	-0.625	0.077
23	CD4	BMI	Diarrhea	-1233.82	2484.08	0.001	0.1694	0.069	0.0603	-0.537	0.132
24	CL _{CR}	CD4	Diarrhea	-1234.80	2486.04	0.009	0.1220	-0.001	0.1280	-0.716	0.038
25	CL _{CR}	BMI	CD4	-1235.42	2487.28	0.007	0.2440	0.077	0.0394	0.001	0.084

Final PopPK Covariate Model

PopPK Covariate Model			Model 4	Model 6		
orug used in the disease state			Wodel 4			
		Estimate	SE (CV %)	Estimate	SE (CV %)	
MI: Alters Clearance	$Exp(\mu_{CL/F})$ in L/h	1.26	0.19 (15%)	1.25	0.18 (15%)	
iarrhea: Alters Clearance	$\beta_{\text{BMI_CL/F}}^*$	0.11	0.04 (33%)			
	$\beta_{\text{DIARRHEA_CL/F}}^*$		(p-value = 0.0024)	-0.98	0.33 (33%)	
and the drug over to the	/ \. •	0.00	0.00 (0(0))	0.07	(p-value = 0.0027)	
inician with the knowledge	$exp(\mu_{V/F})$ in L	0.86	0.22 (26%)	0,96	0.24 (25%)	
rug should be dosed based	$exp(\mu_{ka})$ in h^{-1}	0.58	0.05 (9%)	0.61	0,05 (8%)	
n BMI and dose adjusted	$exp(\mu_{Tlag})$ in h	1.13	0.12 (11%)	1.12	0.12 (12%)	
or diarrhea!	$\omega_{\text{CL/F}}^2$	1.41	0.30 (22%)	1.38	0.29 (21%)	
	$\omega_{V/F}^2$	2.43	0.65 (27%)	2.45	0.60 (24%)	
e do not require all the samples	$\omega_{V/F}^2$ ω_{ka}^2	0.22	0.07 (29%)	0.17	0.05 (28%)	
sed in Phase 1 studies!	ω_{Tlag}^2	0.51	0.13 (25%)	0.53	0.12 (23%)	
	σ^2 in (ng/ml) ²	85.3	12.5 (15%)	85.7	12.8 (15%)	

Example: Phase 1 Study Estimate Blood Loss

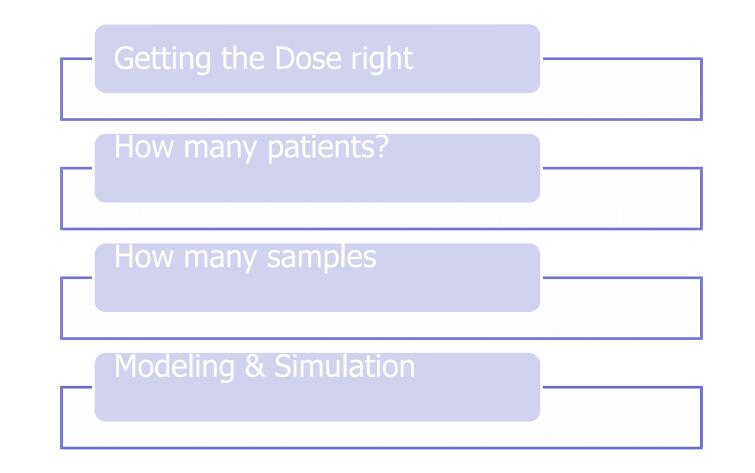
Table 9.1 Approximate Blood Volumes Sample Total No. of Volume [a] Volume [a] Assessment (mL) Samples (mL) Safety 3.5 45.5 Serum chemistry 13 1.8 3 5.4 Coagulation Hematology 2.0 9 18.0 Viral serology 3.5 3.5 1 3.5 Serum pregnancy test [b] 2 7.0 3.5 3.5 Follicle stimulating hormone (FSH) [b] 1 Plasma tryptase and C3a [c] 2.0 3 6.0 3.0 4 Cytokines 12.0 2.0 8.0 Complement (Bb) 4 Pharmacokinetic 3.0 21 63.0 DLin-MC3-DMA, PEG2000C-DMG, free total PCS siRNA 3.0 12.0 4 Free and encapsulated PCS siRNA[d] Pharmacodynamic PCSK9 36.0 2.0 18 Serum LDL-C [e] 12.0 19 228 PCSK9 mRNA 12.0 2 24.0 Other Exploratory biomarkers (hepatocyte derived proteins): 15 Plasma 1.0 15.0 15 15.0 Serum 1.0 Total 491.4 Males: 501.9 Females: [a] Sample volumes are based on direct venipuncture; where a canula is used an extra 1 mL will be dra and discarded. [b] Female subjects only [c] These samples are only to be collected in the event of an infusion reaction

[d] These samples are only collected from cohort 4 onwards (including any optional cohorts)

[e] HDL-C and total cholesterol beta-quantification safety tests will also be analysed from this sample.

Used to establish 1. SAFETY 2. Drug PK 3. Drug Dose for Phase 2

Requires a lot of blood, not a problem For healthy participants.


A	World Health			Six Month Baby Girl 7.3 kg	
	Organization	Maximum volume allo	Maximum cumulative draw volume		
	Institution/Body	% of TBV	ml/kg	allowed	
	Toronto Hospital for Sick Children Research Ethics Board ²⁹	5	<i>3.75–4.0</i> ª	5% of TBV within 3 months	
	USC/LA Children's Hospital ²²	2.5–2.7 (within 24 hour)ª	2	4 ml/kg within 30 days 29.2 mL	
	Wayne State University ²³	1	0.8	10% of TBV or 8 ml/kg within 8 weeks	
	Partners Human Research Committee ²⁴	3.6–3.9ª	<>	< 3 ml g="" within="">	
	University of California Davis ²⁵	2.5 Note: Minimum blood Hb required at time of blood draw, 7 g/dl (9–10 g/dl if cardiorespiratory compromise present)	2ª	5% of TBV within 30 days	
	Duke University ²⁶	For expedited IRB approval		3 ml/kg or 50 ml total (whichever is less) over 8 weeks	
		2.5 ^a (for review by convened IRB; <i>note: special</i> <i>precautions and justification required for</i> <i>more than this limit</i>)	2, up to 200 ml total	7 ml/kg over 8 weeks (up to 5 draws of 7 ml/kg per year) 51.1 mL	
	KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya ^b	<i>1.9–2.3</i> ª (2005 guideline for <i>total</i> volume drawn)	1.7–2.4	Not stated	
		 1.3^a (2008 guideline for volume drawn for researchpurposes in addition to volume needed for routine care) 	1	5 ml/kg within 8 weeks	
	US Dept of Health and Human Services, Office for Human Research Protections ¹⁷	<i>3.8</i> ª	3, up to 50 ml total	3 ml/kg, up to 50 ml total within 8 weeks	
	Kauffman 2000 ²⁸	3.0	2.4 ^a	Not stated	
	Gambia Government–MRC Joint Ethics Committee ²⁷	Range: 2.4 (e.g.1-kg infant) to 0.3 (e.g. 20- kg 4-year-old or 30-kg 9-year-old)ª	2, up to max 5 ml (age 0–4 yr); 10 ml (age 5–9 yr); 15 ml (age 10–14 yr); 30 ml (age ≥ 15 yr)		

Blood sample volumes in child health research: review of safe limits Stephen RC Howie Volume 89, Number 1, January 2011, 46-53

By Dan Gibson GIBBLEGUTS.COM **CPAN** LOSING VITAL GIBSON FLUIDS ... "GRUNT" MUST ... "GASP" STAY ... GURGLE

500 mL blood loss will be a problem in neonates, pediatrics and some special populations Even if assay sensitivity allows a < 3 mL sample, blood volume is a problem.

Informative PK/PD Study Design

What if some time points are more informative than others?

What if we can minimize blood draws and spread sampling over the entire study population? How can we know this? Modeling& Simulation, Informative priors

-Adapted from Alexander (Sander) A. Vinks, PharmD, PhD, FCP

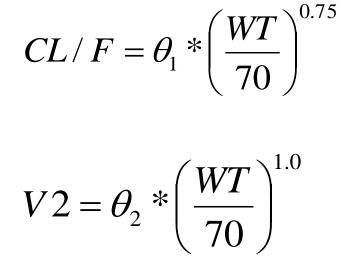
Developmental Pharmacology Concepts

- Growth and development are linked co-linear processes in children
- Size standardization is achieved by allometric scaling.

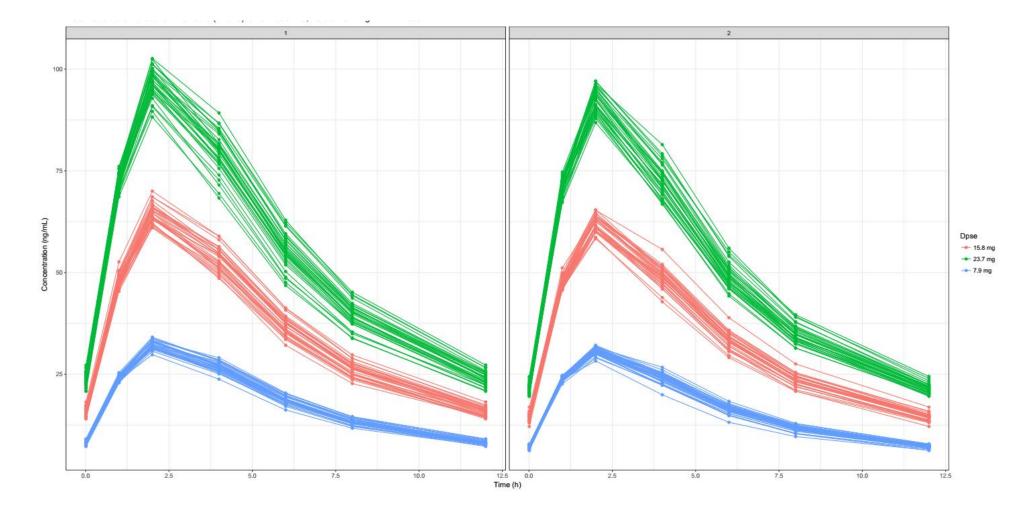
• Age is used to describe maturation of clearance.

Allometry

• Technique used to describe the non-isometric variation by regressing a variable of interest against body mass.

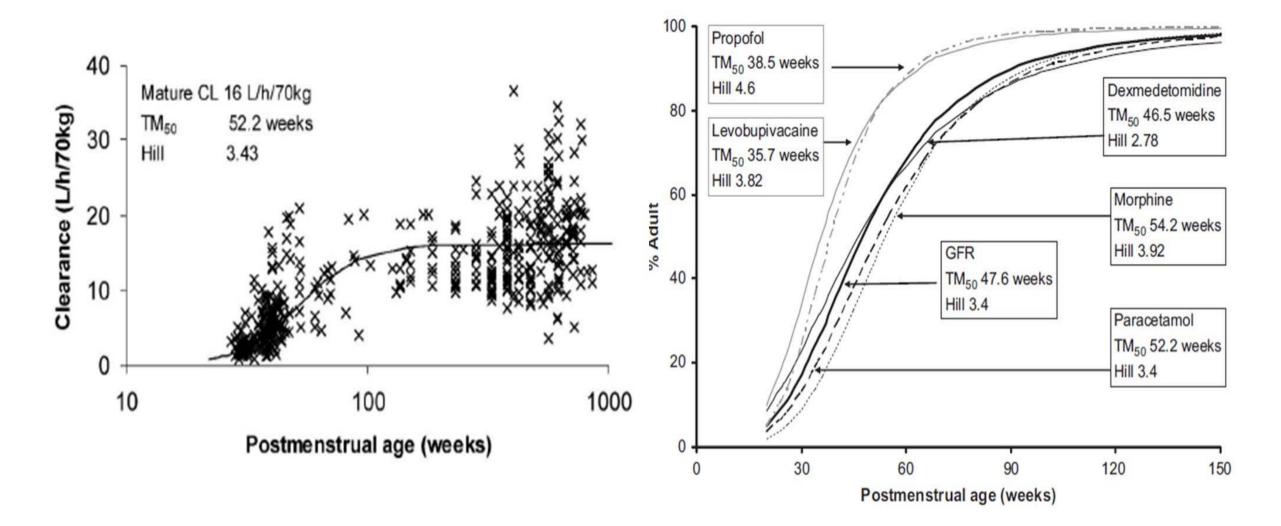

$$\log y = \log a + b \log Mb$$

$$y = a M_b$$
 b

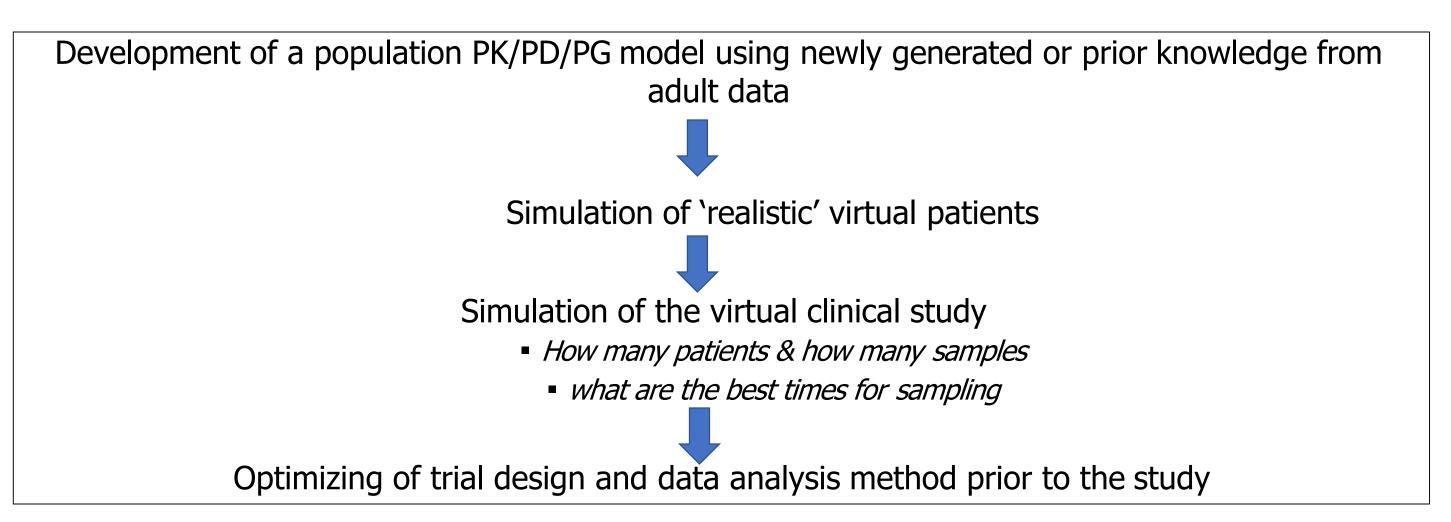

Where: y is the variable of interest, such as Drug Clearance
a is the allometric coefficient,
Mb is body mass and
b is the allometric exponent.

Allometric Scaling from Human Adults to Children

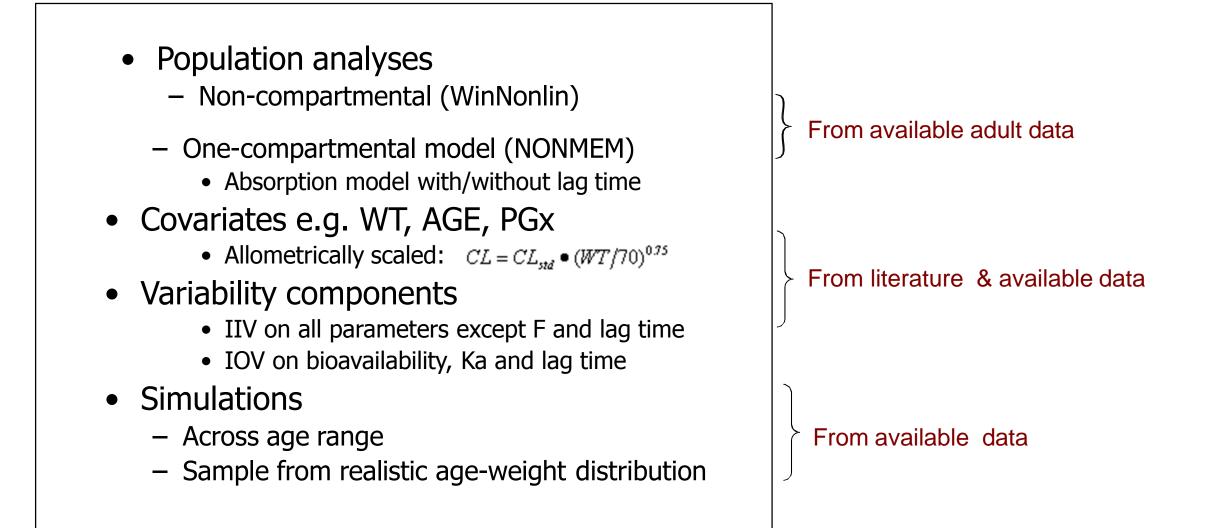
FDA/EMA Recommendations


Pediatric Simulations Allometric Scale: CL-(WT/70)^{0.75}, V-(WT/70)^{1.0}

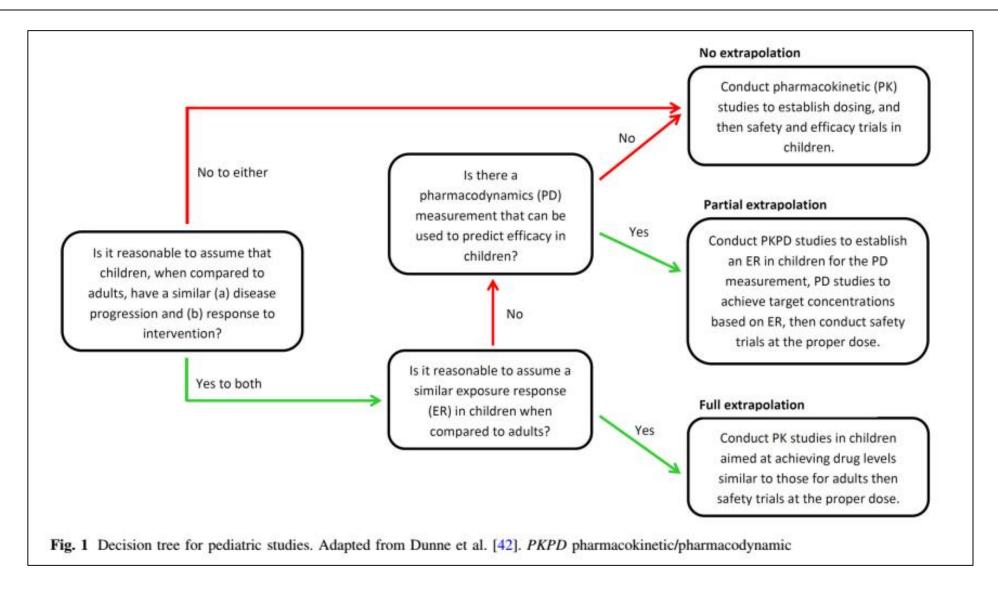
Mechanistic Basis of Using Body Size and Maturation to Predict Clearance


Acetaminophen Clearance

Maturation of GFR and other drugs


Anderson B, Holford N. Drug Metab. Pharmacokinet. 24 (1): 25–36 (2009).

How modeling and simulation can help in the design of pediatric studies



-Adapted from Alexander (Sander) A. Vinks, PharmD, PhD, FCP

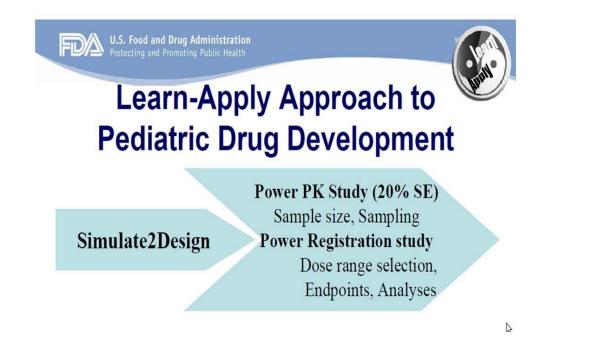
Development of Population Model Based on PRIOR Adult Data

Decision Tree for Pediatric Studies

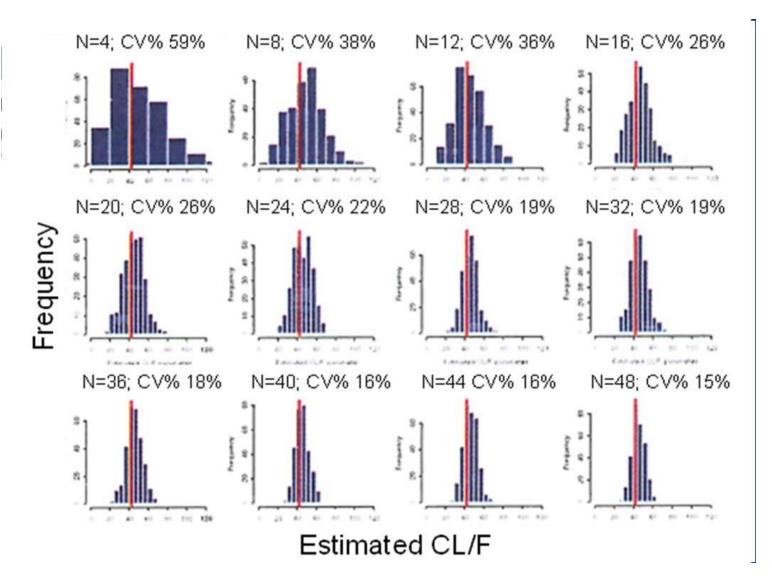
Germovsek, Eva, et al. "Pharmacokinetic-pharmacodynamic modeling in pediatric drug development, and the importance of standardized scaling of clearance." *Clinical pharmacokinetics*(2019): 1-14.

Sample Size Calculations

- How many patients?
 - Required number of patients for statistically robust estimation of PK/PD relationship(s)
- How many samples per patients?
- What best times to sample
 - Optimal sampling strategies


Use of Modeling and Simulation in the Design and Conduct of Pediatric Clinical Trials and the Optimization of Individualized Dosing Regimens

Power


20-Number of study participants 15-Sample Size from Clearance **Non-Compartmental Analysis** (SD = 0.45)(NCA) data based on error Associated with Clearance 10 -And Volume of Distribution. Available from standard Phase1 5-Studies. Volume of distribution (SD = 0.35) 0.25 0.50 0.75 1.00

CPT: Pharmacometrics & Systems Pharmacology, Volume: 4, Issue: 11, Pages: 630-640, First published: 15 September 2015, DOI: (10.1002/psp4.12038)

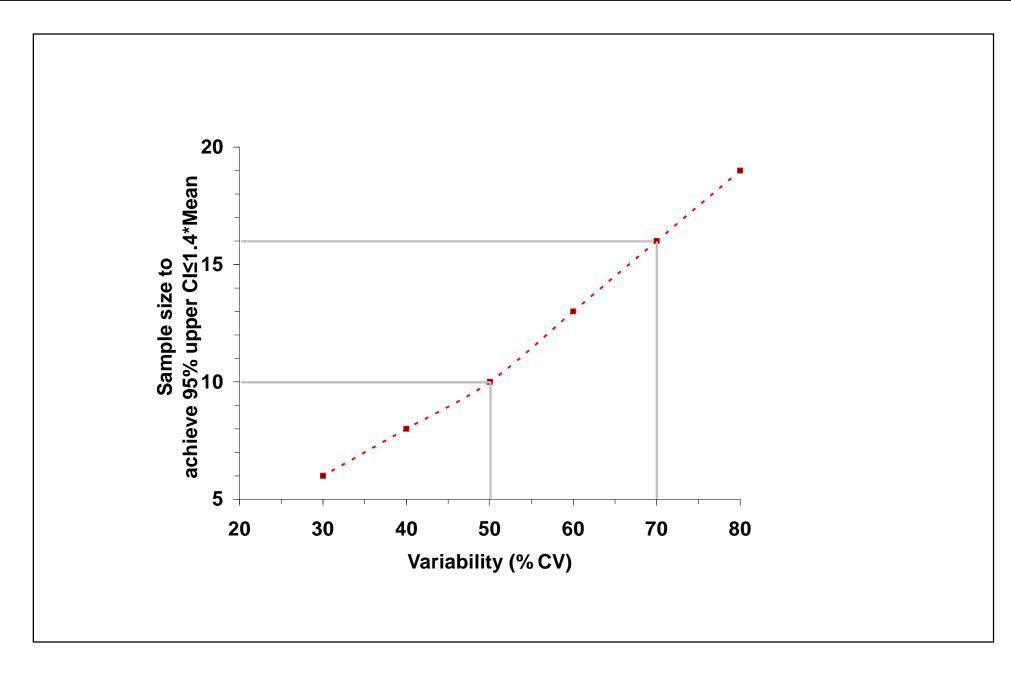
Powering Population PK studies

 Power equation to determine sample size or sampling, a 20% SE has been proposed as the quality standard

Gobburu, Pediatric advisory committee meeting, 2009 Jacqmin, J&J Pediatriuc Symposium, 2005

Sample Size Calculation for for PopPK Analysis

- Sparse/Rich PK sampling design
- Nonlinear mixed-effect modeling & clinical trial simulation is generally needed to derive the appropriate sampling schedule and the sample size.


• FDA quality standard:

 Calculate the 95% CI for a derived parameter such as CL when a covariate model is applied for this parameter

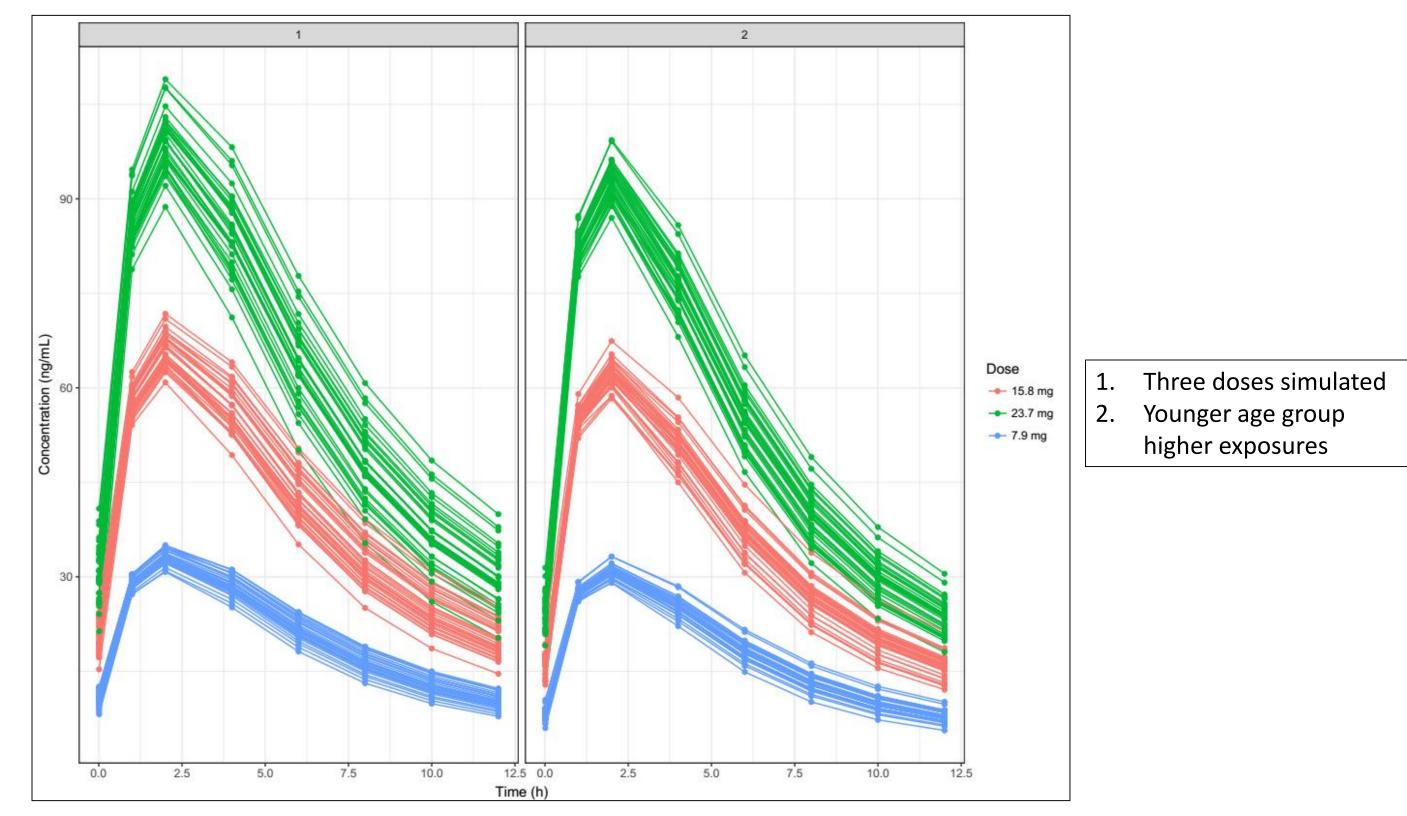
$$CL_{i} = CL_{pop} \cdot \left[\frac{WT_{i}}{70kg}\right]^{0.75} + \eta_{CL,i}$$

FDA: Standard allometric scale-up WT ^0.75

Sample Size Requirements based on FDA criterion

Adult PopPK Model from Rich Sampling Phase 1 and from Sparse Sampling in Disease State

Adult Model Derived from Phase 1 Phase2 and Phase 3


$$CL/F = \theta_1 * \left(\frac{WT}{70}\right)^{0.853} * \left(\frac{ALT}{20}\right)^{0.104} * \left(\frac{AGE}{37}\right)^{0.104}$$

Weight and Age Allow scaling to pediatric population

	Model 7				
OFV	Objective function value	26313.59	%RSE		
TH 1	CL	42.4	5.40%		
TH 2	[CL~WT]	0.853	12.90%		
TH 3	[CL ~ ALT]	0.104			
TH 4	[CL ~ AGE]	0.104			
TH 5	V2	10.3			
TH 6	Q	66	23.30%		
TH 7	V3	98	16.30%		
TH 8	КА	0.439	0.70%		
TH 9	Prop.RE sd	0.446	2.90%		
TH 10	Add.RE sd	11.5	20.50%		
OM 1	IIV CL	0.359	10.70%		
OM 2	IIV V	0	0.428	10.70%	
OM 3	IIV Q	0	0	0.135	97%

Create Theoretical Pediatric Trial Data Set

- Pediatric simulations were based on an age and sex-specific database constructed using normative data for children
 - Group 1: Aged 5 to < 12 years
 - Group 2: Aged 12 18 years
- Clinical chemistries were constructed from the data previously published in pediatric Disease State studies.
 - Done to generate realistic covariates
- A data set of 200 patients was constructed divided into the two age groups.

Design a Study with Sampling Strategy to Confirm the scaled PopPK Model

What are the most informative time points?

Time1	Time2	Time3	Time4	Time5	Time6
0.5	2	4	6	8	11.5 or 12

How to determine this?

- 1. Modeling and Simulation
- 2. Minimize Fisher-Information Matrix Methods
- 3. D-optimization Methods

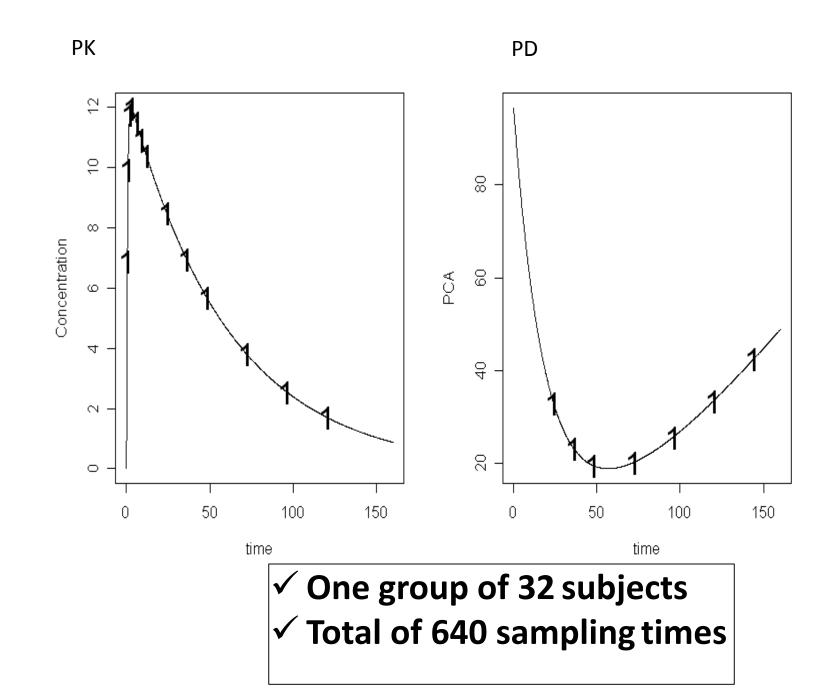
Example: Joint PK/PD modeling of Warfarin

(Bazzoli, Retout, Mentré, American Conference on Pharmacometrics (ACOP), Mars 2008)

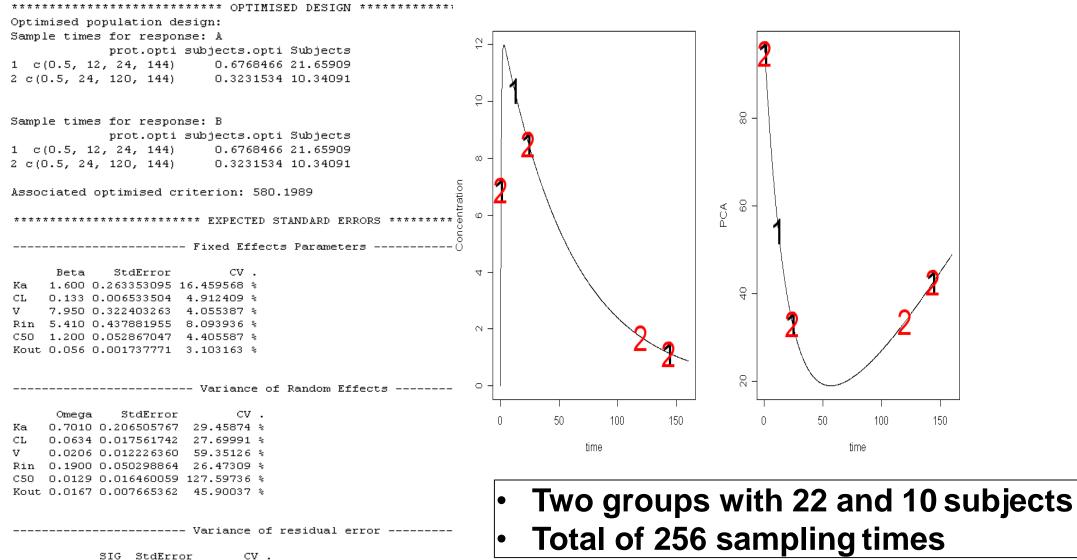
- PK: time course of total racemic warfarin plasma concentration
- PD: effect on prothrombin complex activity (PCA)

A priori PK knowledge

- single oral dose of 100 mg
- 1 compartment model, 1st order absorption and elimination
- CL=0.133; V=7.95; Ka=1.6; ω_{CL} =0.0634; ω_{V} =0.0206; ω_{KA} =0.701
- exponential modelling of the random effects
- $Var(\epsilon)=(0.2 f)^{2}$


A priori PD knowledge

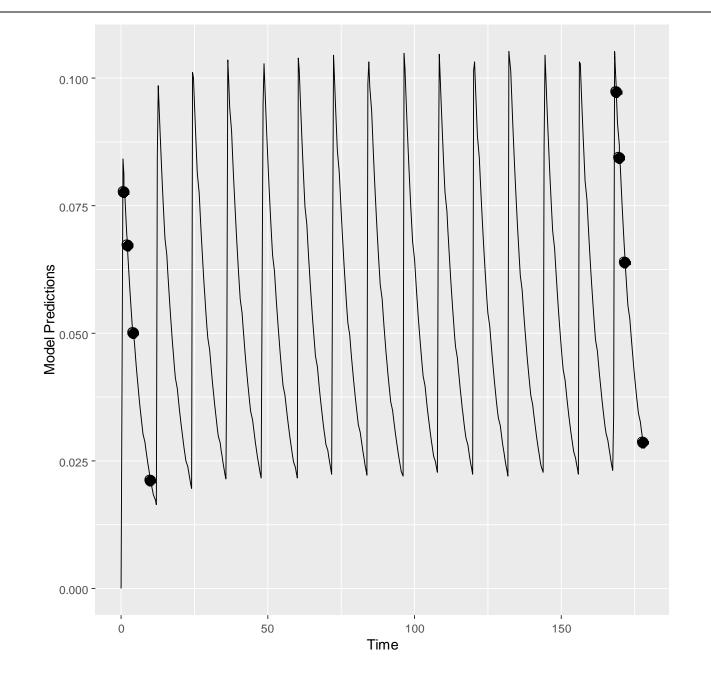
- turnover model with inhibition of the input
- Imax=1(FIX); Rin=5.41; C₅₀=1.2; Kout=0.056; ω_{Rin} =0.19; ω_{Kout} =0.0167; ω_{C50} =0.0129
- exponential modelling of the random effects
- var(ε)=3.88
- Evaluation of an empirical design
 - one group of 32 subjects
 - 13 sampling times for PK and 7 sampling times for PD
- Design optimisation with the Federov-Wynn algorithm under constraints
 - only 4 sampling times per subject common to both responses performed into 32 subjects


Evaluation of the pop PK design with PFIM

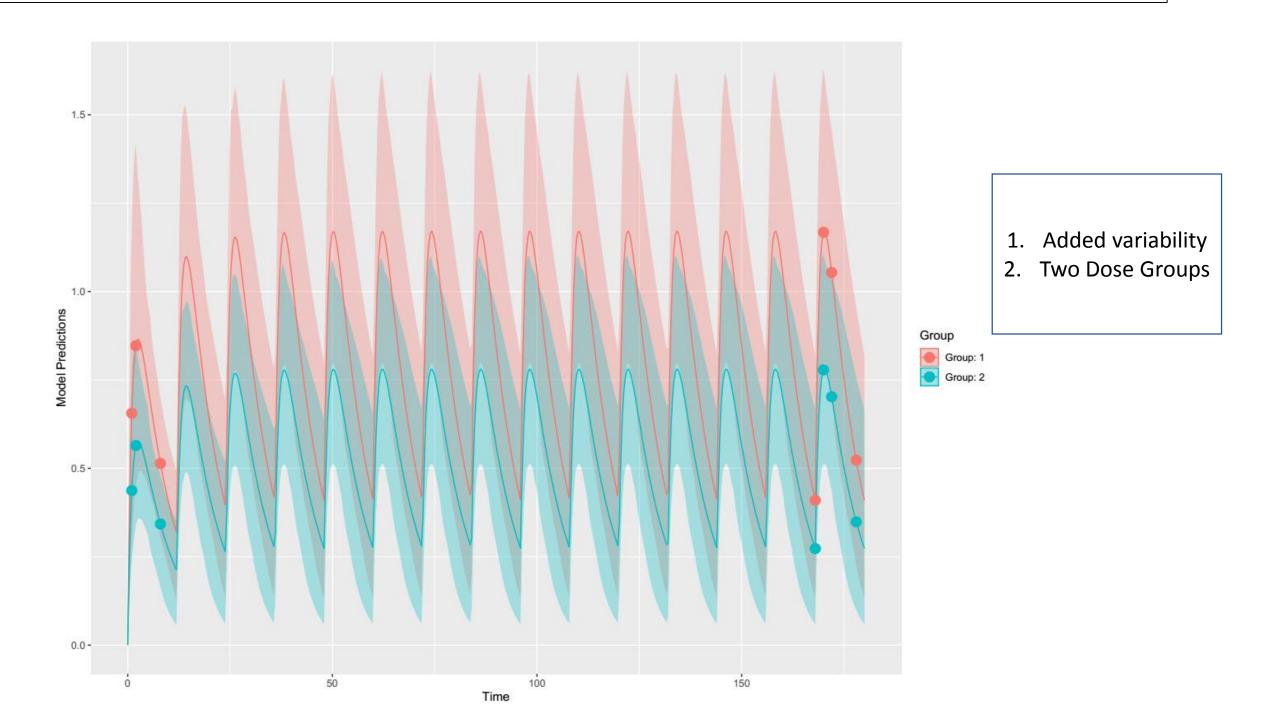
Project: PKPDWarfarine_indirect_model	
Date: Tue Nov 27 11:01:40 2007	
**************************************	******************************** EXPECTED STANDARD ERRORS *********
Differential Equations form of the model:	Fixed Effects Parameters
function(t,y,p)	Beta StdError CV.
(Ka 1.600 0.252176029 15.761002 %
ka<-p[1]	CL 0.133 0.006135812 4.613393 %
cl<-p[2]	V 7.950 0.235561806 2.963042 %
V<-p[3]	Rin 5.410 0.628097943 11.609943 %
Rin<-p[4]	C50 1.200 0.108824055 9.068671 %
C50<-p[5]	Kout 0.056 0.002358841 4.212215 %
kout<-p[6]	
yd1 <ka*y[1]< td=""><td> Variance of Random Effects</td></ka*y[1]<>	Variance of Random Effects
yd2<-ka*y[1]-(c1/V)*y[2]	Variance of Nandali Hiteob
yd3<-Rin*(1-((1*y[2]/V)/((y[2]/V)+C50)))-kout*y[3]	Omega StdError CV.
	Ka 0.7010 0.196597447 28.04528 %
list(c(yd1,yd2,yd3),c(y[2]/V,y[3]))	
}	CL 0.0634 0.016879177 26.62331 % V 0.0206 0.006811926 33.06760 %
	Rin 0.1900 0.055624579 29.27609 %
Population design:	C50 0.0129 0.032727257 253.69967 %
Sample times for response: A subjects	Kout 0.0167 0.007849129 47.00077 %
c(0.5, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120) 32	
Sample times for response: B	Variance of residual error
subjects	
c(0, 24, 36, 48, 72, 96, 120, 144) 32	SIG StdError CV .
·	sig.slopel 0.20 0.007865186 3.932593 %
Variance error model response λ : (0 + 0.2 *f) ²	sig.interB 3.88 0.226415910 5.835462 %
Variance error model response B : ($3.88 + 0 * f)^2$	
Initial Conditions at time 0 :	**************************************
100 O Rin/Kout	3.505562e+39
Between-subject variance model: Trand = 2	

Evaluation of the pop PK design with PFIM

Optimisation of a pop PK design with PFIM



SIG StdError CV. sig.slopeA 0.20 0.0216894 10.84470 % sig.interB 3.88 0.4677695 12.05591 %


Did the same thing with Drug X: Simulated to steady state

Observations	1	2	3	4	5	6	7	8	9	10	11
Design0	0.5	2	4	6	8	12	84.5	86	90	96	
Design1	0.5	2	4	6	8	12	84.5	86	88	90	95.5
Design2	0.5	2	4	8	11.5	84.5	86	88	95.5		
Design3	0.5	2	4	6	11.5	84.5	88	90	95.5		
Design4	0.5	1	2	3	4	6	8	11.5	95.5		

Simulate Single Dose

Simulation with Variability to Confirm

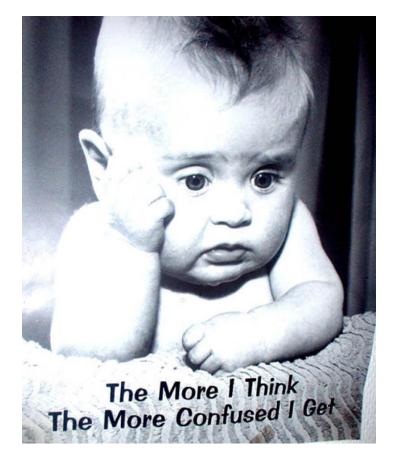
Study Design and Sampling Protocol

Week	Capsules	Dose	Sample Schema
Week 2	1 Cap BID	7.9 mg BID	25 Early Group: 0.5, 2.0, 4.0
			25 Late Group: 6.0, 12.0
Week 3	2 Caps AM 1 cap PM	15.8 mg AM / 7.9 mg PM	-
Week 4	2 Caps PO BID	15.8 mg BID	25 Early Group: 0.5, 2.0, 4.0
			25 Late Group: 6.0, 12.0
Week 5	3 Caps AM 2 Caps PM	23.7 mg AM and 15.8 mg PM	-
Week 6	3 caps PO BID	23.7 mg BID	25 Early Group: 0.5, 2.0, 4.0
			25 Late Group: 6.0, 12.0

Maximum Blood Samples Intensive Group: 9 Blood Samples over 6 Weeks

*Blood Draw Volumes: 0.4 mL Minimum = 9 x 0.4 mL = 3.6 mL

2.0 mL Maximum = 9 x 2 mL = 18 mL


Predict Theoretical Pediatric Concentrations

Dose	Cmax	Cmax	С0	С0	AUCall	AUCall
	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng*h/ml)	(ng*h/mL)
	(Mean ± SD)	Md(Max-Min)	(Mean ± SD)	Md(Max-Min)	(Mean ± SD)	Md(Max-Min)
7.9 mg	34.1± 2.1	34.1(38.8 - 28.4)	9.9 ±1.8	9.6(14.3-6.5)	254.9 ±33.2	251.9 (329.8-182.1)
15.8 mg	68.2 ± 4.6	67.9(80.4-59.7)	19.5 ±3.7	18.7(29.4-13.8)	508.0 ± 68.5	501.8(680.1-392.0)
23.7 mg	102.4 ± 7.1	102.2(123.8-90.3)	29.3 ±5.9	28.2(49.1-21.8)	760.7 ±106.7	749.1(1079.6-606.7)

Run Phase 3 Pivotal Trial with sparse sampling to confirm

Conclusions

- Modeling and simulation are powerful tools for the design of informative PK/PD studies
- With relative little data, and application of literature information it is possible to make informed decisions on pediatric and other study designs
- Implementation of most informative samples design can increase information content and improve the cost-effectiveness of studies

Questions/Comments?