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CHAPTER FIVE

FURTHER TOPICS IN INTEGRATION

Every n*n matrix A can be expressed as a product of a finite

number of matrices of the form

j eol
— —— + —_
1 0" 1 .
a‘ +krw- 11!10!' “+ k& rTow
Allw A‘E- -..
j 1
| 0 1 Lo -
i ecol
g + =
1 ]
ﬁa = . } LS + k row

I =

i.e. every linear function from g to E" can be expressed as a composition

of linear functions of the form
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Llfxl,.u,xk,-.-,xn} i (Il,-...,ax.k,...,xnj

lyltypesesliaecitoh ® sl iByon k)

La':xl!---ﬂﬂl‘l---rxj:---ixn] hod {xls--'lle*l':xkl”'ixn} .

We will not prove this statement. You should prove it yourself as an exercise;
it is obviously true for n = 1 , use induction on n . But first prove it for

n =2 to see how the general proof should go. Recall:
Interval in E : I = [ul,Bl] X e X [un,Bnl

n
Content of I t u(I) = 0 (B,=-u.,)
{=1 L IR ¢

n
Diameter of I : ACI) =[] {51'31}2]”2

i=1
p,q € I => |p-q| = A(I) .

Definition: If Bi—ui =a,i=1,...,m then I is an n-cube of side a

o, +8 o 4B
and centre { 12 l 3 sea ,_:E-z__n)

Lemma 5.1.1. If I d4s an interval in £ and ¢ : B° + F is linear then

p(e(I)) = IJ¢| u(I)

Proof: ¢ 4is a composition of a finite number of linear functions of the type

I..l 5 L2 & L3 . The lemma obviously holds for each of these; the type L1 are

the only ones which change the content.

E::TE_“‘EL“-_ELOE Generalize Lemma S.l,) o any st T with contedt.
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Lemmag 5.1.1 = 5.1.4 and Theorem 5.1 are technical in nature. In
view of Lemma 5.1.1 you will find it easy to accept Theorem 5.1 eo, on your
first reading, you may proceed directly to the important Theorem 5.Z. Read
the statement of Theorem 5.1 first.

Lemma 5.1.2: Suppose
(1) G open ¢ R"

LY § 4 B+EE b oy .

Then D compact G and u(D) = 0 => u(¢(D)) =0 .

Proof: If € >0, ] a finite collection of n-cubes I, , 3 = 1,...,m , ®

m m
De v I,c6 ad. } ML) <€ (Why?)
j=1 1 j=1
m
¢ e cHe = ¢ ecl(u L)
i=1
m
i.e. the partials of ¢ are continuous on the compact set U Iil . Therefore,
=1

< m
ﬂH}ﬂi|ﬂ¢{pJ{u}[i-E|u] ,UpEqu . Xu el .
j=1
Therefore 1if p,q € Ij then

|6 (p)=¢(q) | iHlp—ql (Apply MVTh to each component of ¢)

/n

< M A(L (recall I, is an n-cube)

) < /8 Miu )1

] ]
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s ¢(I,) <K, , an n-cube, and

i 3

u(K,) < (278 W07 u(1y)

m
s ¢'(D) L= u Kj

i=1
and
= n
T Ou) < [2/aM]” e.
=1

S. &(D) has zero content.

Lemma 5.1.3: Suppose

(1) G open < R"
() st 6+F , ¢ o)

(1ii) J¢{p}#u , ¥peG
Then D compact €« G , D has content => ¢(D) is a compact set with content.

Proof: ¢ e C(D) , D compact => $(D) compact (Theorem 2.12, p. 71). In partic-
ular 3D c D => 3 4$(D) c ¢(D) . By Theorem 4.16 (p. 201l) and Theorem 4.17 (p.

203) ¢ dis locally one-to-one on G and maps open sets onto open sets.

s ¢(G) and ¢(G) - ¢(D) are open.

Therefore if ¢(p) = q € 3 ¢(D) each neighbourhood V of q contains a point
q; € ¢(6) - $(D) . Therefore each neighbourhood U of p contains a point

PlEG"Dt
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s pedD so 3 ¢(D) < ¢(3D) (*)

D has content <=> u(3a D) = 0

=> u(¢(3D)) = 0 (Lemma 5.3

=> u(3¢(@)) =0 (by *) .

5 ¢ (D) has content.

Note: We have used Theorem 3.5 (p. 115) twice i.e. D < F" has content <=>

u(ap) =0 , if D 4s a bounded set.

Lemma 5.1l.4: ©Suppose

(1) K= [-r,r] % +u. %X[-r,r] i.e. K is the n-cube of side 2r and

centre (0,...,0)
(ii) K =G open
{111)ﬂl:G‘*Rn,ﬂifﬂl{ﬂ},Jlﬁr{p}ﬁﬂ,vpﬁ'ﬂ.

Then, if [v(p)-p| < ¢|p| , UpEK,D'ﬁu*t“lﬁ—,
vn

(1-avn)™ < Hﬁ—ﬁ%l < (#ar/m)”

Proof: 9 ¥(K) < ¢(3K) (ef * above) .

If pedk then r< |p| </hr

~ |vp)-p| < alp]

<amr
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Therefore @¢(K) 1lies outside an n-cube of side 2(1-avn)r , centre (0,...,0),

and 99(K) 1lies inside an n-cube of side 2(1+av/n)r , centre (0,...,0) .

o (l-a ) < l‘-iﬁ—%}ll < (L+a V)" .

Theorem 5.1 (The Jacobian Theorem): Suppose
(i) G open < Rn
(1) ¢:1 6+, ¢ ¢ @ , 3@ #0 VpeG.

Then, if D compact <G and £ > 0, 3 y¥(e) > 0 = if K 1is an n-cube of

centre p € D and side length less than 2y ,

l3,()] o) < $EEL < |3, (p)| (1+e)”

Proof: Since J¢(p:l #0, [Dq:{p:n}'lﬂ = and AP : B + B° (1linear) ,

3—%—— = det [A.] « Since ¢ € CI{D} and D compact the partials of ¢ are
¢p) p

uniformly continuous on D and we have the following:
@ Ju>0= x| <Mul,¥pep, ¥ueR  (Why?)

(b) If >0 3 §(e) > 0 (independent of p) = if pe D and |u| < &

then

&

| & (ptu)=¢ (p)-D¢ (p) (w) | = |u| (from M.V. Theorem)

Mvn

Define Y(u) = lP(¢(p+u)—¢(P}J » P Eixed.
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s Jp=ul <= u|  (from (a),())
/a

n

u!Q!K}!

o = (14e)®  (from Lemma 5.1.4, o = — ) .

n

(1-e)" <

But, by L 5.1. K)) = det[r 1 n(e(K - 0O E)
ut (mfi"amlu S'b H(W(K)) et 5 (¢ (K)) J¢(p}

plp(x))

s 3@ | @-em < =S

< J¢ (p) a+t .

Theorem 5.2 (Change of Variable Theorem): Suppose
(i) G open < "
{ii)¢=G+Rn.¢£CI{G).J¢(pJ¥ﬂ ¥YpeG.

{(1ii) D I:.Gmpacr.j cormecked © G, D has content and ¢ is one-to-one

on D .

Then ¢(D) has content and £ : ¢(D) + R , £ € C(¢(D)) =>

J f-I (Fod) ]J¢| :
¢ (D) D

Proof: #(D) has content by Lemma 5.3. We may assume f > 0 , J¢ > 0 (Why?).
j i I (fog) leli both exist (Theorem 3.4, p. 114); it remains to show
$(D) D

they are equal. For any € > 0 (e<l) we may choose a partition on D con-

sisting of n-cubes K, , j = 1,...,m , which are sufficiently small so that:

3

m
(a) |JD {fﬂ¢}J¢ = le {fﬂ¢1{qj)J¢(pj}u{Kj)| < ¢ for any ay € Kj and

the centre of K

P3 ;



= ko) =

IERTCICS) i

Sammy -~
/) “\ 4(D)
.--"'/ e
\ o -
Now

m

J E o E J £ ($(1-1) needed here)

¢ (D) j=1 ¢(Kj]
m

= 3 E{Pi)u(ﬂKj]} 4 p; € MKJJ (M.V. Theorem for integrals)

i=1

m
= jgl E(pCaNu(eK,)) 5 a5 € Ky .

m m
s (e I EW(a)T (pOuK,) (1-e)" iJ £ < ¥ £(4(q,0)7, (pIu(K,) (1+e)"
from (b). Since € 1s arbitrary (a),{c) => [ (fo8) J, = £ O

D

¢ L{n}

Remarks: Strictly speaking the MVTh is not applicable to da[l(j} if

¢{ijna¢{1}} # ¢ . But this causes no difficulties (Why ?).

You will notice that Theorem 5.2 is much more restriective than the

corresponding result in Rl (Corollary 3.8.1, p. 124) which states that
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$(b) b
J f= J (fo¢)¢' without the restrictions ¢' # 0 , ¢ is (1-1). These
¢(a) a

restrictions are necessary in F® when n > 1 because of considerations

connected with orientation which we discuss later.

Example 1: Compute the area of the region

{(x,y) : 0¥y, ﬂ*’-rzixzﬂfzinz} e B .

v=R

TR RS N P P PRI R e T sy o
F
D Ju=T
-

v=r

S

LY

u=0

W
W

Let (x,¥) = ¢(u,v) = (v cos u , v sin u)

-y 8in u cos u
d(x
I alx,y) _ o &
¢ 3(u,v) e IJ¢I %
v CcO8 u sin u

u(¢(d)) = Jq,(])] F‘ri:{]}:l = JD(K¢(D}°¢> |J¢I

j ] R m
— ¥ J = I I v du dv
Jn“ ¢ 0
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Alternatively you may write this as

lde dy = J 1 |E£E‘Ill du dv .

J¢(n} p olhY)

Remark: The conditions "J A # 0", " ¢is one-to-one" etc. may fail to hold on

a set § c D without affecting the result of Theorem 5.2 provided u(s) =
u($(8)) = 0 . All the integrals involved may be approximated as closely as we
please by integrals over regions for which the conditions do hold. For instance,
in Example 1, we may take r = 0 and get the correct formula for the area of a
semicirele even though J " =0 on the u-axis and ¢ maps any segment of that
axis onto the point (0,0) in the (x,y) - plane. The details are assigned as

Exercise 5.4.

Example 2: Find the area of the region in the (%,y) - plane bounded by the

curve r=a+hbcos B , 0<b<a, where x=rcos f , y=rsin 0

cog 8 -r gin 6

= 20xy) |
¢ 8(r,8)

(x,¥y) = ¢(r,8) = (r cos 8, r sin 8) , J
gin 6 r cos 9
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2w ratb cos 8
[ dx dy = J |g%¥1§%1 dr do = I [ r dr 48
$(D) D 4 0 ‘0

) e 2
= = (atb cosf)” do
2 lo

r2T

(az+23b cos B +-h2 c052 6) de

il
2|

-0

r2

pa =

m
' {a2+%b2{1+cus 28)1 de
‘0

Here again J, = 0 on the f-axis (r=0) and ¢ is nmot one-to-one on the lines

6=0,68=2n, r=0. However [ * j both exist and Theorem 5.2 is
# (D) D

applicable to regions which differ from ¢(D) and D respectively by regions
which have arbitrarily small content.

2/3 vlfii, ul.?".'i w213

Example 3: (x,y) = ¢(u,v) = (u ) maps the triangle

D= {(u,v): 0 <u, 0 <v, u+ v <1} onto the area bounded by the loop of

the curve x3 + 33 = xy

v

LR R )

i i

*x v=0 ~N
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J, = %; ¢ maps the u and v axes onto (0,0). If f 4is continuous on ¢ (D)

¥
then

f f = [ {£a¢)1J¢|
$(D) D

2/3 vlfa}(ulf3 '3 o uv

e.g. 1if f(x,y) = xy, (fop) (u,v) = (u

1 rl-v : 4
f-%JJ uvdudv-%j il-v}zvdv

= f¢(n] 0D -0 0

72
Why was this valid? ¢ ¢ Cl at (0,0) and ¢ is not (1-1) om the u

and v axes.

Examples 1-3 illustrate how the change of variable formula may be
used to simplify the region of integration; it may also be used to simplify

the integrand. This was its basic role in Rl.

Example 4: Find I = .[

2 exp(-i%) dx dy when
D

D' = {(x,y) : 0 <x , 0 <y, xty <1} .

Let (u,v) = (x-y, xty) = ¢—1 (x,¥)
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D= 1:'1(11*} D e & (D)

@y = (55 E;_—") = ¢(u,v)

J = M =
b 3 (u,v)

3515\_

P
44| 2

Alternatively

s P = J =

J

3 (u,v) _ ll =1
$

% T O |

B3 |

i.e. it was not necessary to find ¢ .

;AN § 111; u
.'.I-J exp(;}-idudv-i[[ Exp(;}dudv
D 0 “=v

1
1 u/v i ok
2 J v e dv 7 v (e E) dv

u=v jl
0

0

u=-y
1 1 1
= — - =) = = = i
A(E E} 2si.nl:l
See also the examples in Buck pp 306-311 and the exercises on

pp 311-313. The particular exercises 10-12 indicate a proof of Theorem 5.2

based on the Implicit Function Theorem when n=2.

Exercises:

2 2
512 Find l £ [ £, where D= {(x,y) : 5§-+ L <1}
D * D 2 a

xz 2 2 2
and f(x,?}“'—'FL:f(EJ}'x Ty
1 a2 bz 2
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5.3 (L)

(i1)

S5.4:
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let f be a real valued continuous function on Rz =

Show that

1 1-n
[ '{[x f(x,y) dy} dx = 2[&'{[ f(E+n , E-n) dE} dn
0 ‘0 £ SIS

Show that the ball § = {(x,y,2) : xz + yz + z.2 =< az} has content

3

H-%HB in R3

[Let x=rsin ¢ cos 8§ , y=r 8in ¢ sin 6 , 2z =1 cos ¢ ,

0 < <a , 0 =0 <32n il 2§ = ]

2 M az

Let 8§ be as in (i); show Iz = J (xz + 32} dx dy dz = 5
5

[Iz is the moment of inertia of a uniform spherical mass

distribution (total mass = M) about a diameter.

2
2%__ is called the radius of gyration about a diameter]

(The case of the vanishing Jacobian)
Suppose ¢ @ E™ + B® 4s of the class Cl on an open set G c R"
and that J¢ # 0 and ¢ 1is (1-1) except on a set K with content

zero. Suppose D © G is compact and has content and £ 1s a real

valued continuous function on ¢(D). Show that ¢(D) has content and

[ : -J CIOIEN
# (D) D

[Lemma 5.2: If ¢ > 0 enclose K in the union U of a finite

collection of n cubes such that u(U) <e. Apply Theorem 5.2 to

D -1.
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S0t Show that f [(:—y}z + 2(xty) + 1]“15 dx dy = 2 log 2 -% where
K

K is the triangle bounded by x =0, y =2 and x =1y.

[Hint: x = u(l+v) , ¥ = v(1l+u)]

1
5.6 Evaluate j f and J f where £(x,y) =
D, D, (1 + x2 + y2)2
where
(i) Dl is the region bounded by one loop of the lemniscate

G +y2 e @ -ydy=o0.

(i) I:u2 is the triangle with vertices (0,0), (2,0), (1,/3)
[Solution: f »l-2 . f = 3 L ]
4 2 2 2
D D
1
L Show I | xyz|dx dy dz = %‘— a® b2 ¢? where
K
xZ ﬁ 22
K-{{x,y.z}=—2+ 2+—2_fl}
a b c
5.8: Let y(x,y) = ﬂxz + ZHxy + B:.r2 +26x + 2Fy + C

(i) Show J po= % mab {A,az + Bbz + 4C) where
E

2 2
K= {{(x,y) : _x_z + I‘E <1} . Save yourself some work by using
a b

symmetry to show

J xydxdy-[ xdxdjr-[ y dx dy = 0
K K K
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(11) ‘Show J g = % veb (Aa® 4 BH> + b, v))
H

x-x )2  (y-y)°
where H = {(x,y) : =t e s
a b

(111) Shnwj x> % 90 % 5% = 25 % &) axdy-i?— where S is

s

the region bounded by the ellipse x2 + 4’}}'2 - 2x + 8y + 1 = 0.

(iv) 1If the plane &x + my + nz = p intersects the elliptic

2

2
paraboloid X +YX =22 ghow that the volume of the solid
32 b2 c

bounded by these two surfaces is

";"ﬁ (@222 + b2 + 2pen)?

4e™n

5.9: Find [ 193{::2 + yz} dx dy where D = {(x,y): bz < (xz + yz} % 32}
D

and show that the limit as b + 0 of this expression is

Znazflug a - %} .

08 2y 1 Show that f x3 y2 dx dy = 2&8% where D is the region bounded by
D

the lines y = + 3(x-2) , y = + 3(x-4) . [Move the origin to the

centre of the region and use symmetry as much as you can.]

Bill: Show that the area of the region in the first quadrant bounded by

2 3 2
rﬂ-nlxa.}ra-azxz.x}r =b; » Xy -b23(ﬂ > a, >0,

1517 _ o 15!?} = =SB AT

o 51 2 (a, T

120320 is



Bl

513

5.14:

5.16:
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Show that the area of the region bounded by the loop of the curve

x3+33-3axy is %32.

The transformation =x = u" p(v) s vy = u” p(v) maps the rectangle

[ul, u2] X [vl, vz] into a region in the (x,y)-plane. The area

v
mn m+n 2 m¢y' - oy’
of this region is {ul = u, ) L e if m# -n and
1

u
Em{d:ltpl - ¢2¢2} log (;]—‘H if m = -n . What conditions must ¢
2

and 1 satisfy if this statement is correct? Prove the statement

under your conditions.

Find l xyz dx dy dz where D is the region in the first octant
D

bounded by the cylinder xz + yz = 16 and the plane z =3 1i.e.

D= {(x,v,2) : 0 <=x , 0 <%y .ﬂj-‘!_‘f3rxz+5”2_<15]

Let G be the region in the first quadrant which is bounded by

the curves xy-l,xy-ii,xz-?z-l,xz-yzﬂﬁ. Find

I F where F(x,y) = %y .
G

Show that j b= % pq(apz + qu} + 2pq ¢('xu. yn} where D 1is the
D

X=X =y

s] + - o _ +1

region bounded by the four straight lines

(p, g > 0) and

$(x,y) = axz + Zhxy + byz + 2gx + 2fy + c .
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5.17: (1) If e x+y+z+u, X¥=y+z+u, ¥Z =2z +u, XYZU =u

aixy ¥, X u)t 3.2
(X, X, Z, 1) e

show

(ii) Show that

1l ¢l-u (l-z-u (l-y-z-u %
JJ J J (x +y + 2z + u) xyzu dx dy dz du
00 0 0

1 1 i 1
= J xrt7 dxf Y2 (1-Y) dy [ z3(1-2) dz [ U(1-U) du
0 0 0 0

= ;
(n+8) 71

1 1,1
x* dx or J J(xjr]rydx dy ?

5.18: Which is larger I
0-0

0
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INTEGRATION ON CURVES AND SURFACES

To extend the notion of integration on subsets of 2 as introduced
in Chapter III to subsets of k-dimensional objects in B™ it is necessary to
introduce a definition of content for these objects. Rather than deal with
integration on general k-dimensional objects we will restrict our attention
to 1- and 2-dimensional objects, i.e. curves and surfaces. First a manifold
segment is too general a concept for which to hope to define content e.g.
the graph of f(x) = sin i?, x € (0,1) could not be expected to have finite
length so we should probably restrict our attention to the maps of fairly
well behaved compact subsets of the parameter space. On the other hand the
smoothness requirement on manifold segments is somewhat too restrictive in
the sense that we should be able to assign a length to objects like those

in the picture on the left

e
e

We shall therefore consider objects which behave like "nice" pieces of

manifold segments "piecewise".
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Curves (l-surfaces):

Definition: Let U be an open connected subset of R and

Y 1 U+ R, y(t) = (x(t), ..., x (), n21.

(1) If yec(), y is a curve on U in E" .

(1) If ye cX(U) and rky'(t) =1, ¥ t e U then y is a smooth

curve on U in H

xl'{t) ¥ 1s smooth <=>
y' () = .
: Sl
x_'(t) T x(8)° >0VteU
S g 1=1 1

* *
(iii) Two smooth curves Yy and ¥ on U and U are called

W
parametrically equivalent if there is a functiom f : U =0 ,

Fect™, > £'@) >0 and v (t) =y(E(E)), ¥eeu" .

{iv)} +(U) 41s the trace of the curve v 1in o !

We shall refer informally to the "curve" and its "trace" as "the
curve". We will see that this is unambiguous in the integration theory for
" parametrically equivalent curves. It is perhaps even more precise to consider
curves as equivalence classes of functions y : K =+ RE" the equivalence
relation being parametric equivalence. However you might consider this idea

of a curve too eccentric on your first encounter.

(v) Acurve vy : U = " is piecewise smooth if

(a) ¥ 18 continuous on U
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(b) Each compact subinterval of U 1is the union of a finite
number of intervals I such that ¥ : I = E® 4is a smooth

curve and |y'| 1s Riemann integrable on I .

x=x <+ at a
o
Example 1: vk ysyo+bt.tER,T'- b
z-

+
za ct c

A line in HB A & az -+ bz + cz > 0 this is a smooth curve.

(a, b, ¢) are called direction numbers of vy . They are not

unique in the sense that A(a, b, c) = (ha, Ab, Ac) define a parametrically

equivalent line if X > 0 .

(¢, m, n) = ?ﬁﬁ- (a, b, ¢) are the direction cosines o o
a +C

E2+m2+n2-1

(¢,m,n) are the cosines of

x +a, +b, +c
the angles determined by the i PN B

line and the directioms

~|.
ki

(1|n|ﬂ}v (ﬂ,l.ﬂ}, (ﬂ,ﬂ.l} {'K s Y.» &
o o

e e e e

reapectively. @ === 0z Mecmew=-

A line is determined by

(1) a point {xb, Vo zo} and direction (a, b, c)
or (ii) two points (x_ , ¥, z ), (%55 ¥y zy) -

i.e. then (a, b, ¢) = {xl =R ¥y = Ves 8 = zu}-

The direction (a, b, ¢) 1is orthogonal to (a, B, y) if

0 = (a,b,e) * (a,B,y) = aa + bBE + cy
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The set of points (x, ¥, 2) inm 1?3

such that {x—xn, b o S z—zn} is
orthogonal to (a, b, c) y t (a, b, c)

is the plame through

(xn. Yy zD} with /

Xy ¥y E)
normal (a, b, ¢). It's (/_30’ ¥or zo}

equation is

0= (x—xo, . g P00 z—zﬂl * (a, b, ¢c)

l.e. 0=a(xx) + b{?"}"n} + c(z—zo)

Example 2:

Y : ru':t':ll Y|'

yowg it

()2 +y ()2 =1+ 4250
i ¥  smooth.
Example 3:
x = co8 t -sin t
y :{y=g8in t . € R, Y= coa't
z=t 1

¥ 1s a helix
x'l(t::;"z + y,-'lr:i:}2 + z-.‘(t}2 = 23>0

ik v  smooth
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We know that, 1if v ¢ Cl, T{tu) + D ?{tu}{t-tn} is the best
affine approximation to y(t) for t near to . This motivates the

following definition.
Definition: (i) the tangent line to the smooth curve Yy at the point £

p(t) = y(t ) +D v(e ) (e-t )

e.g. 1in 33 : The tangent to the curve

x = x(t) X=X + x'(tn}{t*tu}
y :{ vy = y(t) is - e + y'{tﬂ}{t—ta}
z = z(t) Rl + z'{to}{t-to}

where - x{tu} g T y(tn} . K- z{tn) -

(i1) v = 1‘{to} is the tangent vector of a smooth curve y at

the point t,: The direction of a smooth curve Yy at the point ¢t is

v y'(ey)
vl = T¥ (e |
e.g. in R3 :
1

" (x"'(t ), y'(t ), z"(t))
| e eyie)t ese)y 0 - s

14 i d

(i11) For a smooth curve in 33 the normal plane at the point
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x‘(tD) {x-xn] + ?'{tu} )+ z'(t) (z-z_) = 0

' r ' =
fee. [x'(t), ¥ (t)s 2z ()] | x-x, A
Sl
zZ -z
o
Question: What corresponds to this normal plane for a smooth curve in Hz |
in R* 1

Remark: Two parametrically equivalent curves have the same direction i.e.

1£ yM(t) = y(E(t)), £' > 0,

YRR _ Y (E(EDEE) y' (£(£))
[y '] |y EEe @] [y EEn]

Definition: (i) If [a,b]l cUc R and y is a smooth curve on U.

b b
v(yla,b]) 9¢F I |v| dt = J ly*(e)] dt
a " a

b
- L/xl'{t)z + vs * ::n'(t)Z dt

2(y[a,b]) 1is called the length of y[a,b]

symbolically: di = |v| dt = lv'(e)] dt .

(ii) If v is a piecewise smooth curve on U then

2(yla,b]) = } #(vlay, byD)
i

where [a 4* P :I.] are nonoverlapping subintervals of [a,b]

such that vy 1s smooth on {ai. bi} .
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Remark: If ¥* and y are parametrically equivalent curves with

f(a®) =a, f0% =b then

L(v*[a*,b*1) = 2(y[a,b1l) since
b* b*
* *' 2
y') = f [v* (¢) | at = J |y* (ECED] £%(t) dt

a" a*

b
-J 4" (u)| du = &(y) .
a

Example 4: vy : {.e. the curve y = f(x), v = (1, £'(t))
f(t)

-
]

b
(y[a,b]) = [ /1 4+ £'()2 at
a

Example 5:

X=acos t

y=asgint

2n
t{y[0,27]) = [ /32 sinzt + 32 cnszt dt = 2ma
0

Note: &(y[0,4n]) = 2 &(y[0,27]) even though these 2 curves have the same

trace.

Motivation for the definitiom of &(y) :

(a) The length of the line segment

p(t) = p  +qt telty, t,]

is  [p(ey) - p(ep)] = la (tymt) | = la | (y=t)) = J lp' ()] dt
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(b) Consider the curve segment vy[a,b] and a partitinn'{tk}m of

o
[a, B]. Suppose te E[tk"l, tk] , k=1, ..., m ; one expects the sum of
the lengths of the line segments p(t) = T{Tk} + T'(Tk){t-tk},t E[tk—l’ tk]’
k=1, ..., m, to approximate what will be the 'length' of v[a, b] as

1 n
closely as one pleases provided only {tk} is fine enough.
o

This sum is
m

I el -5 p

which is a Riemann sum for

b
[ ly'(e) | dt .

Alternatively: the length of +v[a, b] is often defined to be

m
sup { ] |T{tk} - Y{tk_l)]} (The supremum being taken over all partitions
k=1

b
P = {tk}ﬁ of [a, b]). It is not difficult to see that %(y[a,b]) = { &
a

if v e Cl . This alternative definition is however more gemeral in that it

1

(7]

pertains to any curve for which the supremum exists 1.e. ¥ need not be

Surfaces (2-Surfaces):

Definition: Let U be an open connected subset of R2 and
o U R o(u,v) = (x(u,9), «ovp x (u,¥)), n 22,

(1) If 0 € C(U), o 1is a surface (2-surface) on U 1in 7"

(11) I1f o « El(U) and rk o'(u,v) =2, V(u,w) €U
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(iv)

(v)

Example 1:
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Then o 1is a smooth surface on U in Rn

F dn. x|
ﬂ!'- év_l g 1is smooth <=>
g!' = : .
- - 2
CE aﬁ E 3 (xi, xl}} o
| du v £ tei 3 (u, v) :

Two smooth surfaces o and o* on U and U* respectively are

called parametrically equivalent if there is a function

£:0° +U, £ e c]'{lJ*] > Jg >0, £f is (1-1) and cr*(pl = o(£(p)),

(»)
"i"pe'U*.

o(U) 1is the trace of the surface ¢ in o

Again we will not worry excessively about distinguishing between

a gurface and its trace.

A surface ¢ : U =+ B is plecewise smooth if

(a) o is continuous on U
(b) Each compact Jordan measurable (has content) subset of U is
the union of a finite number of Jordan measurable subsets D

such that D=D° and o : D° + : iz a smooth surface and

3 {xi. 3% 2 %
Z (?T_?].L) is Riemann integrable on D .
1,§=1 7\
X=utTV 1 1

a:{y*u-v.[u,v]eﬁ‘z,c'- 1 -1
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(*) x+y=-2z2=0, a plane in .

k o'=2, .. smooth .
We can see from (*) that direction numbers of the normal are (1, 1, =2) .

Notice also that these direction numbers are in fact

3 (y,z) 9fz,x) 3(x,y)
3 (u,v) * 8 (u,v) ’ 8 (u,v)

Example 2:
x =cos § sin ¢
o :1{ y=gin 6 sin ¢,(0,4) € Rz
z = cog ¢
xz + yz + 32 = 1 a sphere in R3
-gin 8 sin ¢ cos B cos ¢
g' = cos & sin ¢ gin 8 cos ¢ , tk o' =2, (¢4 mn),
0 -gin ¢ .» Bmooth
Example 3:

:-xﬂ+a1u+h1v
s B y-yo+a2u+b2v

z-zo+a3u+b3v
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(x, ¥, 2) = (xﬂ, Yo :n) + u{al, 8,9 a3} + v(bl, bz, b3] a plane through

{xn, Yo za] if a= (al. a5, a3} a E = {hl, bz, ba} are linearly independent.

a. b a. b

ol e : SR T e
%5 Ty e L |
3 (x y) - bl
= =
3 (u,v) R
2 2

o 1is a smooth surface «=> Ag + 32 + Cz >0 <=> a , b linearly independent.

To identify the plane in the form given on page 264 consider
Alx - xﬂ} + B(y - Tu) + Cc(z - zu}

= Aaju + hlv) + B{azu + bzv} + G(aau + bav}

By By Dy R !
=u| a, a, h2 + v h2 az bz =0
3y #y By b; a, b,
This is the plane through (xo. Yor zo) with normal
- _ ] (}' !E]‘ d (Z ,,X]' d {I,}F_)
n= (4 B, ) = [56v) * 3 (u,v) * 3(u,v)
Notice that the normal is given by
e £ -
et 1 2 3 a, bz a4 b3 a; bl
 Raal? P TR A By By - ""Ez +53
b Bl o L 8 b 3, by
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The best affine approximation to any surface o(u,v) for (u,v)
near (uﬂ. vhJ is a{uo, vn) +D a{uﬂ, vn}{u =My WF vu} : hence the
following definition.

Definition:
(1) The tangent plane to the smooth surface o at the point (u , v ) is

plu,v) = ﬂfuﬂ.vu} +D u(ua,vﬂ}(u—ua, v-vu} 4

For example, in Ra : The tangent to the surface
2 8
f x = x(u,v) { X=X + 5{% {u-uo] + 5§~ [v—vo}
pﬂ pﬂ
3y oy
o t{ y=yl(uv) is TRy HE (u-u)) + 5% {v—va}
I Py P
I »
|
;o z(u,v) . 2 z, + s {u—uu] + e (v vu}
PD pﬂ

where p_ = (u_, v ), x, = x(u, v}, y, = ylu, v), z = z(u, v ) .

From Example 3 (p. 270) this is the plane

d (u,2) (x-xﬂ] F 8 (z,x) (Y'Fu) + 8 (x,y) (z_zu) =0

3 (u,v) 3 (u,v) 3 (u,v)
pﬂ pn pD
(11} In H3 the normal line to the surface ¢ at P, has direction
numbers

/
o 2(y,z) 3(z,x) B(x,F}\

n » ’
EE(U.v) 3 (u,v) Ei'iu,v}l'.f 5

o

The unit normal direction is 51 - —




Exerclses:

5.19:

5.20:

Question:

a surface
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Show that two parametrically equivalent surfaces in 5‘3 have the

same unit normal n, .

Let o : Rz e o (xi = xi{u,v} i=1, ..., n) be a smooth surface.

Show that the vectors

d Xy ] X g 3 Xy 2 X
E- au ] .- !a_u » x E'l.i' 3 EEwim U a‘v
Py Po
are tangent vectors to certain smooth curves in ¢ . Check that

the condition rk o' (pu] = 2 simply requires that u and ¥ be

linearly independent. Check that in the case n=3 p=u*y .

In .H"l!II what corresponds to the normal line discussed above for

in B2 1f you can't figure this out ask.

3

We discuss the concept of surface area only for 2-surfaces in A .

It is hoped that the treatment of the problem of surface area in F" should

be clear from this. It should further indicate the procedure to be adopted

in dealing with content of k-surfaces in &' .

Definition:

(1)

if D is a compact Jordan measurable (has content) subset of UchH
and ¢ is a smooth surface on U in R3
( x = x(u,v)
o : e ?(uiv}l (u,v) e U

z = z(u,v)

2
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then

def
a(a(p)) = { n| du dv
D

/a .02 3(z,0% 8’
= [ du dv
D

3 (u,v) o 3 (u,v) . 3 (u,v)
a(o(D)) is called the area of o(D) . Symbolically da = |nfdu dv.

(ii) If ¢ is a plecewise smooth surface on U then

a(o(D)) = | a(o(d,))
i

where i}i are nonoverlapping Jordan measurable subsets of D such

that o i1s smooth on Di" -

Remark: Two parametrically equivalent surfaces have the same area

(cf. p.279)
Example &4: (Surface area for z = f(x,y), (x,5) € D)

014 y=v i.e. z-f{x,y},fcﬂl.

z = f(u,v)

1.0
'=s |0 1 rk o' =2 .. smooth

S
u v

a(o(D)) = j / fu2 + fV2 +1 dudv
D

-J/f2+fz+1 ax dy
B 0 y
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Example 5: (Surface area of a sphere of radius a)

i
| x=a sin ¢ cos 6 0
o y = a sin ¢ sin 6 B 1

Z=a cos ¢

xz + yz + z2 = 32
-a gin ¢ sin O a cos ¢ cos B
g' = a sin ¢ cos @ a cos ¢ sin 6
0 -a gin ¢

a(o(D)) = ! |n|
D

T o2m
= I [ aﬁ sin2¢ co32¢ + ah Ein4¢ de d¢
0“0
mopdm 2
- j [ a” sin ¢ db d¢
[+ IR
= —2naz cosg ¢ I' = ﬁnaz %
0
Example 6: (Surface area of a torus)
z 1
n—;ﬁﬁ‘ Eﬂ >y
2 TERAT ey
f
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!

E x= (R-a cos ¢) cos © 0 6 2n

Ia

o :(y=(R-acos¢)sinb, D: ; E>a>B.

[ =]
I
R
Ia
3]
=

g =a sin ¢
|

-(R - a cog ¢) sin 0 a sin ¢ cos @

g! = (R - a cos ¢) cos © a sin ¢ sin @
0 a cos ¢
|Elz = {-(R - a cos ¢) a sin ¢{ainzﬁ + cosz'a]}2
+ {(R-acos ¢) a cos ¢ cos 8}2
+ {(R-acos ¢) a cos ¢ sin ﬁ}z = az{R - a cos ¢}2

a(o(D))

?ﬂ 2n
J |n| = I {J afR - a cos ¢) de} d¢
D 0-‘0

2m
27a [ (R - a cos ¢) d¢
0

=@nlar.
ﬁqF%yaFiun for the definition of a(o) :

{a) The area of a plane segment

a = a cos B, = al
ve 1

a = a cos O, = am
ZX 2

a_ =acos B, = an
xy 3

A az = az(l2 + nz + nz) =g 2 +a“+a (*)
yz zx Xy

i.e. a2 is the sum of the squares of the areas of the projections

onto the coordinate planes ( yea Pythagoras ) .
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Consider an affine function o @ Rz + R3 and the projections u?

ny onto the coordinate plames in 53:

w2 2]+
By

o [5)-[]]

If D is a subset of E'z with content then, from Lemma 5.1.1 (p. 244)

33 bﬂ] [u}
al b1 v
b |
82

b

2 2 3 (y,2)

8 (u,v)

afoc. (D)) = a(D) -l a(D) , etc.
> By 3

so, by the remark (%) sabove,

a(o(D)) = /n(crz{ﬂ}}z + a{n‘zx{u})z + a(cﬂ(b))z

2 2 2
3 (y,2) 3 (z,%x) 3 (x,y)
i /3 ({u,v) T g (u,v) 2 3 (u,v) a(D)

= |n| a(p) = [ |n| du dvn = (n constant here)
- D - %

z-,

a

ZX
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(b) The area of a smooth surface.

p e A Ra {(b < Rz) iz a smooth surface.

If D is partitioned
into subsets D1 the

gum of the areas of

tangent plane segments

late,) |a®,) » p, €Dy
should be expected to
approximate the "area" of o(D) closely provided the partition is

fine enough. But E ]E(pi)lafni) is a Riemann sum for [ |E| du dv .
D

Hence it is reasonable to take a(o(D)) = [ |n] du av .
D

Now that the notion of content or measure has been introduced for
curves and surfaces it is a simple matter to extend the idea of integration
to such objects. For example in R3 i If v : R~ R3 is a smooth curve
and I 4& a closed interval in R then a partition of y(I) 1s induced by a
partition of 1 into subintervals '{I,} so that if f is a real valued

i

function on ¥(I) we may define Riemann sums

E £(p )2 (v(1)) » py € ¥(I)

- E (Fov) (£R(V(T)) , ty € I,

with resulting integral
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def
£ dp = l (fFoy) |u| dt
I

[n24
y(I) y(I)

-jfuuhruhzum&wa2+wuf+ng2u
1

Similarly 1f o : R2 + R

subset of R2 then a partition of o(D) may be induced by partitioms of D

3 i{g a smooth surface and D a Jordan measurable

into subsets {Di} so that if f is a real valued function on o(D) we
may define Riemann sums

E £(p,)a(o(d,)) » py € 0Dy

> E (£00) (uy, vy)a(o(D)) , (g, vy) €Dy

with resulting integral

def
j f = I fda = [ foo |n| du dv
o (D) o (D) D

2 2 2
= l f(x,y,z}#/%{r’zj +_3(z.x) +_3(x,y] du dv , = = x(u,v) etc.
D

(u,v) 3 (u,v) 3 (u,v)

3 T
Remark: If y and v (o and o ) are parametrically equivalent curves

(surfaces) then

l f= I £ { f = J £
y(I) y*(I%) o(D) g% (D%)

Proof (Optlonal):

£ 3 =R '

s |
YDy

SE(E) 5 O sl L) s e , Vee Y .
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def
i j £ % [ £(*(E)) |y** () |de
vk (I%) I*
. J £ GO ¥ GO ]6' (1) dt
T#

def
” J £Cy(w)) | v (uy |du % ] £
I v(I)

o 1 *
f: = §eC 1D +p3

b gfend
o (D) g% (D¥)

3,() >0, ¢ s (1-1) and 0" () = (4P, V P ¢ P,

i.e. ¢{r,8) = (u(r,s), v(r,s)) and %%ELE%'b 0, ¥(r,8) € D* .

o (r,8) = (x(r,8), y(r,s), z(r,8)) = (X(u,v), Y(u,v), Z(u,v))

= g(u,v) u = u(r,s), v = v(r,s)

aet (7,22 . 0(e2)® . diza)°
fu*(n*}f fn*f{x.Y,z}Vf:{r,a} a(r,s} *'a(r, ) dr ds

2 2
3 (Y,Z 2 (2,X) 3 (X,Y) 3 (u,v)
- Iﬂ*f{x b Z:‘.ii""'l’r ,v) +'B(u,v} +.3(u,v] Ui 5} dr ds (chain rule)

S 2 (1,2)° , 3(2,X agx,r;
J £(X,Y z)/a ta2) i‘%ﬁ’"ﬁ))_ D~ du dv (Theoren 5.2)

def

Jf.
a(D)

For a plecewise smooth curve vy (surface o)

[emnf el =2l )
y(D) 1 v(Ly) o (D) g “o(D,)

where T{Ii] {u(Di}} are the portions of v(I) (o(D)) which are smooth.
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You should think briefly about how f may be defined 1if o

L (D)

is a smooth k-surface in - sl

Applications: If § is any set for which the idea of a partition into

subsets has been defined and for which measure (or content) u has been

defined for these subsets then we define the average (mean) of a function £

on S to be

] fdu
s

whenever this exists.

Example 1: Three points are chosen at random on a line segment of length a.

Find the average distance of the intermediate point from the midpoint of the

segment

| | | |
T f f
|«= x =] 3y —|+ z =]

We must find the average value ¢ of 1% - x - y| in the set

D= {(x,¥,2) : X,¥,2 >0 , 0 <x+y+z <a} {(tetrahedron) i.e.

c-Ji%—x-yI dxdydz/dedy&z
D D

a ra-x ra=-x=y 53
D 0-‘0 0
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o a ra-x ra-x-y
1~2-—z-y[ dx dy dz = Li—x-—ﬂdzdydx
D

0 0

a a-xa
=IJ 15 = x - yl(a - x - y)dy dx

0“0
a E—'z-x a ra-x 2
-J [ {%-x—y}{a—-x-y}dydx+] J (x+y-*2-}{n—x-y)dydx
0 L
2

&
o

32

; .ﬁ/ﬁ-a
el Nl e B

For a finite distribution of point masses m, at the points

(:1, Yyr 2 i} the coordinates of the centre of mass (centroid) are
e Pk /Eu 2 Pl /zm : ;-z“/h
i : S i i 11 i i i i1 { i

The moment of inertia of such a distribution about an axis is

2
I= E m,.r
i - i
where T, is the distance of the mass m, from the axis. The radius of
gyration is

2
u-/Emiri fEmi--‘rf'[TE

The significance of the centroid is that a mass distributiom is equivalent
statically (i.e. with regard to first moments) to a point mass of the same
magnitude located at its centroid. The moment of inertia and radius of

gyration are important in dynamics. A point mass m rotating with angular

velocity w about an axis a distance r away has kinetic energy
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2 % m{rw}z - 2 'I.m2 (v = rw)

2 o
2 2

Thus a finite number of particles rotating about axis with angular velocity

w has kinetic energy %-E ml{r1“}2 - %~Im2 and has the same energy as a

single point mass m = } m  situated a distance o(= radius of gyration)
i
from the axis and rotating about it with angular velocity w .

For a continuous mass distribution on a set 5
s-[xaf[am. 5o [yo)[m. 5[ )|m
s ] 2] S ] s

I-Irzdm , rer(x, ¥, £)
s
I:F-v"I?m m:J‘dm

s

where dm = pdi for curves,
dm = pda for surfaces and
dm = pdu3 for solids and

p = p(x, y, z) 1is the density of the mass distributionm.

Example 2: Find the centroid of a thin uniform wire bent in the shape of

the curve }r-é"(ex+e_x} g Lt e ey

—=-.
b
n
re

y = cosh t
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x = f xd.i/f dt ? v = (x'(t), y'(£))
¥ X
= (1, sinh t)
1 1 e
= J t cosh t dt/[ cosh t dt ig] =v 1 + sinh“t = cosh t
=1 =1
=0 d¢ = cosh t dt
R 1 3 1
y = { ydﬁ/J di = [ cosh™ t da/[ cosh t dt
Y Y il -1
1 1 1
» J‘ (1 + cosh Zt}dtyj‘ cosh t dt
=] -1
1
0
FF Fpan i_l 1+ % sinh 2 g 2
= 1 = =(e-e ) +-E{e +e )
otk t| 2 sinh 1
=1

A point mass M at (0, O, 0) attracts a point mass m at

(x, ¥, z) the force being given by F = - E—TEE r where r = (x, ¥, 2) ;

|z

k 1is a universal constant. The field at (x, y, z) due to a body of

gravitational material is defined to be the force exerted by the body on a

unit point mass placed at (x, y, 2z) .

Example 3: Find the force exerted on a unit mass placed symmetrically at a

distance a from a straight wire of uniform density and lemgth 2R .

T F=(F

=R : R
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Fl = ()
k cos B 1l * 1
FZ-J 25 der-aka —"Ediﬂakp[ 3 3,372 dt
y r yr -R (a" + t°)
ko tan_]'{%]
-T cos u du t =a tan u
=1.R

~tan ':E}

2—:-9- sin (tan_l %} - ARt o

The force due to an infinite wire (whatever that is) is % along the axis

of symmetry.

Example 4: Find the gravitational field due to a thin uniform spherical

ghell ¢ of radius 1 at a point P at distance a from the centre

#

x =sin ¢ cos 8, 0 <8< 2n do = |p(8,$)|dd d¢

g :{ y=g¢in ¢ sin 8, 0 < $p <7 = gin ¢ d6 d¢
z = cos ¢
v : F=(F,, F,, F.)
1 i
Fl-Fz-ﬂ

33.[ k_cgiipda
a

r

-kpj' z-a
3
g X
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T 2w
- ks j J (cos ¢—a)sin ¢ d6 d¢
0

0 fatn®s + (cos g =a) 12

" (cos ¢-a)sin ¢ do
0 [1+ az - 2a cos ¢13

= 2nkp j 72

g [(1+a]2 g
oat Vit R

(1 - az - u)du , u=1+ a2 ~ 2a cos ¢

i i
- 22 ((-a®) (i - Top - (el - [1meD1 L af 1

a

0 » O XA <1,
i.t Fa-l-ﬂkfa’ a‘l,
a

Strictly speaking we are dealing with an improper integral when
a =1 in that the integrand is unbounded in that case (P is on the surface).
However we get the result we have obtained formally when a = 1 by computing
the field for the surface with a small hole at P and letting the hole
ghrink (i.e. replace 0 <¢ <mn by € <¢ <m and then take the limit as

e + 0+ ) . We shall have more to say about improper integrals later.

A systematic treatment of gravitation (and also electrostatics and
hydrodynamics) is best based on potential theory which is outside the scope

of this course. It depends heavily on the Gauss-Green-Stokes theorems

discussed in the next section.
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Example 5: A line segment is divided at random into 3 parts. What is the

probability they form a triangle?

|+ a +| x>0
1 l ] l y20
|-c— x +l+ ¥ +| ﬂix+?ia

Let A be the set of all such points (x,y) € Rz

Y""
S Favourable cases: ﬁl
a XA Y E &Ko
2
a=-%X>x
L e R S
2
i.e. al is the triangle bounded by
a a a
x+?-i' x'E, 'E

12 P
uz{ﬂ} = 28 uz{bl} =58

Therefore if (x,y) 4s chosen at random from A the probability that it

comes from ﬁl is

Hy (8 Ny (8) = 3 -

Exercises:

521z The angle © between two vectors p, q in B is given by

cos 8 = pq/|p|la] . Find the angle between the curves

(K, ¥ z) -{t! zt'j tz} e
(x, y» 2) = {32, 1-s, 2-32} g e R

where they intersect.
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Sketch the curve (x, v, z) = (cos nt, sin wt, t) and the surface
(x, ¥, 2) = (v cos mu, v sin 7u, v) and find the angle between
the tangent to the curve and the normal to the surface at the

points where the curve and surface intersect.

fet £y B wB, & e 0

s TRE' =1,
One can give a fairly convincing geometric argument that the

normal to the surface £(p) = 0 at a point e is

(=]

£ af of
vE{pu} s " Ty *33 . (cf. Exercise 4.27) .
o

Prove this from the definition of the present chapter.

Consider a curve in R3 given in nonparametric form

fl{x, vy, 2) =0, fzix, ¥, z) = 0 . Prove that the tangent to the

e GEL) 3 (E. E.) 3(f. .E.)
curve at a point Pn has direction aiytz]z 5 3{zijz 5 B{x{yjz

P,

A good geometric argument may be based on Exercise 5.20 or use the

implicit function theorem. You may assume

Bifl,fz}

5?;:;T—~(Pn} 0.

Find the surface area of the section of the paraboloid z = xz +-y2

for which 2 < xz + yzlj 6 .

Show that a hemispherical surface of radius a has its centroid

on its axis of symmetry at a distance -% from its base, and a

solid hemisphere has its centroid at a distance -%% from its base.
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5.27¢ Show that the radius of gyration about the 2z axis of the uniform

solid bounded by —x—i-+l§-+—z-;-1 is J 8% +3°
a b c 5

5.28: Show that the centroid of an arch of the cycloid x = a(8 - sing),
y = a(l - cos 68) 1is (aw , %3): (0 <8 <2m).

5.29: (a) (Pappus' Theorems) If a plane area (curve) of area a (length &)
is rotated through an angle g about a line in its plane not
crossing the area (curve) then the volume (area) of the solid
(surface) generated is the product of a(%) and the lemgth of the
path of the centroid of the area (curve)

(b) Derive the formula obtained for the area of the surface of a torus
by using Pappus' Theorem.
(¢) What is the formula for the volume of a torus?
[Pappus' Theorems are related to Guldin's Formula for the area (volume)

of a surface (solid) swept out by a moving line segment (plane region) of

variable lenmgth (area). This formula furnishes the theoretical basis for

Amsler's planimeter, an instrument for measuring plane areas. Guldin's

Formula is discussed in the book of Courant (Vol II, p. 294 et seq.)] .

5.30: (a) Find the centroid of the triangular region bounded by the lines

a
Tbxl?' g, x B

(b) Find volume and lateral surface area of a right circular cone of

base radius a and height h by direct integration and by using

Pappus' Theorems.
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5.31¢ A sphere of radius a has volume &-waa and surface area ﬁnaz

3
Use this and Pappus' Theorems to locate the centroids of a semi-
circular plate, a quadrant, a semicircular wire, a quarter circle,

all of radius a.

5.32: The density of a semicircular lamina at any point P 1is proportional
to the square of the distance of P from the centre of the circle.

Find the centre of mass of the lamina. [On the axis of symmetry at

a distance %%— from the straight edge.]
5.33: Given a hemispherical shell of density 1 having inner radius a

and outer radius b find (a) its centroid, (b) its moment of
inertia about the axis of symmetry, (c) its moment of inertia
about a diameter of the base.

@) Bo* - a%/se3 - ad), 0, 0), ®) 4r®° - a>)/15
@) &b = a2 )15 )

2
5.34: Show that M %%~ is the moment of inertia about the axis of
symmetry of a uniform right circular cone of base radius a and

mass M.

5:35; (Parallel Axes Theorem): Show that 1T = IG + H.h2 wvhere I is
the moment of inertia of a body about a given axis, IG is the
moment of inertia about a parallel axis through the centroid of
the body, M 4is its mass and h is the distance between the two

axes.
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5.36: If a>b then
x; 13 z2 x2 Ei 22
E 4Lyl , S+s+5=1
az h2 hz az b2 32

are the equations of a prolate spheroid and an oblate spheroid

respectively. They are generated by rotating the ellipse

2 2
5:3_- + LZ = 1 about its major and minor axes. Show that their

a b
gsurface area is respectively

+ (wb2 log {-1]-_{-2“} )€

21&2 + (2nab sinﬂle)fe 5 2ﬂa2

where the eccentricity e of the ellipse is defined by b2 = az{l—ezj.

R Show that the gravitational attraction due to a uniform thin rod
AB at an external point P 1is EEE sin %-u where p 1s the
density, k is the gravitational comstant, p 1is the perpendicular
distance of P from the rod and o 1is the angle subtended by the

rod at P.

5.38: Consider the right semicircular cylinder

D= f{n, ¥, 8 ¢ xz + yij az Pk yo, O g2kl

Show that the y-component of the gravitatiomal attraction at

(0, 0, 0) due to a uniform solid mass distribution in the form

I"ﬂz + hz
h

D (density 1) is

2k b loglat ]

[Express the force as an integral over D and evaluate the
integral using cylindrical coordinates

x-ucusv,y-usinv,z-w,ﬂ_fuja,ﬂiv_fﬂ,ﬂiwjh].
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5.39: Show that a uniform spherical body of radius R and density P

attracts a unit point mass placed at a distance a from its centre

with a force of magnitude %nﬁzkphz. a >R and %T!ak.p s & %R,
5.40: A solid uniform cylinder has a given volume. Show that the

attraction at the centre of one of the circular ends is a maximum
when the ratio of the height of the eylinder to the radius of the

end is (9 - V17)/8 .

5.41: The vertical angle of a solid uniform cone is 90°. Prove that the
ratio of the attraction at the centre of the base to that at the

vertex 1s approximately 1.29 .

5.42: Two numbers x and y are chosen at random between 0 and 4

Show that the probability that their product xy is less than

4 is -1;+ log V2 .
5.43: Show that the mean distance of the points of a circular area

(radius a) from the end of a diameter is 32a/9n .

5.44;: An interval a dis divided into three subintervals. What is the

mean value of the length of the shortest interval? [ % ]

5.45: The mean distance of the points on the surface of a sphere of

radius a from a point on the surface is ﬁ—: .

5.46: Show that the mean value of one of n positive numbers whose
sum does not exceed 1 is —— .
n+l
5473 Prove that the normals to a smooth surface in fi'3 intersect the

z-axis if and only if it is a surface of revolution.
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5.48: A (1-1) map is said to be 'conformal' if the angle between any

two intersecting curves is the same as the angle between their

images.
(a) Inversion about the unit circle in Rz is defined by
N il TaEea A
O g
- S i rr ty

Prove that this map is conformal.
(b) Prove that the image of any circle or straight line under
inversion 1is either a circle or a straight line.

{c) Find the Jacoblan of the inversion.

5.49: Prove that in a curvilinear triangle formed by three circles which
pass through a common point O the sum of the interior angles at

the vertices is w (0 is not a vertex of the triangle).

5.50: (a) A map of the plane given by
u = ¢(x,y) , v =(x,y)
is locally (1-1) and conformal if
¢x = L"]’ ,—¢? o (Cauchy-Riemann equations)

and ¢x ¥ ¢? are not both zero simultaneously.

() u= e” cos Yy ¥rm e* sin y is conformal. Draw the images of

lines x = const. and y = const.

(e) u= l[x + _x:___] W om l(j,.l* - ) is conformal and maps
2 2 2 2 2 2
X- =y x ¥
straight lines through (0,0) and circles x2 + ?2 = k inteo
2 2
confocal conics — + — =1 .

pa |

1
r:+2 e -
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5021

=984 -

Inversion in three dimensions is defined by

X v Z
us= g W= s W=
x2 + ?2 + z2 xz + yz + 22 12 + yz + zz

(a) The angle between normals to surfaces is preserved.

(b) Spheres are transformed into either spheres or planes.

Prove that the tangent plane to the surface xyz = 33 at any

point of the surface forms with the three coordinate planes a

tetrahedron of constant volume.
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THE TRUTH ABOUT GAUSS, GREEN AND STOEES

There are integrals associated with curves and surfaces other than
those discussed hitherto. For example if the position of a particle in space
at any time t € R is given by vy(t) = (x(t), y(t), z(t)) and is subject to
a force F = F(x, y, 2) at each point (x, y, z) it is reasonable to define
the work done between time t=a and t=b as

b

H-IE'E EM{F’FEIFS)

a

vy = {xlil xzi' :‘3.}
b
- f {Flf*r(t}}x'{t) + FE{T{t}}}r'(t) + FB{T(t”Z'{t} }dt

a

dy + F_ d=z

agt I F.dx+ F 3

1 2
¥

As a further example consider a fluid flow in space the velocity at any
point (x, y, 2z) being V(x, y, z) . Let o : o(u,v) = (x(u,v), y(u,v), z(u,v)),
(u,v) e D c 32 be a surface in the fluid. The volume of fluid crossing the

surface per unit time is

" 3 z 3 (z,x) 3 (x i
L“’lf“{“*"” 22 4y, (o (u,v)) HEBD 4 v ) FEL) du av

def

Jd?ldy dz + ?Edz dx + v3dx dy .

Notice however that these integrals, while they are invariant with

respect to equivalent parametrizations of the curve or surface, they change
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sign when evaluated with respect to parametrizations which reverse the
direction of the tangent to the curve or the normal to the surface. Thus
we must consider the concept of oriemtation. Our discussion of orientation
involves a certain amount of handwaving; in fact an adequate understanding
for this course can be obtained from a classroom discussion with pictures

and examples. The subject is usually covered in detail in Mathematics 422.

Orientation: We endow lines, planes and three dimensional Euclidean space
with an orientation when we adopt a coordinate system in these objects. We

have two essential choices in each case:

z
(a) - -
R g R?; "\ R { o y
X
x
z
or (b) o ol
R i —%&—— Rz: \\ 33: (H N
y ol
y

We shall adopt the orientations of &, Rz. R3 sketched in (a) as standard.

All cartesian coordinate systems which can be obtained onme from the other
by a translation and rotation (affine transformation with Jacobian +1) are
considered to endow the space with the same orientation. To obtain a system
of type (b) from one of type (a) requires an affine transformation with
Jacobian -1; these are considered opposite orientations. In general an
orientation is achieved in " by choosing a set of n independent axes,

specifying a positive direction on each and then listing them in some order.
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Similarly given a k-dimensional segment S5 in H‘n, 0 <k<m
(cf. page 220), a specific parametrization ¢ of S, which is a coordinate

system for S (cf. page 223), is also an orientation for 8.

So when we speak of an oriented segment S we are really considering a
pair {S, ¢} i.e. the segment S and a parametrization ¢ or, to be even
more boring about it, the segment § and an equivalence class of parametri-
cally equivalent coordinate systems. For example Tl{t} = (cos t , 8in t),
t (0, 2m), Tz{t} = (cos t , -sin t), t €(0, 2r) are parametrizations of

the same l-dimensional segment in Rz
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but give it opposite orientations. All curves parametrically equivalent to

v. have the same orientation (direction cf. page 266) but Tz{t} - TlffEt)

1
where f(t) = 2r - t, £f'(t) = -1 (parametric equivalence would require
£l »8) .

As a further example the segment 5 = {(x,y) € HZ 1 x>0, v >0}

may be parametrized by

XxX=71 cos B X =p sin ¢
oy ¢ Oy
y =1 gin 6 ¥y =pcos ¢
TD‘D,G*:EIfIz[ p)ﬁ,ﬂ:<¢<%
Yn. FA
r
-B p
S : -5 =
J'.\\. i‘
JJ’ 'II 1/ ¢
. s \\ > x
]

However they give it opposite orientations. So if we choose to consider the
segment with the orientation (r, 6) and to denote it by § then we denote

the segment with the orientation (p, ¢) by - S .

In general having adopted a standard orientation for F* we can
define positive and negative orientation for n-dimensional segments in .
A parametrization ¢ gives such a segment a positive oriemtation i£ I ¢ >0
and a negative orientation if J, <0 . For example the parametrization

¢
(r, 68) above gives the quadrant a positive orientation since g—%ﬁ% =1 >0
»
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and (p, ¢) gives it a negative orlentation gince %%%f%%-- = pn <0 . The
parametrizations (6, r), (¢, p) give negative and positive orientations
respectively. In F a parametrized interval is positively or negatively
oriented if its parametrization is consistent with or opposite to that of
the line i.e. if a <b then Yl{t} = a+ t(b = a) gives the iInterval

{(a, b) a positive orientation while Tz(t] =b + t{a - b) glves 1t a

negative orientation.

4] Yy

Geometrically, for curves in R3, it is convenient to think of orientation
as specifying a direction on the curve. For a surface it amounts to

specifying a normal consistently drawn on one gide of the surface

[ ——

=)
I
1<
b
e

Opposite orientations give normals on opposite sides of the surface.

Finally O-dimensional segments (points) are oriented by labelling
them - " + " or M =My

To summarize, a k-dimensional segment inherits, through its
parametrization, an orientation from the standard orientation of the under-
lying parameter space Rk 3

General manifolds (unlike segments) cannot always be oriented:
for example we can distinguish between two sides of a eylinder or a sphere

so they can be oriented but this is not the case for the Mobius band (an
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obscure rock group).

Differential Forms:

We have already encountered functions which map:
(1) points in E* to points in E" (f : B® » A
(ii) Jordan measurable subsets of & so iR (Jordan content, integrals)
(iii) Pieces of curves in B toR (length, moments of inertia, etc.)

(iv) Pleces of surfaces in B to R (area, moments of inertia, etc.)
We now discuss a hierarchy of functions, continuous k-forms, which map pieces
of oriented k-segments to K .
Forms in R :
O-forms: w = A(x)

A is a continuous real valued function om F. If v is a

positively oriented O-segment i.e. a point x labeled " + " then

f
w(T) - A(x)

def
wl=1) = =A(x) = -w(1)

where -t denotes the point x labeled " - " .



1-forms: w = A(x)dx

Let v[a, b]

vy :R+R where vye¢ Cl

w(y[a, b]) = I

A
[a,b]
m{T[ﬂ,b] L= i

= A
\ T[ﬂ!b]

i.e. w(I) = {
I

and w(I) = —J
I

b
Note that when we adopted the convention [ = -J
a

really not just considering J
[a,b]

also.

Forms in R2 :

O-forms: w = A(x,y)

def
w(t) = A(x,y)

def
w(-t) = =A(x,y) = -uw(7)

and rk y' =1 {(d.e. ¥ >0 or '
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AeC

be an interval in F oriented by the parametrization

<0 ) then
v(b)
A(x)dx
y(a)
def [P
= f AGY(E) Y' (8) dt
a
y* >
if ' =0 . » -
y(a) y(b)
if T'I ,:u __"fr _:':ﬂ
v(b) y(a)

A if I 4is a positively oriented interval

A 4if I 4s negatively oriented

a
previously we were
b

but were taking orientation into account

A e C

T & ey

(x,¥)
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1-forms: w = A(x,y)dx + B(x,y)dy , A, B eC

1
Let Yy be a smooth curve in Rz (i.e. w.r:H—rR?' v € C ,tky'= 1)

and v is (1-1). Then if y : {x =%t

y = y(t)
y(b)
w(y[a,b]) = [ A(x,y)dx + B(x,y)dy y(b)
y(a)
y(a)
def (b
= f {A(x(t), y(e))=x"(t) + B(x(t), y(t))y'(t)} dt

a

2-forms: w = A(x,y)dx dy

Let D be a reasonable set in R2 (D Jordan measurable, D = D_“}
and o[D] a set in Rz oriented by the parametrization o : Rz + Rz where

o € {:1 , Tk o' = 2 , o(1-1) , then if

x = x(u,v)
g (x g (x
3 (u,v]ﬁl},m:'%}ﬂ or é_((E:-:-‘}{ﬂ
T-Y{uﬂ’]

wlo[D]) ‘J A(x,y)dx dy
a[D]

def
< f A(x(u,v),y(u,v)) ijg;g%_du dv (*)
D

3 (u,v
y4
¥4
a[D]
*x
J ,.?_(.x_l.ll)ﬂ. b E_'..gl‘.z.ﬂ_c(}

g 8 {aw) g g {u,v)
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In order that this definition be unambiguous we must adopt the convention

that "du dv" means "duz" while "dv du" means ”—duz" i.e. dv du = =du dv .

With this convention BUX,¥) gy » 288 4o gqu = J dy. . Thus if S is
3 (u,v) 3 (v,u) " Hladal |

a reasonable set in 72  then

w(8) = j A= I Adxdy , if S 1is positively oriented,
5 5 :

w(s) = -[ A = f A dy dx, if 5 1s negatively oriented.
5 5

N.B. This convention has nothing to do with Fubini's Theorem.

Forms in 33 :

O-forms: w = A(x, ¥, 2) AeC

1-forms: w = A(x, vy, z)dx + B(x, y, z)dy + C(x, y, z)dz, A, B, C e C

’
x = x(t) y(b) .

*r:’-". y = y(t)

.

v(b)
w(y[a,b]) = [ Ade+ B dy + C dz
y(a)

z = z(t) y(a)

def b
= J Ay (eNx" () + B(y(tDy'(t) + Cl(y(t))z"(t)} dt
a

T-forms: w = A(x,v,z)dy dz + Bi{x,y,z)dz dx + C(x,vy,z)dx dy, A, B, C e C

x = x(u,v)

g : y = y(u,v) , (u,v) €D

L g = z(u,v)
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w(o[D]) = J A dy dz + B dz dx + C dx dy
' o[D]

3 (u,v)

* f [ACa (u,v)) Ji'—l+ B(o(u,v)) a—%&l + Clo(u,v)) LET) § gy av
D

We still have the
convention that

du dv = =dv du = du2 i

3-forms: w = A(x, vy, z)dx dy dz

X
Let G b.e a reasonable set in 1?3 (G Jordan measurable, G = G_"]
and v[G] a set in R3 oriented by the parametrization v : R3 + 33 where
v OE Cl, rk v' = 3, v(1-1), then if
x = x(u, v, w)
: = 8(x,y,2 9 (x,y,2)
vt ¥ = yin. ¥, W) (0 ¥ W) €6, FRTSIEE >0 OF AW a
z = z(u, v, W)
L
w(v[G]) = [ A(x, v, z)dx dy d=z
v(G)
dEf 3
= Alx(u,v,w), y(u,v,w), z(u,v,w)) —{'—'1’—}— du dv dw
G a ( 1"r'l
Z Zh
vw[G]
s ————

a(x -

= <
3 (u,v,w) = 3 (u,v,w) b
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For consistency we must adopt the convention
du dv dw = dv dw du = dw du dv = —dv du dw = =-dw dv du = -du dw dv = du3
Thus if V 48 a reasonable set in Rs then

w(V) = [ Am [ Adegdydz , 1f V 18 positively oriented,
v v

wl(V) = —f A= [ A dy dx dz, 1f V 1is negatively oriented.
v v

Remarks:

(a) Notice that, for all the forms introduced, changing the orientation

of a set S simply changes the sign of w(5) , 1i.e. w(=8) = -w(8) .

(b) The particular parametrization used in evaluating w(S) 1is not
important. Two equivalent parametrizations give the same value
for w(S) . We omit the details, which just involve the change of

variable formula for integrals (Theorem 5.2).

Example 1: w=x dx + xy dy ¥
r (1,1)
(a) x=t
Yt 9 0 <t <1 7,[0,1]
I ¥ - E {D‘ﬁ Ll ¢
¥1(1)
N["rl[ﬁ.l]} = x dx + xy dy
¥,(0)

1
2  FENE - ]
J{t 1+t 1)dt 2‘1.-._,,‘ 6



- 306 ~

Y A
®) x=1-t @,1)
Yy ¢ b ep <} ¥5[0,1]
ym Y= E
v, (1) 0,0 o
w(y,[0,1]) = x dx + xy dy
7, (0)
f1 2
= | [(1-t)(-1) + (1-t)"(-1)] dt
0

- N L
2" 3 6

Notice that ‘f'z[ﬂ',l] is ‘rl[ﬂ',ll with the opposite orientatiom

i.e. 7v,[0,1] = = v,[0,1] .

yp
(2,4)
(e) x=t
¥ 2 0 <€t =2 v[0,2]
: o ¢t
(2) (0,0) ik
w(y[0,2]) = [ x dx + xy dy
y(0)

2
-!(t‘1+t3'2t}dt-1ﬁ£
0 5
* 2 4 /7
Check that the parametrization v (t) = (7, £) 0 <t <v2
gives the same result as example (c). Find a parametrization that reverses

the orientation and check that w(-5) = -w(5) .
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Example 2: w = dx dy
(a) x = gin ¢1 cos El
i b T
o, t¢ y=sin ¢ sin 8, Dy = {(4;, 0) : F <) <3, 0 <8 <3}
Z = COB ¢l
% AZ
g ¥
1
1 i = -
1 e
™ T P
% - G
= x
m{ul[Dl]} J‘U " ]dx dy
i T |
3(x
b d¢. dé
L} 3(8y,8,) 11
1
nT
F {F sin ¢, cos ¢, do,} do; -1;-
jul 0
&
(b) x = gin ¢2 cos 52
A ™
a, t ¢ ¥y= gin ¢2 gin 132 1".I2 = {(82.412} : ﬂ_‘-ﬁz j'i; Ej 4‘2;‘E
Z = co8 ¢2
¢2,ﬂ
X
i
3
&

T e
,m'\
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wl(o,[D,]) = { dx dy
A cz[ﬂzl

9 (X,¥) 40 4q
= )
[Dz a(ez,¢23 i

m

. 1
2 w
= {u {J - sin ¢, cos ¢2 dezl d¢2 -2
F 3

(e) xX=u

lL (F'= ¥ D= {(u,w) : 0 <u,0 <v,u+v <1}

z=1l-u-v

We now wish to relax the smoothness conditions on the parametrizations

we have been comsidering: we want to extend the domains of forms to include

objects like:
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1f D < Rk and S = o[D] 4is a smooth k-surface in F" oriented
by o Rk + B®, we define 88 = o[3D] to be the "boundary" or "edge" of S.
It is not necessarily the actual boundary of § (at least in the topology
of Rn}; for example a smooth curve y in Rz is its own boundary but we
have defined 3y to mean the end points of y . First observe that an
orientation on a k-surface S can be thought to induce an orientation on

3§ 4in a natural way if 3S 4is "nice" 4i.e. an orientable (k=1)-surface.

For example:
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Then a plecewise smooth oriented k-surface is composed of finitely many
oriented k-dimensional pieces §, such that, if 1 # j, s, and Sj have at
most boundary segments in common and the orientation of 351 n Bﬂj as a

subset of 95, 1is opposite to its orientation as a subset of BEj.

i

-

def
If §=us, , w(8) = Em(Si} ;
i
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Example: w = x dx + xy dy ¥

A (0,1
¥ "rl+*rz ¥y

wly) = w(*rlll + w{*rz} + w("ra}

S T
2~ 3%2"13
* *x
{Drﬂ] Tl (1!’3}
Exerclses:
5.53: Make a MBbius band: check that if you try to divide it into two

oriented surfaces with oriented boundaries then one of the common
portions of the boundary has the same orientatiom as a subset of
each surface. Colour your efforts with your crayons and give the
result to the Chairman of the Mathematics Department. Don't say

who suggested this.

5.54: You should now consider why Theorem 5.2 is more restrictive in

4 : 4() b
F',n>2 than in F"; i.e. I ; }f = [ (fe4)¢' with very little
d{a a

restriction on ¢ and ¢' while for n > 2 we require that ¢

be (1-1) and J, be of one sign

¢
¢ "
’ e e —_ ey = ey
a b $(a) $(b)
¢
—
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Note: The idea of S and 35 being "nice" and an orientation in the k-
dimensional set S inducing an orientation in the (k-1)-dimensional set 35
may be made precise by restricting the domains of parameters to be oriented

intervals I in Hk with oriented boundaries as follows:

%
s 2
- B!
k=1 k=2 k=3

The parametrization of § then induces an orientation not only on S5 but

also on 35 (e.g. see Exercise 4.76, p. 237).

Algebra of forms:

Addition: We may define addition of k-forms e.g. in R3

O-forms: w = A(x, ¥y, Z) a = B(x, ¥y, 2)

w+ o= A(x, v, 2) + B(x, ¥, 2) =a +

l-forms: w=Adx +Bdy +Cdz, o =L dx+ Mdy + N dz
w4+ a=(A+L)dx+ (B+ Mdy + (C+Ndz=a + u
2-forms: mﬂ&dydz+ﬂdzdx+ﬂdx&y,u-Ldydz+Hdzdx+dedy
w+a=(A+L)dy dz + (B + M)dz dx + (C + N)dx dy=a + w
3-forms: w = A dx dy dz o = L dx dy dz
w+o=(A+L)dxdydz=o+w



Multiplication of two forms:
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by the following rules:

Examples:

(a)

(b)

(e)

(d)

(e)

(£)

1. {ml + mz}u = 0.0t 0,0

2, dx dy = -dy dx, dy dz = -dz dy, dz dx = -dx dz

3., dx dx = dy dy = dz dz = 0

w=A, a=1L

wo = AL = LA = daw

w=A, a=Ldx+Mdy + N dz

wa = AL dx + AM dy + AN dz = LA dx + MA dy + NA dz = ow

w=A, a=1Ldydz+Mdz dx + N dx dy
wa = AL dy dz + AM dz dx + AN dx dy

= LA dy dz + MA dz dx + NA dx dy = ow

w=A, ao=1Ldx dy dz

wae = AL dx dy dz = LA dx dy dz = aw

w=Adx+Bdy+Cdz, o=Ldx+Mdy+Ndz
wae = AL dx dx + AM dx dy + AN dx dz
4+ BL dy dx + BM dy dy + BN dy d=z
+ CL dz dx + CM dz dy + CN dz dz
= (BN - CM)dy dz + (CL - AN)dz dx + (AM - BL)dx dy

= =l

w=Adx+ B dy + C d=, a=1L dy dz + M dz dx + N dx dy

woa= (AL + BM + CN)dx dy dz = aw

We may define multiplication of any two forms
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(g) w=Adx+Bdy+Cdz o =Ldxdydsz
wa =0 = aw
(h) w=Adydz + Bdz dx + C dx dy, o =1L dx dy dz

wa = 0 = ow

Differentiation of ﬂl forms:

1

A C form is a form in which the coefficients A, B, C are Gl

(a) O-forms: w = A(x, y, 2z)

JA 3A 3A .
dm*dﬁ-axdx+aydy+azdz , a l-form

(b) l-forms: w = A dx +B dy + C dz

dw = (dA)dx + (dB)dy + (dC)dz

o2
.

(g-’idx+

d A
= dy +Hz dx)dx

[+ (=)
o

2B
dy + 5 g dz)dy

+ G2 ax +

o Qr
0 -

dy + ac dz)dz

+C:—-E-dx+ e

=%
b

dB A 9C

functions.

C _23B dA _3C 3B 34 =
-(g -5)dy dz + G a‘)dzdx+{3x a?}dx dy , a 2-form

¥

dy dz dz dx dx dy
] 3 3
= e 5-}‘ ey » formally ({sorry)
A B C

(c) 2-forms: w = A dy dz + B dz dx + C dx dy

dw = (dA)dy dz + (dB)dz dx + (dC)dx dy

A 3B  acC
= (gx +a?+az}dxd3r dz , a 3-form



(d)

Exercise :

5:55:

- 315 -

j-forms: w = A dx dy dz

dw = (dA)dx dy dz = 0

Notice that if w 1s a k-form then du 1is a (k+1)-form,

k-ﬂ' s § “-"1 -

If w 1s a C° form then
d(de) = 0 and (dw)(dw) = 0

This is true in general. Prove it for 0, 1, 2 and 3-forms

2

Proposition: If =x = x(u,v) and y = y(u,v) are Cl o-forms then

Proof:

Corollary:

dx dy = du dv .

o Ax7)
3 (u,v)

3 (y,x) -
Hence dx dy = 3 (uav) du dv = = dy dx .

dx-z—xdu+:§ dv

dy = —Idu+—1dv

_ @xdy _3xdy YCR!
dx dy @u“ 2% 3%y gqu dv = ey du dv

If A= A(x,y) 1s a Gl O-form and x = x(u,v), y = y(u,v)

C2 O=forms then

E_ﬁﬂ{!:lzl __,_ m@.i} _.._ {PEY.}

ax d(u,w) 3du

o

TETCR N e

v 3(u,v) v Ju au

(=%

are
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Proof: Consider

w= A dy Ve w-ﬁg—ﬁdu+a%‘:-dv
. dm-g-% dx dy du = [—— {A—E] + [A—i}]du dv

-4 3(x7) 4, 4y

3x 3 (u,v)

Comparing both expressions for dw gives the first identity, exchanging

x and y gives the second.

Exercises:
5.56: If A= A(x, ¥, 2) , x = x(u,v), y=y(u,v), z=z(u,v)

Show

24 2(z,%) _3A 3(xy) (3 (2% D},

e
3z 3 (u,v) y 3 (u,v) v aw

du
5.57: (a) 1If x = x(u, v, w, y = y(u, v, w), 2z = z(u, v, w) then

d}rdz-g-%i’—)—d dw+3—((1‘-ldwdu+g~%1'—§-dudv

dxdyaz,-“—(—lb—ldudvdw

3 (u,v

(b) If A = A(x, y, 2z) then

as
=
as

A X, ¥,2 3 '{53!3!"!}+—{ﬁ (v,2) {AEEI*E!}

3x 2(u,v,w) 2u alv,w) av 3 (w, u} aw " d (u,v)

You may have noticed a strong similarity between addition, multi-

plication and differentiation of forms and the various operations with vectors.
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We will discuss this in more detail after we have considered the following
important theorem special cases of which are due to Gauss, Green and Stokes;

it may be regarded as an extension of the Fundamental Theorem of Calculus.

Theorem 5.3: (Gauss-Green-Stokes)

1f S is a piecewise Cz oriented k-surface with boundary 25
which is a plecewise Cl oriented (k-1)-surface and w 18 a Cl (k=1)-form
then

w( 8) = dw(S)

Step I: (Proof for oriented intervals)
k = 1 (Fundamental Theorem of Calculus):

Let I be the positively oriented interval [a,b] in R .

1 a b
w = A(x) AeC s ~ >
dw = A'(x)dx
b
A®) - A@ = [ A'@dx
a
i.e. w@I) = dw(l)
k = 2 (Green's Theorem):
Let I be the positively oriented interval [a,b] * [e,d]
iR Bde A Bee yd
gow (22 Wyapy M e J Ax=b
- g x ay il
y=c
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wl‘.BI}-I A dx + B dy
al
b b d
= f Alx,c)dx + [dﬁﬂh.y}dy - J Ax,d)dx - J B(a,v)dy
a c a [
b d
= I {A(x,c) - A(x,d) }dx + [ {B(b,y) - Bla,y)}dy
a ¢
b d b
= J {I dy}dx J {J %E-dx}dy
a c a =

;é-)dx dy = du(I)

Wlﬂﬂ‘

- [ 22

k=3 (Gauss' Theorem):

Let I be the positively oriented interval [a,b] x [ec,d] x [h,k]

Adydz +Bdzdx+Cdxdy, A, B, Ce C

B
[

gA BB (l;’
e — }dxdy dz |

ax By = JFj

dw = (

W= + w,+w

i 2 3
du = dml + dw2 + dma
X
where m1=Adydz. wz-de dx, mg-cdxdy
a1
ke
- {] [A(b,y,z) - A(a,y,z)]dyldz
‘h "¢
'k d /b
a A
= JE J 5;—(x,y,z)dx dy dz

‘h a

= dml{l}
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Similarly wzfﬂ 1) = du.\z(I], m3{3 1) = de(I) g

e whI) = du(I) .

(Proof for Cz segments)

We now extend the result to (22 k-surfaces in R3 the domain of
whose parametrizations are intervals in Rk, k= I, 2, 3w Tha

proof for H‘2 is obtained by considering z = 0 throughout.

2= x(t)s veC [ab) s = y[a,b]
y:<¢y=y(t) + 2v(b)
- +
z = z(t) > -
\ a b
-* v(a)
2 3

dwtﬁdx+—?dy+a—dz
dw(S}'J aédx+udy+%dz
g% v g
= h{%xr(ﬂ.,.?_,& '{t}+?-'é '(t}}dt
X 3?? Bzz

b g
f = A(x(t), y(t), z(t))dt

A(y(b)) - A(y(a)) = w@S) .

A(x(b), y(b), 2z(b)) - A(x(a), y(a), z(a)), by Step T (k=1),
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k = 2 (Stokes' Theorem. Called Green's Theorem in RE}:

’

x = xf{u,v) o is (1~1), EE{I}
g :{ y=y(u,v) I closed interval in a
z = z(u,v) § = o(I)
o
¥ T x selfarrnrmm s Cr
i as
a1
LT DaF e G e TS L S e
aC 9B a A aC 2B
duw (BF-—BE}&ydz+{az—ax}dzdx+[ﬁ— }d dy
w-m1+m2+m3 ml-ﬁ.&x, mzﬂldy, mg-cdz
duw &m1+dm2+dw3 dml e dz dx 3y dx dy, etc.
X dx
w, @ 8) = Adx = (A = )Ydu + (A — )dv
1 38 31 du av

|ﬂ.;|

(A 35}du dv, by Step I (k = 2)

(=& ]
-
[t
]

{ EEx) BAD }du dv, Exercise 5.56
u.."U" Y a

{ s V)

'J{L zﬂx—a—ﬁdxdy]
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Similarly Ulz{a 5) = dqu{S} k& r.u3{E- 8) = de{S} .

« "o wi(@s8) = du(s) .

k = 3 (Bauss' Theorem):

x = x(u,v,w) v 1is (1-1), GE{I]
N v = v(u,v,w) I closed interval in .‘?3
z = z(u,v,w) 5 = w(I)

iR o ooy
¥ /’,)(' § 1 : ")L‘C

GsharaEt R st e Cindy; LB CeC

JA , 9B ,8C
duw [ax+a?+az}dxdjrdz
m-m1+m2+w3 ml-ﬂdydz, etc.
du = d + d + dw duw --Eidxd dz ete
= 7 | o 3 1 ax 7 9 3

wl(BS) - [ A dy dz
a8

= 3 (y,z) 3 (y,2) 3 {y,z) 57
L IA{ 5 (v ) dv dw + A i) dw du + 3 (u.v) du dv } , Exercise 5.57 (a)

- [ pa 2ATaE 3 rad(ys2) y .3 [,305,2) -
L{“ [ag-%:;%- I+ iAsy 14 o0 e 1}du dv dw , Step I(k=3)
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. [ 34 3(X¥)2) gy av dw Exercise 5.57 (b)
1 3% 3 (u,v,w)

JA
L 3% dx dy dz dm1(5}

Similarly mzfa 5) = dmz{S) 5 m3(3 5) = de(S} -

. w(@8) = dw(S) .

Remark: 1In the cases k = 2, 3 above you should give careful consideration

to the expressions given for [ A dx, I A dy dz respectively and convince
a8 38

yourself that they are correct. You may regard the boundary of I as the
union of intervals in Rl and Rz in each case the interval being the

domain of a parametrization of a segment of 35 .

Step III: (Plecewise Gz k-surfaces)

We have proved the Gauss-Green-Stokes Theorem for surfaces which
are smooth (1-1) images of intervals. The theorem also holds for
any object S which is a finite union of such images - the
common parts of their boundaries having opposite orientations so

that the contributions to w(®S) arising from these cancel each

other. e.g.

(1) v1(by) = v,(ay) S =85




- 323 -

w@ 8)

a (v, (by)) = wly,(a;)

m(vzibz}} - m{vziaz}] + m(Tlthl} - w(?l(al}}

w(@ 52] + w( 51}

dm(Sz} + dw(Sl} = dw(S)

’
()

(11)

Example 1: (Green's Theorem)
w = xzy dx - }rzx dy

dw = - (12 + yz}dx dy

x=rcons B, 0 <¢r

x = cos 6 ,
D1 s ab 3 B 2n
y=rain6 , 0 <8 i y = gin 8 ,

%

H
o
&

I

I A
™~
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2w

w@D) = I x’y dx - yox dy = - zf cos?® sinZ0 ae
aD 0
n 27
= -1 etn?20 @0 = -2 [ (1 - cos 40)d0 = -
? i 4 0 2

2l
dw(D) = —{ (1‘2 + szdx dy = —J [ r3 dr dg = - -;-

o 0-‘0
ll.'l wfﬂﬂ] -du{D} -
Example 2: (Stokes' Theorem)
w = xyzdx - xzy dy
dw = - 4xy dx dy
¥y
xX =19 BE
L y=v X
u2 ?2 u2 v2
z=1-GG+3) ,» (WWed= {(u,wv) : 5 +735 < 1}
a b a b
XE=™m geco8 Tt
AT & 0 <t <2m
v=bhgint ,

Zn
wRPE) = J xyzr.h: - xzy dy = -f {azbz cos t sin3t + azbz EDBS'I: gin t}dt

S 0
2n
--a?W:ZJ cos t sin t dt = 0O
0
dm{E}--Jﬁxydxdy--J#uvdudv-n

z D

o« w@I) = du(z) .
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You could also use, for example, the parameters (r,0) instead of (u,v)

where x = ar cos 6, y-hrainﬁ,z-l—rzﬂirjl, 0 <8 <2x .,

Example 3: (Gauss' Theorem) 4
w= (x + yzjdy dz

dw = dx dy dz

!

x=rgin¢ cos B, 0 <r <1,
K:{y=rsin¢ sin8 , 0 <¢ <m,
zZ=7Tcos ¢ s 0 <0 <2
X
f
x =gin ¢ cos O .
0 <¢ =<7,
3K : { y=sin ¢ cos 6 , D= {(6,6): 0 <¢ <7, 0 <8 <2m}
0 <6 <2m.
zZ = cos ¢
\
du(K) =3 7
wGK}'I {x+y2}dydz-{(x+yz}§-w%1’%ld¢dﬂ*

2% 2 2 2
= [ {I{ain ¢ cos 6 + sin"¢ sin"6)sin ¢ cos ¢ dé db

0 ]
2m m 2m

- f '{J Bin3¢ cnszﬁ dg}do = %—I cuszﬁ de = %‘ﬂ
0 0 4]

'dyp di' 4is consistent with
the positive orientatiomn of
the unit ball; '"do d¢'

would give negative

orientation.
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Exercises:
2 2 2
5.58: Let D be the hemispherical surface x" +y +2z =1, z >0 .
Verify that w@D) = dw(D) for the form w = xy dx + xzd}f .
5.59: Prove that [ {x2 + 2y)dx + (v - x)dy = - 13 where Yy 1s the
¥

oriented curve indicated.
Do this in two ways

- directly and by

Green's Theorem.

5.60: (a) Show that the content of & reglon D in E" to which the GGS

Theorem applies is given by

v (D) = w@D)
where: in Hl, w=x; in Rz, w = %{x dy - y dx);

in Ra,m-%{xdydz+ydzdx+zdxd}r}.

(b) Use (a) to find the area of the region bounded by the ellipse
x=acos B, y=bsiné, 0 <86 <2n.

(c) Find the area of the region bounded by the curve xEIB + }2!3 =] .

(d) Would any other forms w suffice in part (a)?

2+b1t You were asked in Exercise 3.22, page 133, to evaluate an integral
in two ways. Now do it by at least two more. Do Exercise 3.25,
page 134; if you didn't have the courage to do it before you may

find it a bit nicer now.

5.62: Let w = xz dx dy + xy dy dz + yz dz dx ; verify Gauss' Theorem
w@K) = du(K) where K is the positively oriented tetrahedron

{{x,y,2) 10 <x, ¥y, 8, L2x+y+z}.
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5.65:

5.66:
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Show that f {xz + 3y)dx + (y - 2x)dy = - 25 where y 1s the
oriented curve indicated in the diagram.
Do this in two ways

- directly and by

Green's Theorem .

Find a 1-form w for which du = (x2 + yzjdx dy and use this to
evaluate I (xz + yz}dx dy where D 4is the region inside the
D

square |x| + |y| = 4 and outside the circle x> + yz =1,

Let w and o be k- and {-forms respectively which are of class
Gl . Prove that if S 1is an oriented k + & + l-surface to which

the Gauss-Green-Stokes Theorem is applicable then
-1D* 6 d a(8) = v a@S) - (dv) a(s)

Where have you seen this before?

Prove Green's Theorem for a disc in Rz in two ways: first by
change of variable assuming Green's Theorem for an interval and
taking the limit as ¢ - 0 (diagram on the left) and second by
evaluating f %ﬁ-dx dy (or J %%-dx dy) directly by Fubini's

Theorem.
¥

r=1
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Vectors and vector operations in R3

B= (x, ¥, 2) 3
vectors In B, X € R scalar

5. (u, v, w)

ap = (Ax, Ay, Az)

pt+tg=(x+u, vy+v, z2+w)

If 1- {1, 0, 0), ‘.1- 0, 1, 0), E- (0, 0, 1) then
p=xil+y]+zk q=ul +v] + wk

Inner product (dot product):

def
p'q = xu+yv+ oy
T 1
= |p||q|cos ®
5
where |[p| = /pp ., |q] = Vg-q 0
i~y e i~ - — E'

cBs : prq < |p|/ql

Vector product (cross product):

ik
L
=

pxgq=|x y z|[=(yw=-2v)l+ (zu-xw)j+ (xv-yuk

p %

lp x q| = |p|lg|sin 8

prg=meqgwyp
Exercise:

5.67: Show that p-(p * q) = q-(p x q) =0 .

L e
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Differential operations:

Definition: A scalar field on a set D is a function f : D+ R .

Gradient:
Gl L
f:Ra—rR, fou Fix. 9, 2} 5 fel.‘.l
gradfdsf?f = ﬁi j:—~ 5—]1

Recall: (a) The directional derivative of f in the direction q = (u,v,w) is

h

[2E Of af TR
ax *ay *oz ax 3y 2z

<
|

-‘?fiq

() If |q] =1, Vv £-q 1is maximized by q = V £/|VE|

1

o

2f 9f of
d

x '3y '3z

i.e. V £ points in the

lf@-fm N S S
(By dz
direction of maximum rate of change of f (Exercise 4.22 p. 164).

(¢) The vector V f(x, y, 2) 18 normal to the level surface
f£(x, y, z) = ¢ for each (x, y, z) on the surface if |Vf| # 0.

Definition: A vector field on a set D is a function V : D =+ H3

i.e. V(x, v, 2) = (A(x, ¥y, 2), B(x, v, 2), C(x, ¥y, z))= AL + B] + Ck



For example:
(a)

(b)

(c)
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A mass distribution in space exerts a force F(x, y, z) on
a unit point mass at any point (x, y, 2z). E 1is a vector

field on H3 (gravitational field).
A system of differential equations

dx
it f(x, y, 2)

v=(f, g, h)

d
:.]"E = g(x, v, 2)

(x, ¥, 2)
% = h(x, ¥, 2)

This can be regarded as a velocity field or a tangent field.
Solving the system of equations with initial condition
(x(0), y(0), 2(0)) = (x_, ¥,» 2,) means finding a curve
y(t) = (x(£), y(t), z(t)) with v(0) = (x_, ¥, z,) such
that the tangent direction at any point y(t) is

(£(y(t)), gly(t)), hiy(£)))

If f = f(x, v, z) 1is a scalar field then

VE=|S=ddid b

e dx dy

of . OF , . 3fF
¢ |3

af s 25 s E-f—] is a vector field
ay ' 9z

{called a gradient field).

Addition, scalar multiplication, dot and cross products of
fields may be taken pointwise. We have considered the gradient
of scalar fields; there are also differential operations

defined on vector fields.
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Divergence and curl of a vector field:

3 3 3
R e 2. + Bj +
g b ol e M el S e
divvdifv-v- 13—+3—3—+k3— «(Ai + Bj + Ck)
T=lis5x sy 20z e
3A L 3B . 3C
5x Thy T3z
e S
def s
Cordy = TXX" |ox, 2y 92
diks Bt
ac 3B aA 90 3B _3A
ay "az|®t [Bz_ax)i-'-( 3% By)E

All of the algebraic and differential operations on vector fields are special

cases of the operations we have defined on forms.

Vectors and forms:

dx

;./ :)
\dy dz

dy dz
k

s C
\l&z dx \dx dy

A(x, ¥ z)

A(x, ¥, 2) Scalar field

\A{x, v, z)dx dy dz

/,,u = Adx+Bdy+C dz
E-ﬁ1+Bj+C§\ Vector field

vk = A dy dz + B dz dx + C dx dy
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w =Pdx+ Qdy + R dz

W="Pi+Q +Rk

. ~

\Jm*ndedz+dedx+Rdxdy

b

\'Am*-ﬁrdy&z+Adedx+ARdxdy

Aw=APdx+AQdy + AR dz

AW=APL+AQ +ARk

V'W = AP + BQ + CR ++ vu* = (AP + BQ + CR)dx dy d=z
VxW= (BR - CQ)1 vw = (BR - CQ)dy d=z
+ (CP - AR)] b + (CP - AR)dz dx
+ (AQ - BP)k + (AQ - BP)dx dy
- ol JA aA - 24 3A dA
R ol e B S 4%+ 55 dy + 55 dz
=24 3B aC =[2A aB 3C
b *By ¥ 2= ++ duk (x +El}r +M)dxdydz
VxVs= S 2R i gv =36 . 28 dy d=z
At e | Tl vy | 3y T Bt
3A _3C 3A _ 3C
o dz Bx]i " < +[ z dx 9z dx
3B _3A 3B _ 3A
% ﬁ'ay]E \ +( x Hylﬁde

If V=Ai+Bj+Ck is a force field and w = A dx + B dy + C dz then

w(y) = J Adx + B dy + C dz 1is the work done in moving a point mass along

Y
the curve y . If wk = A dy dz + B dz dx + C dx dy then

wk(5) = J A dy dz + B dz dx + C dx dy is the flux of the field across the
5
gurface 5. When V 1is the velocity field of a fluid this flux is the net

volume of liquid crossing the surface in unit time.
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Vector Formulations of Green's, Stokes' and Gauss' Theorems:

Green's Theorem: D is a "mice' oriented regiom in Rz

(Green's Theorem)

Explanation:

JA BB]
(—+—dxdy-J (A dy - B dx)
In“ i aD

i.e. dw(D) = w@D) where w=A dy - B dx .

B
Bx+—y

>
(=)

y=aL+B] , L=

y(t) = x"(0)L + y'"(£)] , n(t) = y' () - x'(0)]

p,(t) = a(e)/[n(e)| , de = |yg|de = [n]de

3

Stokes' Theorem: S5 1s a "nice' oriented surface in &

[y =]

V = !}n da = V-v., di¢ (Stokes' Theorem)
- = 58
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Explanation: duw(8) = w(@S) ,

dy dz dz dx dx dy
d g d
w=Adx+Bdy+Cdz , du= 5% 3y fe
A B c
.. 3 =
= AL + Bj + Ck Yy = | = 2 3
E % _:1 s -~ ~ a.x ar Bz
A B c

_2(y,z) 3 (z,x) 3 (x,y) ¢
d (u,\r'] ol = d 'I:'IJ.,‘F} ‘1‘ + ] {L‘l,."l?) ~ ¥ El E!iﬂl

=

da = |n| du dv

Gauss' Theorem: K 1is a "nice' oriented solid in H3 4

An
-

j' vy dua = I :{-El da (Gauss' Theorem)
K dK

Explanation: dw(K) = w(® K)

o
=
(==
o
la

42

:
|

mtﬁdydz+ﬂdzdx+ﬂdxdy,dm-( dx dy dz

L= R - E -
Htﬂr Y
+

&3 o =)
*-=||=| g
+

(= ] o
nin &

Y= AL +Bj+Ck. LY=
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Corollary 5.3.1: (Green's Identities)

If D 4is a region in 33 to which Gauss' Theorem is applicable

and ¢4 , ¢ are of class G1 on D then

{90-9¢ + V9 ¢}du, = f ] da
LJ 3 by 10

(Green's first identity)

2 2 g L 2 ay
(W - ¢V pldy, = f {w - B }da
L 3 Sy By any

(Green's second identity)
def 229 2% 2% . 2

where ¥y ‘= §.7 = div(grad ¢) =5+ 2+ 22 5 v® 45 called the
ax gy 3E

d
Laplacian and %ﬁ- 8t E¢-El (El : unit normal to 3D ).
1

The identities also hold in Rz for a region D to which Green's Theorem

is applicable with du3 s da replaced by duz » di respectively.
Proof: 1In Gauss' Theorem let V = ¢ V ¢

= - - ai
then E-nl AT o, ] 3n1

2
Vo(V¥¢) = V-V + yV7¢
so that the first identity follows. To obtain the second identity rewrite

the first with ¢ and ¢ interchanged; subtract from the first identity.

Applications:

The physical significance of div and curl: Let V be the velocity field
of a steady flow of fluid in space. Let K be a small closed ball in the

fluid. Gauss' Theorem states
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7+ Ydu -f V'p, da

The surface integral gives the net flow of fluid out of the ball per unit
time which is positive or negative depending on whether sources or sinks
predominate in the ball. Thus Y-V measures the 'density of sources’ (cf.

Exercise 5.72), A field V dis said to be 'source-free' if 7'V =10 .

Taking a small plane surface element S with normal pn in the

fluid Stokes' Theorem gives

Vv % V)n,da = Vv, di
5 a5

The integral on the right measures the 'circulation' of the fluid around
35 (i.e. around the direction n). v x E is the circulation density of
the flow i.e. its component in any direction measures the 'rotation' of
the field about that direction (cf. Exercise 5.72). If E ® E =0 the flow

is called "irrotatiomal' . A good discussion of the physical implications

of these theorems may be found in Courant 'Differential and Integral

Calculus' Vol II, Ch. V and Buck, Ch. 7.

Lemmz 5.3.1: Let I be & closed interval in F® and f a continuous

non-negative function on I. Then

!f-ﬂ—:sf(p}-ﬂ,'ﬂ'pEI.
1

Proof: Exercise 5.68: What can be said if we replace 'continuous' by

"integrable'?
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Corollary 5.3.2: Let D be an open subset of R3 (Rz} such that Gauss'

(Green's) Theorem is applicable to D . Show that if h e C(D) and

§ : 3D + B then there is at most one function ¢ ¢ GZ(D} such that

?2¢ =h, on D (Poisson's Equation)

and ¢(p) = 6(p) , p €e3dDd
Proof: Suppose ¢l and ¢2 are two such functions.
2
Let ¢ = = ¢, » V=V -V, =h-h=0

and ¥(p) = ¢,(p) = ¢,(p) = 6(p) -6(p) =0, ped D

N J [E¢|2 + J $?2w = [ ] %i (from Green's first identity)
D D 3 s |

=0 (p(p)) =0, 1f ped D)
o J ]vw12 = 0 (since ?2¢ = Q) => W= (Lemma 5.3.1)=» | = constant
D

=> ¢y =0 ((p) =0 , if pe 3 D)

i ¢1-¢2 {¢J-¢1-¢2} .

Exercises:

5.69: Show that a solution to Laplace's Equation ?2¢ = () cannot have

a strict interior relative extremum [suppose M = ¢(pa} > ¢(p)

for all p # g in a neighbourhood U of Py Let

D= {p: ¢(p) > M- ¢} ; find two solutions to ?2¢ = 0 such that
¢(p) =M - e, p ed D contradicting the preceding Example. Proofs
of this result not depending on Gauss' Theorem may be found in Buck

page 358 (Theorem 14) and Bartle page 271 (Exercise 21V).
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x = x{u,v)
5.70: Let © : ) define a coordinate system (u,v)

Ly = y(u,v)

system is orthogonal if E:‘J'TEI" = diag[hlz, !:12 ]

g i) Fake 38 2 i
5a Su fa aw |_h1 ¢
i.e =
ax ay dy ay 0 h 2
Ldv dv | |9u v | 8 )
(a) Show that
E'_':Elil-h h
3 (u,v) 1 32

x 23u 3y 23u’ 23v '3y 23w
hy hy hy h,
dx y by h, 3u av
. | 2
(b)
v YJ».
D *
e
% f—-'*
» u 3 X
2 9%  a? 2 3 20
If‘i'@'—%i'—g'a[ ??d:ﬂ}f-[ (a—liy-a—d!:}
ax” a3y~ Jp» gpa ©% 7
h h
'.[vzthlhzdudv-J {h—zgidv—h—l%du}
D <% Tl 2

D= [uo. u, + e] = [vo, v°+n]

The



Bt h RIS h
Mioe 130 238 1200
- j gl ==,V +n =% Ev(u,vnj]du + [ [h Bu(un+e SV} n ﬂ{uﬂv}]dv
U 2 2 e 1 1

Divide this equation by ¢ n and, using the Mean Value Theorems for derivatives

and integrals, show

h h
i B L
12 1 2
(c) If x=rcos B , y=1r 8in @ thenhl-l,hz-r and
rar ar 2 2
a8
(Compare Exercise 4.42 p. 195)
1 LR 2 2 2
5.71: (a) If x = x(u, v, w) gatisfles 0'0' = diag[hl - h2 i h3 ]

0@:{y=ylu v, w

g = z(u, v, ¥}

show that
ey [i{hz"‘au} a{alaw} 3 Mfase,,
‘1:11112113 Jdu hl au av 2 awv Jw h3 dw
2 2 2
2 a9 3@ 2%
where V= 2+ 2+ 2

(b) If x=rsein ¢ cos 8 , y=rsin ¢ sin b6 , 2z =1r cos ¢

((r, ¢, 8) are spherical polar coordinates) show

2

?2¢--]'—2%{r23%)+——21 %{ﬂin¢g‘%}+-——zlza—;

r ain ¢ rein ¢ ab
[hl-l,hz-r,h3-rsin¢~].
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() If x=1rcos 8, y=rsine, z=w ((r,0, w) are cylindrical

coordinates) show

[Deriving formulas like (b) directly by the chain rule is
guaranteed to give you a pain in the head because of the

complications in computing the second derivatives.]

5.72: (a) Let V be the velocity field of a fluid flowing parallel to the
x-axis with speed numerically equal to the distance from the

yz-plane. Show that Y'YV =1 and ¥ xV=0.

(b) Let ¥V be the velocity field of a rigid body rotating about the
direction k with angular velocity w . Show 7'V =0 and

gxy =20k .

Exact Differential forms:

Definition: A k-form w is exact in a region (open connected set) K if
there exists a Cl (k=1)-form o such that w = do .

For example w = A dx + B dy + C dz is exact if there is a

F e Cl such that af = A, i - B, of . c .
4x ay gz

Theorem 5.4: Let w be an exact differential k-form and ﬂl’ ﬂz oriented

k=-surfaces such that EII]l = :rl']]'2

applicable to Dl and D, . [Thus in a region in which w 1is exact w(D)

depends only on &D]

then m(l}l] = w{Dz} if the GGS Theorem is
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Proof: m{Dl) = dﬂ(D1] = GGDI} Dl
m(l'.‘lzl = dm{Dz} = u{al}z}
St m{Dl} = m{DE}
- T - 3 f
For example if w=Adx+ Bdy and —| f e C 35;-&,5-3
- Q
then w(y,) = £(Q) - £(P)
and  ulyy = £ - £() "2

P
Theorem 5.5: (a) A necessary condition that w(e ﬂ]') be exact in a regiomn

K 18 dw =20

*
(k) If w e Cl and dw =0 in a spherical region themn w
*
is exact in that region. [ This may be relaxed to any

simply connected region i.e. free of cavities.]

Proof of (a): w exact <=> w = do =>dw = d(da) = 0 (cf. Exercise 5.55)

Proof of (b):

l-forms in Rj: Given w = A dx + B dy + C dz and

ac _9B 24 _3C 3B _2A .

duw {By Bz}dydzd*{az Bx}dz d:|:+||',:EIx ay]dxdy 0
. 3C_9B 3A_3C 2B _2A
gy 9z ' Bz x ' 8x 3y

Consider (cf. Exercise 4.37, p. 193)

v z
f(x, y, 2) = th. ¥,» 2,04t + J B(x, t, z )dt + I c(x, y, t)dt
X v z
] (=] D
af

i Cl{x, v, %)
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=
3 . Bix, v, £.) + { 8c £x, %5 L) (Exercise 4.30, p. 175)
ay o z Y
o
2
B
= B(x, ¥, zﬂ} + Jz B {x, ¥, t)dt
o

= B(x, y, 2,) + B(x, ¥, 2) - B(x, y, 2)) = B(x, ¥, 2)

L=
H

o
kg

Al ]+Yu(ztz}dt+za£{xyt]dt
s ¥or %5 T R , 3% el

FG 8]

Z
d A A
53; (x, t, zﬂ}dt + fz 5;—{x, y, t)dt

o] 0

¥
Alx, y» 2,) + I
y

Alx, ¥y, 2,)) + Ax, ¥, z ) - A(x, ¥y, 2) + Alx, ¥, z) - Alx, y, z)

= Alx, ¥s Z)

2-forms in RE: Exercise 5.73:

1
[Verify that w = Ady dz + Bdzdx+Cdxdy, A, B, Ce C 1s

exact in a spherical region if

24 3B

h- = dx dy

+2% )ax dy dz = 0, cf. Buck, p. 433)] 0

Theerem 5.5.1: If K dis a (k+l) surface to which the GGS Theorem applies,

Kk = Slu{- Sz} and w d4is a Cl k-form such that dw = 0 throughout K

then w(51) = m{SZ) :

Proof:

y

0 = dw(K) = w@K) = w(s;) - w(s,) 0
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In particular if w = A dx + B dy and dA _ 2B
e
2

F° without cavities (simply connected) then m(Tl} = m(vz} for any two

throughout a region K in

plecewise smooth curves Ty o Ty in K with common endpoints. This is not
necessarily true if the region where dw = 0 is not simply connected even if

the condition fails at just a single point.

Exercises:

X

5.74: (a) Let w = dy- 52— dx; de=0 if (x, y) ¥ (0, 0).

x + yz xr +¥
Show w(y) = 2r if y 1s any counterclockwise oriented circle of

centre (0, 0) .

(b) Let vy[a, b] be a simple counterclockwise oriented closed curve
in B d.e. y(a) = y() and y(t) # v(t) 1f t), t) e(a, b) ;
Show that w(y) = 2n if the bounded region D enclosed by Y
contains (0, 0) and w(y) =0 if (0, 0) is in the complement

of D.

5.75: As a converse to Theorem 5.4 show that if D 4is a simply connected

reglion in F* and w is a le-form such that the value of w(K)

depends only on the boundary of K for every k-surface K in D

then w 1is exact in D .

To interpret the notion of exactness for vector fields consider the
force field F = Ai + Bj + Ck and the corresponding form « = A dx + B dy + C dz.
Recall that w is exact if there is a real valued Cl function (0-form) f
guch that w=df i1.e. F=7f (it is a gradient field with potential f).

A necessary and sufficient condition that F be a gradient field omn a simply
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connected region is dw =10 i.e. V X E =0 {z is irrotational) . Im
particular if F dis irrotational then w(y) depends only on the endpoints
of v 1.e. the work done in moving from a point P to a point Q is
independent of the path. Consider the velocity field V = Al + Bl + Ck and
the form w = A dy dz + B dz dx + C dx dy which 1s exact if w =da for
some l-form o di.e. V=9 x F for some vector field F (sucha ¥V is
called solenoidal). A necessary and sufficient condition that V be
golenoidal on a simply connected region is du =0 i.e. 7'V =0 (¥ 1is
source-free). For a source-free field V the flux across any surface §

depends only on 3S or equivalently the net flux across any closed surface

is zero (Gauss' Theorem).

Pfaffian Differential Equations (Optiomal):

Given a form w ,on what surfaces 5 is w(s) =0 1

Example 1: Solve w =0 if w=xdy +y dx .

dy = dx dy +dy dx=0 .'. w 1is exact

{.e. w=dF for some F

V. w(y) = dF(y) = F@y) = F(y(b)) - F(y(a)) =c-c =0 on any

segment y = y[a, b] of a curve F(x,y) =c

e Plx,y) = xy + cl(y] and F(x,y) = xy + czfx}

« o F(X,¥) = x¥

V.xy=c¢c solves ydx + xdy =0

I\
4
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Example 2: w = A dx + B dy + C dz

2 F 2 F 9F ' 4
If h-a, ay‘n*az'c and F < C' them w 0 on any

curve segment in the surface F(x, y, z) =g

Example 3: w = x dy - y dx
dy =dx dy - dy dx = 2 dx dy # 0

. W 1s not exact

But w=xdy - ydx =0

This is exact and has solution set

~

F(x,v) = log (‘E} = C
i.e. v = kx

;§~is called an integrating factor

In general a o-form (real function) ) is an integrating factor for a k-form

w (k>0) 4if Xuw is exact (A ¥ 0) .

iw exact <=> d(iw) = 0

"

<=> (di)w + A(dw) = 0

<=> (di)ow + A(dw)w =0
But ww =0 (verify this) and thus, if ) # 0, (dw)u =0 . The condition
(dw)w = 0 is a necessary condition for the existence of an integrating

factor A for w. It is also a sufficient condition under very general

circumstances (not considered here).
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Exercises:

5.76: Verify that if P, Q, R are cl then a necessary condition for

w=Pdx+ Qdy + R dz to have a nontrivial integrating factor is

P (2R 4 q (BB +r(FE-E) =0

iy ix 2= ix 9y
[Either check that this is the condition (dw)w = 0 or you may have

done it already as Exercise 4.36, p. 193.]

2

5.77: If = 2xy°dx + 3x’y'dy show that w(y,) = u(y,) for any two

piecewise smooth curves in the plane with common endpoints.

5.78: If w= {szy + 2xy)dx + GO b 2y)dy show that w 1is exact

tn B and $ind £ such that 4f = .

5:79: Prove that the following integrals are independent of the path of

integration and find their wvalues,

r(a,b)
(1) x dy + y dx
‘(0,0)
r(a!blc} 2 2 2
(i) (x" - yz)dx + (y° - zx)dy + (2" - xy)dz
4(0,0,0)

References for Chapter V

R. C. Buck: Advanced Calculus, Chapters 6, 7.
B. Courant: Differential and integral Calculus, Veol. 1II, Chapters IV, V.

H. Sagan: Advanced Calculus, Chapters 11, 12, 13.
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CHAFTER SIX

INFINITE SERIES AND IMPROPER INTEGRALS

INFINITE SERIES

Let a.kER, ;i PR (e

Definition:
(1) ) a, is said to be convergent ( a, € € ) and have sum
k=1 k=1
5 if
mS_—| =8
n>e
n
where §_= | a, - S is called a partial sum of the series.
- n -
(11) ] a  dis said to be divergent ( I a eD) if
k=1 k=1

lim §_ z| (1owa {s } divergent)
=

Example 1: What does it mean to say %*- B339 1

§ oL TR |
Y=1 o 2
% 3 3 1 1
gince § = —_ 2 = (1l4+=+ ... + )
n k=1 lﬂk 10 10 lﬂk-l
3 1 1
-2 1-2=)/a-55
10 lﬂn 10
1 1
==(1-—)
3 10™
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o n
Notice that | a =S <=>lim ] a =85 <> for each ¢>0,
k=1 n*e k=1
—| N ? 4f n> N then
15 a -l
o T
k’lak

Therefore, from Theorem 2.7 page 53, we have the following theorem.

Theorem 6.1 (Cauchy Criterion):

¥ a, € C<=> for each e>0,—| N3if m>n > N then
k=1
m

|k§n .akl <e (l.e. lsm—sn_1| <g ) 0

Example 2: § (-1)X ¢ D
k=1

For all n 1En+1 . Sn| Ian_l_l[ g7 F
S |
Example 3: E Eﬁﬂ
k=1
For all n Izlz'L 2| - E S N bR 5 2BL 2
Yon k n Wil In — 2n 2
Exercise:
6.1: o} =8, Y b =T and a, B € R then
o1 K =1 =

E {uak+ﬁbk} = S + BT .
k=1
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Theorem 6.2: ] & e C=>lima =0

k=1 e
Proof:
lim S =§ Mk & . -8
e n+e
i lim (Sn - Enrlj = §-858=10
n—)ﬂ:l
i.e. lim an = , since Sn - Sn—l i
T
Example 4:
1
E Ik 'lT,if Ix|<1
=0 P 8 izl >2
§ m14x+ ua +x"
n
1
xﬂn = x + x2 o sae F xn+
n+l
= ,
(1 x}Sn = X
nt+l
- l-x
Sn e L R
bR
-— 1
| =50 felis
T S
> l“ZI ’tx]}l
Example 5: [ ot
p k
E {(=1)" ¢ D gince § =
k=1
o .
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Example 6:
= 1
I -l
1ei  ECEHD
1 ol Mg B
ki{k+l) k k+1
n
1 A 1) 1
BT L Y SRR e Yy )
- B O | 1 1
=(1-2+2—3+3+ 2 u+l}
1
(1= n+l
FOPEREY. |  |
n-e
Remarks: (i) 1im a_=0 + ) e
e O k-lak
e
sigs ) =eD
=
(1) lim a_#0 =» ) €D
e O k=1 “
(1.e. if either 1lim a zl or —| #0 then } a €D)
nr B k=1

Series of positive terms:

Theorem 6.3: If a >0, k=1,2, ..., then ] a e Cc=> { ! a }is
k=1 k=1

a bounded sequence.

Proof: Theorem 2.6 page 50. § ., =8 +a ., >8 . .% {Sn} increasing

so it is convergent if and only if it is bounded.
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Corollary 6.3.1 (Comparison Test, important) :

If D:akjbk, k=1, 2, «+.y5 then
4y - 3 el =») b, €D
k=1 " k=1 k

(1) J b, eC =} e C
k=1 * oy X

n n
Proof of (1): 1Let S_= ] MR R TR
L %k s k n n
E a, ¢ D => {Sn} unbounded
k=1
-> {Tn} unbounded
=> E bk e D. O
k=1
Proof of (ii): Exercise 6.2 .
Corollary 6.3.2 (Comparison Test):
I a 20, B >0 k=1, 2 . sd Us }-L,n <L <,
k= Tk
then
¥ el zmy» ) b €€
el K .
L
Proof: For all sufficiently large k 0 <3 bk <a < 2L bk . O

Exercise:

6.3: Show that "<= " holds but not necessarily " =" if L =0 .



.

= 2

ot 1 : 1 k
le: Wehave seen ) =——~¢eC .. )} ~—5 e Ceince lim -m-=s =1
o jei FUSER k=1 Kk ke RORHD)
Corollary 6.3.3 (Ratio Comparison Test):
a b
It a >0, b >0 asnd 2L o B iy, K, then
n n a8 —' B
n n
Gy % eD=>) b €D
w1 * k=1
(1) J b e Cm } g £
ey * k=1 K
Proof:
a b
““'1.‘;“&1, g8 b >80 ; a=H
a = % n n
n n
a a
n+l n
®n
i.e. {F_ } decreasing =n > N
n

Corollary 6.3.4 (Ratio Test): a > D L ool ol s

W 1¢ 2L <x<1, ¥n>N, them | a e
B k=1
an_*']_ o

(i1) 1If >»x2>1, ¥Ya>:Hu, then Iakeﬂ

& k=1
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e
Proof: Choose hn = x.n 5 i 3 =

Y C,iflx[-cj..
and ] b, €
k=1

o AN I

Corollary 6.3.5 (Ratio Test): . * '« [ T T [

(i} 0D =¢ €1 m=m> E A € c
o n
n=1

(11) c > 1 = z a eb
b
n=1

(i11) e=1 => T (Test fails)

Examples:
aa a
6 <o L sk i—!eff since —% "hni_]_"ﬂ
k=1 n
o a
LT | 2} kKl e since Lo
k=1 n
-} a 2
ce=1 :E 1—250 and En-l*l_ nz
k=1 k n {(n+1)
o a
1 o+l n
but E X e D and = g -
k=1 n
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Corollary 6.3.6 (Root Test): aniﬂ oo oLy DL e

1/n

(1) If a s 3o S ot T then E e C
n k-lak

e

Unizil, Yn>N then ) H.kﬁﬂ
k=1

(1) I .

In particular, 1if 1lim anl"n = ¢ , then

e

o

(1) 0 <e <1 = J a €C

k=1
(i1) e>1 =7 E e D
k=1 k
(111) e= 1 => 7

Proof: Exercise 6.4 .

Exercises:
® - T V2
6.51 Sshow (1) } 'Tifi' % 52 OERYS 52 & ME N
k=1 7 k=1 :"zk-l V2 - 1
® k-1
=1 & —_— 68
(1ii) kgl ( A ) 5 (iv) 0.612612612... 111
6.6: Show that each of the following is divergent:
L=} k Real
)y ok [y Ok
gy H k=1 V&
2 3 .k e 1
ey §F oc5) () 3 e
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6.7 Show
"’ k v 1 1
(1) 1 ‘mmar el {0 3 e =3
ey (D! oy @D k) 2
7oLeDt 1
L Gt T 5k
T k
6.8: Show | kx = 7o 4f |x|] <1
k=1 (1-x)

Theorem 6.4 (Integral Test): Suppose £ 1is continuous nonincreasing and

positive on [1,=) then

I £00) EC<->rfE[
1

k=1

def T
[where rf s lim J £ ]
1

i T
Proof: f(k) > £(x) > f(k+l)
K+l
2 LY E j £ > f(k+l) .1
k
n 1 n o+l
BT G 1r+f1 ] f(ktl) = § £(K)
k=1 1 k=1 k=2
nt+l
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Example:

o

nD,1ifp=<1

2,1 p>1

-

p <0: D since 1—p—f'-|-l3 (n + =)

n
1
p>0: — 1s decreasing
[ 3 .1
e (T e D, pHl
T ~P
1 =
log T s p=1
f
P_i'ivF""l
i.ll r'l_ dx-{
lxp ﬁ
» P <1
L

In the limit form of the Ratio Test (Corollary 6.3.5) the following sometimes

a
works in the critical case lim ntl
me n

=1

Corollary 6.4.1 (Raabe's Test): a 20, n=1, 2, ... .

a
ntl Py

(1) If < s Yn>N and p>1 then i a €C.
®a . k=1
a
o1 P VYn>N and p <1 them |} €D .
(44) 1f a Epez, & %

We shall need the observation that if p > 1 and n > 0 then

(1-1} <(1-—l}g . This follows from the fact that if 0 <x <1
n n
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1-x° = {1—x]pnP-1 , X =<¢ <1 (MVTh)

< (1-x)p

. N D - o !
. 1= (res) = tie. 1-2c(1-3)

pFERE el

Proof of (1): Choose bn =
(n-1)° k=2

b P
e ot GRS (R _R
b P v :1:l 3 n —

n n

and

3 S
Proof of (ii): Choose bn = E hn £ D

k=2
and bn+1 a-1 1-l < 1—1 (p < 1)
b n = n P
a o
ntl
< =5 E e D
& k=1 *
Exercise:
6.9 Show that if
A+l f Rk
2 1l ====—
a g n 2
n n

L]
for any A and all n>N then | a €D
k=1

b
[Consider ‘un+1 where bn = ﬁf y 3 bk el F
n
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Example 1:

We have already seen that |
k=1

gum is 1. However the Ratio Test fails here:

k_:k‘_izﬁ € C by showing that its

4nt1 n(n+l) n

a_ = Tot+l) (n+2)  n+2

+ 1 (Critical Case)

n>6 ,

= e A = 3
LS n+2 - 2 — dn *

[ 1]
- ] a, € C by Raabe's Test .
k=1

2
Alternatively: = =1 - = + Rzin]
n 1 +-E

£ 1= %E » 1f n 1s sufficiently large,

since }R {n}| v K (Taylor's Theorem) 2 > 1 => E a.k € C by Raabe's Test
2 i 1.12 2 k=1

Example 2:

¢ a(atl) ... (a+k) b(b+l) ... (b+k) B
kzl (k+1)! c(c+l) e (ct+k) (c # -n)

(¢

s EE ¢ % &+

D, 8f c<a+bd

a+l b+l
a4l _  (atntl) (bimtl) | (1 # <5 £700 3
a (r+2) (cintl) a+ "213[] 1+ c_:l}

go the Ratio Test fails .
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a
BEE o atl b+l 2,-1 etl. -1
we B oo« BhomiEpa 305
ath+2 1 2 1 c+l 1
-a+2 20 (Lpa-2+0(Hna-Sro (5
n n n
-I_Mi .q..g(l_]
n a2

where 0 ( li-] denotes an expression R(m) such that |R(n) | :EEE' for all
n n

large n .

g

¢ 1f 1 4+c-a-b>1

D if 1+c-a-b <1

: T

Note: In the case 1+c-a-b =1 you need Exercise 6.9. s

Dy 1Ep <2

L

ntl 2041 P O DL
a Spiz? = {1+ Zn) (L +1 (Ratio Test fails)

ntl 1 1
2l o a+B ro(HGna-E +0(5N
n n n

TR >
1 2“+-:JI( 2]

o
Jﬂ,if%:»l

o A a €4
k=1 | P



Example 4:
Lxample & o Sk
E e D
oy (kD)
W o el PRGN O 2L
a_ (n+1) (n¥2) o0 i
s ik e D (Ratio Test) .
k=1 &
Example 5:
2 TR, g 0 since
k=1 25 ()
u k
0s—t— <Laa § (3) o
2 'n(n+l) 2 k=1
1 1 ¥ 1
or 0cx S sl N8 - - IR
= 2%n(ae1) ~ POHD gup L)
fntl n 1
B A T2y TR S A
Exercises:
S a /N R ¢
6.10: Show J] —F— ~fie
k=2 k(log k) Cisp> 1
6.11: Show
“f 3k+2 E —3k
(1) €C, il S
L 36 .. o) k=1 5%kl

v (2642)]3

(%]
s | =

=

, 3 =
1.3 ... (2k+1)
(1i) el ol
kEIJ {2.4 (Zk-,I-Z}] Ir.Eﬂ [

< (@) | s
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2 o 100
w | - ep, o ] E—ec.
k=0 1+k k-ﬂ
1 i 1 1 1
6.12 (Euler's constant): Show v = lim [1 +~§ + §-+ +es + = - log n] exists
n+e »
1 1
[1f e, 1+2+...+n—1ngn 5 cnicnﬂ.}ﬂ]
6.13: Show
T 1 1 pt 1 1
() 1 = e, (11) ] ermmae =2
k=0 (otk) (at+k+1) a k=1 k(k+1) (k+2) 4
6.14: A sequence of real numbers '{an} is said to be of bounded variation

=]

(BV) if kzl la g = a] ¢ €

(i) Show that {an]- e BV a"E*{ﬂn} is bounded.
(1) Show that {an} € BV ">{an} is convergent.
(111) A bounded increasing sequence is of bounded variatiom.
(iv) The sum of a bounded increasing sequence and a bounded decreasing

sequence is of bounded variationm.

(v) A sequence of bounded variation is the sum of a bounded increasing

sequence and a bounded decreasing sequence

1 n-1 1 n-1
tSouetder T {an % kE11ak+1 ¥ alcl:"ﬁ" L l:Eln - kzl|ak+l s akl} 1.

6.15: Let a =0 .,
n =
qn+1
(i) If p>0 and = 24 —E for all sufficiently large n then
n

1im a =0 .
n

T
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41
a

n

(11) If p <0 and

] = -E for all sufficiently large n

then {a } is divergent (in fact 1lim a_ = = ).
n © e n

(i1i) Parts (i), (ii) may sometimes resolve the critical case (c) of the
Ratio Test for sequences (Exercise 2.10 p. 48).

1.3 ... (2u¥l)

If &= show 1im a_=0. Is | convergent?
B 2.4 ... (2nF2) & n k=1 "
. y w3 e 3 1
6.16: If a >0 then kgl a €C >kzl B k'eC if p>75 . Glves

counterexample for the case p = % 4

Absolute convergence and conditional convergence:

We shall no longer assume a 2 0.

Definition: E ay is absolutely convergent ( E & € Abs C)
k=1 k=1

1f } |a,| is convergent .
k=1 K

Theorem 6.5: | € Abs C => ] eC
k=1 & k=1 K

Proof: ) cemsc= ] |a|lecC
e K or

n
=>VYe>0,—|N i mun>Nthen ] |a]| <¢
k=m

m o
=> if m,n > N then |E |_<E| [ree
: k-nak k-mak

A e haly 8, € ¢ (Cauchy Criterionm).
k=1
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Examples:

1. Jxfeapsc 1f |x|] <1

k=0
Yok R 1
since Y |x | = ] |x|" = if |x| <1.
k=0 k=0 i 2
w _1]-;
. T -(—-Z—J——nglbsﬁ'
k=0 k

o k
3. E L:%l— ¢/ Abs C . However we will see that it is convergent.
k=0

gin k

Pt (R 4.

e dbs C .

Tests for nonabsolute convergence:

Lemma 6.6.1 (Abel's Lemma):

m m
kE W " "Vl Yol "% n T L Viers (epn — %)
=1 k=n
This is a summation by parts formula.
Proof:
) I 1
(v -v.) = v - .
" _n“k 2 A k_n“k k+1 m“k k
) 5
=1 v -n v ¥ "W - v
m+l "m+l ~ "n 'm k_ﬂ“‘k - T nﬂ“k k
1 1
= 1u v -u v + E v = v
w1l ml  nm n k#nuk K+l k_n“kﬂ k1l

m

“mtl Ywtl T "n Vn T k.z_n"ml':“kﬂ =y
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Theorem 6.6 (Dirichlet's Test): Suppose

n
4y 1 ) b, } is a bounded sequence,
k=1

(1i) limﬂn-D and Z]aHl-ﬁtlsﬂ.
- k=1

then ) a b e C.
T e

[(i1) holds in particular if '{an} is monotone and lim & 0]
n-+

Remark: A sequence {an} for which §1|ak+1 - &k} € C is said to be of

ki

bounded variation (BV). In particular a monotone convergent sequence is of

bounded variation. A sequence is of bounded variation if and only if it is

the difference of two monotone increasing sequences (cf. Exercise 6.14).

n
Proof of Theorem 6.6: Let § = Eh 3 (1) =>|8 | <B, Vn .
n k -
k=1
) )
b, = S
g TE TR SR T TR

m

= § 5 =-=a § - 8 - a )
w1l °m - %n “n-1 kzn e+l T %

1D byl s lagy |8 e s 43 RN R

Since lim & - 0 and 321151‘*1 = %l ey, 1fig >0, then

m
| <= |a“1 <?Ei~ andkzuhk_'_l-akl <§-Ej- if m and =n are large
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m, n >N for some N.

m

| 1

k=n

e *
akhk[ <3 53 }n. e if m,n >N (by ) .

.". Cauchy criterion => | Bl .
2 &R

. K
Example: ) -{-'-%Lec
k=1

1 k
Let B "% hk (-1)

o -1, nodd
I b = is bounded
k=1 0
s D even

(ii) a_ + 0 {an decreases to 0)

oo k
I i:%l_ € L.

k=1

Corollary 6.6.1 (Abel's Test): Suppose

(1)

L b el

(i1) 1.21[&“‘“1 - akl 8

Then

Eabeﬁ'.
e

[(i1) holds in particular if {an] is monotone and bounded.]
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Proof of Corollary 6.6.1: A direct proof may be given based on Abel's Lemma.
The following shows it is implied by Dirichlet's Test. Let Ak e =

where a = lim a which exists by Exercise 6.14.
T

n
1) ] b e C =>{ ) b} is bounded.
k=1 k=1

(11) E|3k_‘_1-ak[-z_1[am1-ak| €C and lim A =0

k=1 n-w

[ -]
) A b e C by Dirichlet's Test .
k=1

if.e. ) (a, - a)b, € C
o k

I W s ab gl
k=1 * k=1 X

=> ) [(a, -a)b, +ab]eC
i k k

f.a . LAl s & 0
oy kK

Corollary 6.6.2 (Leibniz alternating series test):

= k
a, + 0 => kzlf'*l] a € (i

Proof:
-1 n odd

n
W b = D¥, ] DF-
k=1

0 n even

n
. { ] b} bounded
k=1
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(i1) a 0

so the result follows from Dirichlet's Test.

Examples:
@ k
(-1) 1
(1) kEz s & e C since g + 0
b
- ¢ Abs C (Why?)
log k
k=2
- k £ i<m> p >
(2) E i:ll, €
k=1 kP

Abs C<=> p > 1

(3) Ec-n”ﬂﬁ—“ec, 2abe O .

le=1
1 1 1 1 1 1
(4) 1l-"=4S="m+FT= s0e =—5+=- e D
22 2 32 3 n2 n
1 L. d. i
Szn (1+2+ ..+)—{2+..+2
2 n
and 1m{1+%+...+l}-w, T SRR S -
n 2 2
o e 2 n

What condition of Leibniz's Test fails to hold here?

i Dy 2= 2 mwy
(5) E Mﬁ

k
k=1 €, x#2mn

(1) hk = cos kx
n n
I b = } cos kx =

k=l ¥ gkm=1 9 gin -;'— x

1 1
gin(n + 2}1 - gin 5 X
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since Eain%xnﬂskx-sin {k+-]2=)x—sin {k-%}x

n

n
. 2einix Jeoske= | sin(k+Px - sink - Dx
k=1 k=1
= gin(n + %}x = gin %~x
n
Thus ) b, is bounded if x # 2 m w .
k=1 &

(11) “k"i]i*“

. "+ Dirichlet's Test => E co: kex el xd2aTw .
k=1

Exercise:
6.17: A

k=1

1 1 1
[2 sin 7 X sin kx = cos(k - E]x - cos(k + Eh] L
@ k k
(-1) k

Example 6: —_— .

k=1 (k+1)

k k
k k 1 1
0. .= = ( ) = + 0
(k_l_l}k-l-l k+1 k+1 I+l
Is the sequence monotone?
n -n
n 1 1
a =—P—— = (145) —=
n (n+1}n+1 n n+l

S e o ana s et a By ™ k. g
Hw{l+;} e (Example 3, p. ] . s .
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Exercises:
6.18: In each case discuss whether | a, 1is convergent where
k=2
the expression given
sin nx _aalt 2.4 ... (2n+2)
(1) Vi () =3 1.3 ose (2mF1)
3
= n 1-3 - w {znﬂl (n!}
(1) L 5 T (2nt2) (v Gai
2
l+n+n 1
) n! (¥1) 1/n
n
6.19: Show
& 2 dbs € 4, =1 <x <1,
W J (fdeeZely T kel o, x=-1,
-k-l - e 2
propdel o] or e
=« 100 k
%55 S k Hz cdbe L , a1l x
k=0
Abs £, |x] <1
a0 ‘Kk
(iid) 7 € 3 g 4 x= =1
k=2 (log k)
[ AN ) NN TS R R
abs € , |x] <1
= k x2k+1
(iv) |} (-1) e 0 o, z=+1
k=1 2k+1
BRI o B |
. . L x o<1,
oI n+1x e e
n=0 (l1-x )(1-x ) 1
7 » Iz}l =1..
x(1-x)

is



(vi)

6.20:

6.21:

(1)

(i1)

(i11)

(iv)

[(1)

(i1)
(iii)

(iv)
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. 1 o+l
[Show § "T(—_"‘_XT.‘-FZ"} » X¥+1]
n I1-x " l-x St

Abs C , x2 _j;—? 5
7 L2kt2) k) ... (Ierl) 5 ikl
k=1 k! 2k+1

D xz > "L' .
i 27

Suppose a + 0; show 0 < E {—ljk a, <a - Deduce that the

k=0
error made in truncating an alternating series of decreasing terms

is not greater than the absolute value of the first term neglected.

Prove that
;A TR (L ) =
1-2+3"’4+5!t! 1ﬂgz
: s S Syl S SRR B 9
1+3—2+5+?-4+9.. log 2
: [ T s o L e
e Tal ke wal R Tl T Oy
! S SRR D R A RN AN e
1+3 2% B+5+? T zlng?.
From 6.20 deduce |S {!}_L <|x*,0 <x <1
i n 1+x' — 7
n
and hence |Tn(x} - log(l + x)| j!i—[ » U =% <1
=
S{x)"l—x+xz+...+{-1)““1::n'1, T[x}t[ 5
n n o ®

Two positive terms followed by one negative.
One positive term followed by four negative.

Two positive terms followed by four negative.]
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6.22: (i) Show that

 ripn: grige: Jugey SIS i Capi

= +
2 /3 /& 5

a1 I

is convergent.
(ii) Show that

AL

3 |
Sl =
3 |-
3w
= |-

is divergent.

6.23: (i) Show that the sum of an absolutely convergent series is not altered

2]
by rearranging the terms e.g. if ) ]akl is convergent then
k=1

az +'E¢ + al + aﬁ + aﬂ b o alﬂ + 33 . PP

i al + az + aa + aﬂ +-35 G o aﬁ + E? F e

(ii) A non-absolutely convergent series may be given any sum and may even
be made to diverge simply by rearranging the terms. For this reason
a serles which is convergent but not absolutely convergent is called

conditionally convergent.

6.24: Show that, if m# 0
n=1
r%i%+ 8 *"'*—z‘i—ziJ ey
Om +x m m +1 m + (n-1) 0 m +x
and deduce that
lim'{n_+_n_+.__+__._.E_-_-_—]--1—T~
n+® n2 1+ nz (n—l}2 + n2 4
6.25: Show
(1) 1is{ n’ + LA +—'£}-1
n+= 1 + nﬁ zﬁ + n4 EﬂlfF 8
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(15) 1n (2 Toat +2) % 10gC1 +2) 4 ... + log 2)= 2 1og 2/=1
s B n 0"
U] Ikl
(111) lim ={ o 1 - —
pro O -
Ay s el s B e el et
n n L n E—l
==
@ 2t k
6.26:  Prove thet —-—L-?q— ta ) ASe €, p> 1, wily
k=1 (log k)@ kP
(1) ¢ ,p>0, allgq (111) D , p <0 , all g
(iv) ¢ , p=0, q>0 (v) Drp=0, 9 <0.
6.27: Let U = } u ,» V= ! v, be absolutely convergent and
k=1 k=1
n ]
. . I U Vo b show that E Wy is absolutely convergent and
k=1 k=1
has sum UV .
[It has been shown that ( ) u ) ) Y- ¥ w, 1f all three
k=1 k=1 k=1
series are convergent (Abel) and further it has also been shown
that £f } u is convergent and | v, 1s absolutely convergent
then | w, is convergent and ( ) u, )( LW )= L w, (Mertens)]
k=1 k=1 k=1 k=1
6.28: Show
@ (] B ] endH= ] RO D g x| <1,

k=0 k=0 k=0
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(ii) (E(_nk i }(E _’.‘.k-Ll}. qf {1_l+l_ +_1_]2‘3£
oW 2 »
k=0 k+1 k=0 k+l k=1 e 2k=1 " k
i =l =% .
6.29: Show |} <+ log(l+ <) e( .
k=1 k k
6.30; Discuss the convergence or otherwise of
ot 1
W ] @43+ epsinix
k=1
. k
(11) )} %l - VYR (-1) ,
k=1
(111) ] (/k+L - /k)cos kx .
k=1
@ ‘hk :
(dv) 1} = b )= 2, =3,:2, 41, 2, -3, 2, -1, ...}
n
k=1
6.31: Suppose a_  1is decreasing and I ay is convergent then
b k=1
limna =0 .
koo i
6.32: (Cauchy Condensation Test) (i) If a iz decreasing then

o o 'k
) eC <n>) 2 8,k e
k=1 ﬁ( k=1 2

(i1) Use (1) to show ) Loep t8p>1,eD i 5 <l
k=1 kP

(iii) Use (i) to investigate the convergence of

1 1
k=2 k(log )P = k=2 k(log k)(log log k)P

I LI S i

B p <1 -
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{iv) What other test could have been used in (ii), (iii) ?
6.33: Prove or disprove
(1) nfﬂ.keﬂ'.ﬂ ‘-*D-:'E(akak_ﬂ);ieﬂ',
k=1 ” k=1
oo ;i A ao
(11) kgl(akabl_l}eﬂ',an{rﬂ‘;iak&ﬂ'.

k=1

6.34: 9 a, € Abs C then E nkz. ) ' (a, ¢ -1) ,
k=1

k=1 e B
= 2
and | Lz € Abs C .
k=1 1 + n.k
o o ﬂk Ll ak
6.35: (1) Prove a > 0 , E ED-P‘Z-—-—ED, E-ED and
B g E o i ksl g
L] ak n
] —, e€C where S_= } .
k=1 sk2 S x
{i1) Prove a > 0 , §a.k££'->df 1:k :C,E ';""ED and
i k=1 k=1 "~k k=1 "k

—— & wherer. = | a .

=1 /i K pen

6.36: (1) If a_ >0 and ) €D then—| w +0 32 J e D.
n L% n M

(11) 1If an>ﬂ and kzﬂ&keﬁ-‘ then:_*] . 3k§nwkaka:£‘.

[This means there exists no 'best' comparison test for convergence or

divergence. ]
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6.37: Test for convergence or divergence
1 (log k)ilng k , ) (log log k]-lng log k
k=2 k=3
6.38: We know ) %- += . Show | % <90, where S is the set of
k=1 keS

natural numbers not containing the digit 0 in their decimal

representation e.g. 25 € 5, 203 ¢ S .

6.39: D ¢ =75 [|la]] € C? [a, 1] ?
Y kgl & kzl o[ « 1£1| %]

[x] 1s the greatest integer not exceeding x .

e n 1

1
———— = » , How large must n be to ensure ) ——— > 10 ?.
k=2 K log k jp k log k
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IMPROFER INTEGRALS

Definition: We define

b= T b b
Pewsin [, emsim [
a T+b- ‘& at T+a+ ‘T

T a a
(e vubifen b o T
a T+= ‘a -0 To=w 4T

whenever these limits exist.

An improper integral is called comvergent (e ) if it exists and divergent

(e D) otherwise.

Examples:
1 2 1 :
(1) —Hdt-Z,uince[ —:dt-Z(l—ﬁ},T>ﬁ.
o+ vt T /t
(2) %dteﬂ,aince r%dt-lng(%} e
S0+ T
1 1 1
(3) log £t dt = =1 , since J log t dt = (t log t - t)
0+ T T
==1+T1log T=-T, T G .
=1l/a , a > 0
(4) re'“t at ¢ ,  since
0
el o <0
T 5 a&=0
T
J e_ut dt =
4]

l%{l-e_ﬂ],aiﬂ.
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Exercise: B $5nie iy

6.41: Show J t? dt e ] j tf dt e g
1

Show J tPdteD, Yp.
ﬂ+

T
Theorem 6.7 (Cauchy Criterion): Suppose J’ ¥ :1 Y.T.> 0
0

2
then rffﬂ‘ <=>for each € > 0 =] T > if T, 2T, 2T then 1[ £l <e
0 T

Exercise:
b

6.42: Write down the Cauchy Criterion for the convergence of J f
at+

Theorem 6.8 (Comparison Test):

T T
Suppose 0 < f(t) < g(t) and Jf " [gj VT>a then
a

a
@) rfea->fseﬂ.
a a

o

(11) JEEE*}erﬁ'.
a a

A similar test applies to any Improper integral.

T T
Proof: O x I o j’ g and both integrals are increasing functions of T.
a a

Examples:

(1) (Gamma function)

A
r(p) = j TP g0 4 P 0

ﬂ+
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1

r Pa N o [ ot P L g 4 rE-t Pt g
0+ o+ i

0 st ot il ek s oY [ t?lae =2, p>o
o+ P

0 < ot -1 < e TP, D o JERE -

M s R

and r{:e‘kdt-zi‘.e_k,#p.
1

(2) rmdxeﬂ
1

Exercise:

6.43: Show

(1) r(p+l) = p r(p) [Integrate by parts]
(11) ri{otl) =n! n=0, 1, 2, ... [Show I'(l) =1, use (i)]

(1d1) r g 5 tp_l dt - e Plp) 4 a >0, p>0
o+ aPf

CONBIE SENCEIE PIEE PO e SIS~ ¥
= e = % d4x
[F{E}-Je t dt-zJe
0+ 0
" 2 oy 2
Pl Ff%llz-#{re"x dx}(J e’ dy)
0 0
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9 R _2 B o2
Consider IR = {l e dx}{f e’ dy)
0

From this deduce

n/2 (R __2 w/2 /2R _ 2
J [ e’ rdrde < IRE.E J JJ e’ rdr d8
0 0 0 0

2

R 2

i o e Tl

8.2 =

. m .
T (1L - e

&=

and hence F{-% ]2 =T .

(v) Given that T(x) 4is known 1 <x <2 the relation (i) defines
I'(x) elsewhere even for negative =x # 0, -1, -2, ... . Use this

to sketch the graph of I'(x) . Check your work with Buck, p. 215.

Definition: rf e Abs C 1f J o I
0 0

Theorem 6.9: l £f £ 4dba C = [mf e C
i}

0
T2 T2
Proof: |[ £] < I |£] , wuse Cauchy Criterion. 0
T1 Tl
Exercises:
6. 44: 5 1 . ) Cl[ﬂ,w] and I |£'| € ¢ then show 1lim £(t) =] . Such a
o oo

function is said to be of Bounded Variation (BV). You will encounter

a slightly more general definition of BV din Math. 442 which is

equivalent to f being the sum of two bounded increasing functions.
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Lemma 6.10.1 (Integration by parts formula): BSuppose

t
and G(t) = [ g ; then
0

t t

2 2 2
Ifg-fG' —JE'G
t t t

i 1 1

i cl[u,m), gE ﬂ[ﬂ,w-

Theorem 6.10 (Dirichlet Test): f ¢ Cl[{],W} y geCl0,=)

t
If (1) ifs]js, Y>>0,
0

(i1) [ |£'] e ¢ and 1lim £(t) = 0
0 e

o
then [EEEC.
0

[(i1) holds in particular if f is increasing or decreasing and has

limit 0 ].
Proof :
ty t
|J fgl=|f G(t,) - £ 6(t;) - J
tl tl

£y

f'ﬁl.stt}-Jg

t

0

el +leepl + [ e s,y @
t

1

|m

=<{

E
B 38 3B

w

provided tys tz are sufficiently large.

Example: r“—if:'—is c
1

1

§ =i Jy e, by (1),

T
(1) |[sintdt|-]1-cns'r|_f-2 (1) = +0 as t+ =
1

t
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Exercises:
6.45: Show J Sint 4 4 4bs C
1
6. 463 St rsin{tz}dt 5 Q. rcos{et}dt -,
0 0
! (ave ¢, p > 1
6.47 Shmrf ii“—pte g . pad
1 . b , px0

Corollary 6.10.1 (Abel's Test): £ e C'[0,=) , g¢C[0,%)

Suppose (1) J & gl .,
0

(11) r|f'| .
0

Then rfgeﬂ‘
1]

[(i1) holds in particular if f 1is increasing or decreasing and bounded.]

Proof: Exercise 6.48

Exercises:

6.49: Prove the following
1 -

dx x
(i) J e (11) f —_—C,
0+ (xtx2)? 0+ (x-x2)7
2 x dx 1 log x
(111) J SeD (iv) J LEEgrelC ,

0 lsx 0+ Vx
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o P
{v][ X dx e Abs ¢ (q-p>1; €D (q-p <1y,
1 14x9

aa P g
(vi) [ Ei_l{x_ldxgcm,n} but ¢4bs C ; €D (p=0); ¢ AbsC (p <0).
1

q

(vii) J wdxeﬂhsﬂ' (a>1; «D (g <1).
1 X

6.50: If £ d1s uniformly continuous on [0,=) show that J felC=1lim £f(t) =0
0

too

Show that this does not necessarily hold if 'uniformly' is omitted.
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UNIFORM CONVERGENCE

Suppose lim fn{x) = f(x) , a <% <b . Under what circumstances
n—'hﬂ

b b
does ftl e C{a,b)=>f ¢ C(a,b) , lim [ fn = [ £ 5y Hm fn" = f' ; equivalently
n+ ‘a a o

=] @ rh b
does ) u (x) = u(x) imply u € C(a,b) if e Cla,b), ) I = j e ;
= k-ﬂuk & k=0 auk a
) uk' = u' ? The same questions for improper integrals:
k=0

If rf(x,t]&t = F(x) does f(x,t) continuous in x=>F continuous, is
0

° b b (e b ;
r{J f(x,t)dx}dt = I {f f(x,t)dtldx = [ F , ra— f(x,t)dt = F'(x) ?
x
0 *a 0 a 0

Examples:
n{%-x],ﬂ_-cxj_%
(1) fn(x]- .
i) s —=x <1
g s
fneﬂ[n,ll
l,x=0
lim £ (x) = f(x) = e F o €I0:Y)
e
D ,0 <% <1
(2) Zan, ij_-f%n—
2 : e ¢ 1
fu(x}- —Zn{::-n),i-t—l_jxjn
0 ,J'—cx <1
T — —_—

ek l:l.mf“(x) =0, 0 <x <1
1 e

I(lmfn}wﬂfi-lmj f
0 n= n+= <0
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(3) The limit function might not even be Riemann integrable. Let

'{1'1, Tys Tas ...} be the rationals in [0,1] and let £ (x) =1 if
X =Ty, eees T, f (x) =0 otherwise. Then lim f (x) = f(x) where
n’' "n n
e 1
f(x) =1 if x is rational and £(x) = 0 otherwise J ftl =0 Yn, but
1 0

J fk{ (Exercise 3.15, p. 120)
D —

Notice that in all three examples, given e > 0 , x ¢ [0,1] Ef N = if
n>N, |f (&) - £fx)]| <e (in fact |fn(x) - £(x)| = 0). However

N = N(e,x) depends heavily on x.

Sequences and series of functions:

Suppose D c E™ and {fu} is a sequence of real valued functions on D.

Definition:
(i) (Pointwise convergence) lim f = f on D if 1lim f (p) = £(p) ,
= » n-woo n

VpeD; i.e. for each z}ﬂEIH-H[E,p}3if n >N then

£ - £ @] <¢ .

(i1) (Uniform convergence) lim fn = f uniformly on D if for each
-

e>0=|] N=N(e) if n > N then

|£p) - £.(P)| <€, VpeD.

Theorem 6.11 (Cauchy Criterion):

{fn} is uniformly convergent on D <=>for each e > 0 —| N = N(g) > if

m, n * N then
€0 = £.(®)| <e, ¥YpeD
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Proof: Exercise 6.51

Proposition:

(a) (Negation of the definition of uniform convergence)

{fn} does not converge uniformly to f on D <=>—| BL >0 &
sequence of points p_<€ D and a subsequence’ {f“l}: of {f }>

]fnk(pk} - f(pkﬂ > €,

(b) (Wegation of Cauchy criteriom)
(£ } is not uniformly convergent on D<=> = e, >0 , and a sequence
of points p, € D and Yk, —| mn2>k3

£ (o) - £, 2, k=1,2, ...

Examples:

(4) UmX=0,Vxck
n+=
lim == 0 uniformly on [-M, M]
e O

M M
since l*ﬁ-—ﬂl-b—[—k—_jﬁ-:e,if n}-E.VxE[-H.H]

n
(5) 1im —E = 0 nonuniformly on &
n—t—m
%
fl:l.(xJ n

|£_(m) - 0 =2=1,n=1,2, ..

n{l -x) ,0 <x < R:
n e e
(6) fn(x} = (cf. Example 1)
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Exerclses:

6.52:

(1)

(11)

(ii1)

(iv)

B.53:
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[1 s X =10
1im f“(x] = f(x) =
i 0,0 =x =1

Ifn( :2"—!1 ) - £( % )| = % , ¥ n , so the convergence is nonuniform

on [0,1]. However, 1f 0 <& <1 , {fn} is uniformly convergent on

(6,11 ; 4f n >3 then %<ﬂand]fn(x}—ﬂ|-|ﬂ-ﬂ|' < e 4F

e>0 and x e [§,1] -

£ 1, x=20
lim e " = = f£(x)
oo Lﬂ s E> 8

The convergence is nonuniform on [0,=); fu(x] = e_m:,

1 1 -1 1
PSR S I -
The convergence is uniform on [6,=) 1f & > O

since |e ™*-0| = e ™ < e™™ 4f x> 6 and lim e™ =0,

n+=

Sketch the graphs of a few of the functioms 8,

Find lim gn{x]

e
Prove the convergence is nonuniform on [0,=) and on (0,=) .
Prove the convergence is uniform on [§,«) 4if 6 > 0 .

.1".
nx , 0 £E <&
fn(x} =
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(i) Find lim fn(x] 0<x <1

b0 e
(1i) Show that the convergence is uniform on [6,1] 4f &6 > 0 but is

nonuniform on (0,1] and on [0,1] .

Theorem 6.12: Suppose

(1) fn is continuous on D, ¥Yn ,
(i1) fn + f uniformly on D .
Then f is continuous on D .

Proof:

Given ¢ > 0 , choose N ?|f (p) - £(p) | <~§v peDd (by (i1)) .
[£) - £ )| = [£() - £4(0) + £, @) = £ (B ) + £() - £(2)]
< £ - £, + |£(0) = £ )| + £ = £(p )]
<E 4 |50 - ()]

But £, 1s continuous on D (by (1)) so —| 6 > 0

E
3 [0y = Blp | o5 A P, <8 .
co1f |p-p| <8, then [£() - £(p )| <& . 0

Theorem 6.13: Suppose

(1) D= F™ has Jordan content and is compact,
(i) £ : D+ PR is continuous on D, m =1, 2, ... ,
n

{ii1) fn + £ uniformly omn D
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Then
1:|.m[fn-‘[f-!(11mf)
neee <D D D nee=
Proof: J £ J f :4 by Theorems 6.12, 3.4.
n —
D D
Given € >0, =] N 3 if w> N then

|£ (@) - £()| <e , ¥peDd
|jf-[f|-|[f-f|
ol n~

JI%-fl{ e u(d), if n > N,
D

Ia

i.e. 1lim { fn - [ f O
D D

N

Corollary 6.13.1: fn : [a,b] + R . Suppose

(1) fn E Cl[a,b], ot L A S
(ii) '{fn{xu}} is convergent for some x e[a,b],
(1i1) {fn'} is uniformly convergent on [a,b] .

Then —| £ : [a,b] + R > £ € C'[a,b] , £ +f and £'>f' both

uniformly on [a,b] .

x
Proof: fn(x} = fn{xn} + J fn' , ¥V x e[a,b] (*)

*o
Given ¢ >0, —| N 5 4f m, n > N then |£ "(x) - £ "(x)| <e, ¥ x ela,b] (by (1i1);

and |£ (x)) - £ (x )| <e @y (11))
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x
]f“(x) - £ (x)] = |£ (x ) - fm{xnﬂ + 1L "= fm‘}|
o

<e+elx-x|
o
<[l + (b-a)] , V x €[a,b] .
e {fn} is also uniformly convergent on [a,b] .

Let f = lim fn s E™= lim fn1 :
L | i

g € C[a,b], by Theorem 6.12, and from (%)

f(x) = f(‘ﬂ) + Jx g , Vx e[a,b], by Theorem 6.13

x
o]

so f'(x) =g(x) , V x e[la,b] . 0

Remark: Corollary 6.13.1 die valid also if the assumption that “fn 3 Clla,h]"

is relaxed to "f_ ' :1 on [a,b]"; the present proof is no good then however
i

(why?). For a proof of this more genmeral result see Bartle p. 217.

We summarize these results as they pertain to infinite series.

Definition: | uk{p} = S(p) is uniformly convergent on D (e Unif (D))
k=1

n
if Sn + 8§ uniformly on D where Sn(p) = kzluk(p] z

Theorem &.121 1f each uk{p} is continuous on D and | u € Unif C(D) then
} u  is continuous on D.
k=1

[£5]
Theorem 6.13': 1f D has content, u continuous on D, E u € Unif £(D) then
k=1

kEl([Duk] . J‘I.‘l': kEluk}
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Corollary 6.13.1: 1If u € Cl[a,b] - E uk(xo) £ i
k=1
"' ¢ Unif C([a,b]) then
il S y
J Lum= % JTu@ Vxela,b)
k=1 dx “k dx k?luk

Theorem 6.14 (Weierstrass Comparison Test):

Suppose

@ | @) <M ,VpeD

(i1) e 0
O

=
Then E uk(p] is absolutely and uniformly convergent on D.
k=1

Proof:
m m m
| 3 uk{P}|-f ) |uk{p}i'f ¥ M, VpeD;use the Cauchy eriterion.
k=n k=n k=n
U
Examples:
(8) 1 e e 2aategtaao L x| <1
1L+=
f |x| <z, |7 x2“| _crzn and EIZk e g A v <1

k=0
1 = k 2k
% = § (-1)" x is absolutely and uniformly convergent
2
l1+x k=0

- <x =¢ £ 0 <¢r <1 .

Integration from 0 to x , |x| <1 , we find

k x2k+1
2k+1

S ) (1)
k=0
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N Kk x2k+l 1

1
x=- § (-1 |.< » x| <1
4=0 2kt 2N+3

e, e

(cf. Exercise 6.20). Since the expression on the left is continuous

on [0,1] we take the limit x + 1- and obtain
2 1

n k 1
b= kzﬂ{'” e

P ISR TS S S
":,1 3+5 ‘,l'+g"'

Question: Is this a good expression for approximating v ? How many terms

in the series must be taken to approximate % to two decimals?
1 =
(9) L [kzl ﬁ-ﬁ-]dx = y (Euler's conmstant, Exercise 6.12)
1 SO |
l—x | ===, B <% =1 and ] =z el
ke (xt+k) k2 k=1 kl

e E — X __ = ¥(x) is uniformly convergent om [0,1] by the
kel k (xt+k)

Weierstrass Test.

Theorem 6.12=> F ¢ C[0,1] and Theorem 6.13 =>
1 1 1

F-f[Ex_}dx-}:[[ X dx]
L} 0 k= KO=HE) g1 Jo E(=HE)

= S it o K+l

= ] j [#=-—==ldx= ) [5 - 1log (5~)]

k=1 J0 kE xtk k=1 k k

S ket

= lim E[E'l"g{T)]

Moo =1

-1m[1+%+%+...+—;“—lng{ﬂ+l}}

N

= 1im [1+-!2“~+%+...+%-Iogﬂ-log(%}]-ﬂf.

Heteco
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Exercises:

6.54: (1) N P x2 - x3 + ... is uniformly convergent if |x| <r, r <1.

1+x
xz x3 x&
(11) log(ltx) = x =~ S—+ F— - =+ ... if |x|
1,1 1
(i11) log 2 = 1 - 2 3 4 & s
6.55: E EEEEEE is absolutely and uniformly convergent, -= <x <=, if p > 1.
k=1 k

[Welerstrass Test].

1
6.56: Find a sequence of functions fn such that lim [ fn =0 but'{fn{x}}
n+= <0

is not convergent for any x ¢ [0,1] .

6.57 (Wallis' Formula):

w2
(i) Show 1lim [ (sin x)"dx = 0 even though (sin x)" is not uniformly
n+= ‘0

convergent on [U;%] i

/2

(1) If S -[ (sin x)"dx then s, wBLg = w2,
n 0 n n-2

= 1.3.5 L (En—l} 1
(1) & S hb .. a2

5 =

2.4.6 ... (2n)
2o+l 1.3

6
«3sD ses L2mrkl)

(iv) {Sn} is a decreasing sequence.

- 25
(v) If .

LIJM

ﬁ » (2n) (2n)
5.

e (2n=1) Cini1)  Them

b.b.
i

2 2n
S [m_f_:'_Z] e
n—"m
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(vii) Think about Exercise 6.57(1). Can you relax the condition in
Theorem 6.13 which requires {fn} to be uniformly convergent on

D in order that lim I f = [ {(1lim fn) 7
n+e 7D D o=

Tests for nonabsolute uniform convergence:

Theorem 6.15 (Dirichlet's Test): Suppose

n
(i) lEvk(pH_cB,vpen,n-l. g i
k=1

(11) uu(p} + 0 for each p ¢ D and E ]uk+1{P] i uk(P}| is uniformly
k=1

convergent on D.

Then E uk{p] vk{§} is uniformly convergent on D.
k=1

[(i1) holds in particular if u + 0 (n » =) uniformly on D] .
Proof: Conditionm (ii) implies un(p) + 0 uniformly on D since

m-1
lu, ®) = u @] = !kguuk+1cp1 - u (p)]

< ¥ lu @ - u (@) (use the Cauchy Criteriom).
k=n

Now, given € > 0 , (ii) -n:-E[ N sif n, m > N then

m

lu @] <35 kz ugy ® - w @] <35, VpeD.
T

m m k
|kE w® v, @] = | [ w® 60 -5 _ @, 856 = 1 v@,
=n k=n j=1

m
lu_ @) S () - u (@) S _,®) - kgnsktpn'{uk+1(p: - u ()}
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m
<B{lu_ @] + |u )] + k.}; lay 1 @) = w ()|
n

3 £ €
<B{ﬁ+ﬁ'+§'§'} E.vFEB;h?(i}- O
Example:
sin kx
G~ e is absolutely and uniformly convergent, -» <x <o , if a > 1 ,
k=1 k

by the Weierstrass Test.

gin kx
a
k=1 k

is uniformly convergent, 2 mrn+ & <x <(2ml}vn -6 , & >0 ,

if 0 <a <1, since:

cos x x - cos (n+ %}x

S 2
(1) | Jetnix] el
k=1 ‘ Zﬂin*ix
_.":_‘;‘j_'"—s 2m“+ﬁjxj(2m+1]ﬂ—ﬁ
sini-s
1

(i1) ‘—(‘ $ 0 (uniformly in x since x absent)

Theorem 6.16 (Abel's Test): Suppose

1 ] v, (p) 1is uniformly convergent on D,
k=1

(1) | @] <3, kEliuk,,l{r::- -u(@| <B,¥peD.

Then ) u (p) v, (p) is uniformly convergent on D.
k=1

[(i1) holds in particular if, for each p € D, un(p} is either increasing or
decreasing in n and |un(p)| <B . Please note {u_(p)} need not be uniformly

convergent; the bound B must be uniform.]
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k
Proof: If €e>0, =| N> difm n>N and S (p) = ) vj{p) (N.B.)
J=n

then |S_(p)]| _«_:ﬁﬁ , ¥YpeD.

m m
Ce |l Ley® v@| =] L u@s® -5 @}
k=n k=n

m
= Ju @) S (@) - u (@ s () + kgnsktpn {u g (@) = v (@)}
m

< e @8 @] + kEn”k(P?”“mfP} -w (|, 8y, =0,

gl U £
<B iz +5=1= ¢, since Is, (@) <55 - 0

Example:

This is uniformly convergent |x| <r <1 .

3 5 7

. o TN < 5 W *
o EERTTE x 3+5 ?+... (*)

Welerstrass Test => uniform convergence |x| <r <1 . However this
series is also convergent for x =+ 1 (e.g. Leibniz Test). TIs it in fact

uniformly convergent -1 <x <1 7?7 Yes.
n

W v @ = £

2n+1

x5
] v, (x) is uniformly convergent -1 <x <1 since it is convergent
k=0

and x 1s absent.

(11) un{x} = 12n+l

[un{le <1 and {u (x)} is a monotone sequence for each x .
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‘. by Abel's Test the series (%) is uniformly convergent [x| <1 .
Thus both the left and right-hand sides of (*) are continuous functions

on [-1,1] and we have (again)

R T
1—3+5—?+...

S E]

Power Series:

o o
The series ) a, . = a, (x - c}k are power series in
k=0 k=0

x and (x-c) respeactively if a, are constants.

Theorem 6.17 (Radius of convergence) EE R, 0 <R<= ?

"’ Kk
(1) Ja x edbsC, |x] <R,
k-Dak

k

(ii) 8 X € B i Ix =3y

]
k=0

v k
(A11) L xT T, S EEER
k-ﬂak

R is called the radius of convergence of | a xk .
k=0

v k T k
Proof: If Ja x eC them Ja x ecdbsC if |x| <|[x|
4% o o o

n n
since |a ::nl = |a xn”x—l *:HIx—I , for all n 1if |x| <|x | and
n n o xn == Ka o

(a1 k L]
: k
hutHE|£—|EE.if|xF<|x]..Ea.leAhsC,if|x|€|x]

k‘ux{) o k=0 Q

(Comparison Test) O
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Abs ¢ , |x| <1

s S . &
[AbsC’.1x|<1
-] xk
(2) ] e, x=-1 ,R=1
R !Lﬂ y =1, |x|>1
. (abs ¢ , |x] <1
3 ] 2w _ , R=1
k=1 k lﬂ ,|x|>l
@ xk
(4) Eﬁeﬂhﬂﬂ', all x s R =@
k=1
. J'.ilbat?,xtﬂ
(5) Ek!xke , R=0
k=1 Di 5 x¥9D

Corollary 6.17.1: Let R be as in Theorem 6.17. If 0 <R, <R then

) 8y x* 1s uniformly comvergent for |x| < R, -
k=0

Proof: Theorem 6,17 => } a, le € dbs C
k=0

v k
i.e. R &
e. ] la Ry e

If |x| <R

, then lan x| < ]an] Rln -}kzuﬂk x* ¢ Unif (| x| 2R

(Weierstrass Test) [J
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Theorem 6.18:

! el
1 ) e Sl

@ e
(1) k and (1)
kgl i o T

o
k
both have the same radius of convergence as E & X .

k=0
Proof:
n
{n+1]an+1x laﬂ"‘lli
n-1 e n} a =
na X n
n
a
< :ﬂ [xo| , 1f |x| < |qu and n large enough,
n
. - n+l
£ n+l "o
n
a x
n o
o k & k-1
e LA X edbs C =>] ka x ~ edbsC, if |x| < |x,| » by the Ratio
k=0 = ° k=1
Comparison Test.
Similarly ik
a1 * Al 1. |%a+1
= |x| <@+ |=——l|x]
n n| a
H.n X n
(n+1) a_, . o |
K| n-1
na x
n

so ) k a, =L ¢ abs C => ) a, X ¢ Abs C .
k=1 k=0

This proves the claim about (i); note that we have also proved the claim

gbout (ii). ]
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Corollary 6.18.1 (N.B.):

¥ f@= Ja x ,|x| <R, R>0
k=0

then f'(x) = Ekakxk—l o 1=l =R,
k=1
" “ & xk"l'l
i 15 S o e
0 k=0 Xt
Proof: All the series are uniformly convergent |x| <R, <R so we may use
Theorems 6.12, 6.13 and Corollary 6.13.1. O

Corollary 6.18.2:

If f(x) = Eak 2 , |x| <R, R>0 then f has derivatives
k=0

of all orders on (-R, R} .

Exercises:

6.58:

6.59:

a =0,V |x| <R,=>a =0Vn 1f R>0.

a3y 3
=0

,k m
(1) Ja == [b ox ,V x| <Bexa =D ¥n 4F R>0.

k=0 k=0
x3 x5
Prove sin x = x - 3T +-§T . P e -
2 &4

and deduce cnsz-l—x—+:—!”. S b

6.60:

2!

Given that the equation y" + y = 0 has a solution of the form

3 3 2 4

>3 k X X
ytkznakx ., prove that y = cl{x—’;—l+5—! e +°2{1'§T+#!

where ¢y and c, are arbitrary constants.
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Theorem 6.19 (Abel's Theorem): Suppose

- k
Gy a x ¢ &.e Il 2B
k=0

ol
1) a ol
k=0
Then ) ay x* 1s uniformly convergent 0 <x <R
k=0

[Compare with Corollary 6.17.1.]

Proof: The proof uses Abel's Test (Theorem 6.16)

v k k x .k
= B (=)
kguak z I;Enﬂk »

(1) v} a, RX uniformly convergent 0 <x <R (x is absent)
k=0

(ii) {%)nia decreasing and ﬂ_*:(%}n_gl, 0 =x <B

L4

7 a, X 1s uniformly convergent 0 <x <R . ]
k=0
Exercise:
6.61: Show ) a, RX ¢ ¢ => 1 8, x* 1s uniformly convergent
k=0 k=0

-R+8§ =x <R, 6>0.

Corollary 6.19.1:

an =]

Eakakec'ﬂv-lim Eakxk- E%Rk

k=0 x+R- k=0 k=0

Proof: By Theorem 6.19 and Theorem 6.12, [ a xk is continuous, 0 <x <R. [}
k=0



Examples:
-1 x3 ) x?
(6) We have seen tan x=3—3—+§—-—T Sl - S |
(integrate 1 F=1- 2 dx =224 0., x| <1). Leibniz's
1+x
Test shows the series is also convergent for x =+ 1 . From
Corollary 6.19.1 we deduce
n s e
A l - 3 + 5 7 .
[Compare with the proof we gave using the Welerstrass Test. ]
€ L oa1-2faaf®o e . al <2
1 4+=
x 9 17 25
1 x x x
d}t-x-—'—+'-—‘-—+..- le ':1
Ju 1+ x& 9 17 25
This also converges for x = + 1 so it is uniformly convergent
|x| <1 . Take lim :
x+1-
1
1 A | 1 1
d!‘ 1__+"___+_.|-.-
_(ﬂ 1+:E TR T L R
k3 g ooglinaid
In particular f 8 dx - 1 + 9 ﬁ+ 25 _fi-ﬁ (why?)
0 1+%
Exercises:
6.62: (i) Show (1+x}°‘-1+-f‘—!x+i':i‘-§ll—}x2+55%9ilx3+..., Il <,
3 5 7
-1 1 x 1.3 1 - 1.3.51 =
(ii) Deduce sin "x = x + 3°3 ¥y -22 5 +35 3 3 5+ aees R <X ;
" - P31 031 -1 .. J.2:5% .1
(1i1) Deduce 3 1+ 53 + 1_2-22 s + i 23 7 * TSI -
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6.63: Show that the converse of Corollary 6.19.1 is not true

i.e. lim Eakxka 7> Eakﬁke{?
x+R= 0 k=0

[Consider the expansion in powers of x of 1+~x near x =1 .]

6.64: Let Sn{x] = 1—2 + ':i' o o ¢ 0 ERTR1"; does {Sn} converge uniformly
x
on (0,1] 7
6.65: Show that I xk converges uniformly on [-a,a] if 0 <a <1,
k=0

but not on (-1,1) .

k
!

iﬁ

6.66: Show that converges uniformly on every interval [-a,a]

=

I
k=0

but not on (-w,=) .

(5]
6.67: Let {a_} be a sequence of constants such that ) a ¢ 4bs C ;
n
k=0
A £x3
show that ) a, cos kx , /) a, sin kx both converge uniformly
k=0 k=1
on (-=,=) .
6.68: Discuss the convergence or otherwise (absolute? uniform?

conditional?) of | (x log AT
k=0

6.69: Let f(x) = ] k e _ Where is f continuous? Show that

k=1

2

2
j f = —= . Justify each step of your work.
1 e -1



- 403 -

6.70: Let un(x] be a sequence of positive nondecreasing continuous

functions on [a,b] . Prove that

o

b = b
[ (x)]dx = [f (x)dx]
J’eu kzﬂuk & kzﬂ auk S

if E uk{b) is convergent.
k=0

6.71: If f(x) = E ak xk converges for x = x # 0 show that
k=1

o k-1
f'x) = J ka x = 1if |x] <|x] .
L % !

o k
6.72:  Show that if £(x) = ) —tl- then
k=1 k + x
X bl k xE
J 2 f(t)t dt = E (-1)" log(l + ?} . Justify your work.
0 k=1
6.73: Justify the equation
= k 1 _ml
S'*ll = t
E g dt,m}_‘l,ubﬂ.

k=0 0 1+¢

Uniform convergence of improper integrals:

Definition: Jmf{p,t}dt = F(p), p € D, is uniformly convergent on D if
0

T
1im [ f(p,t) = F(p) uniformly on D 1i.e. for each € > 0, :ﬂ B = R{(eg) #
T 1)

g YVpeD.

T
if T>R . Then |J f(p,t)dt - F(p)
0

s a]
Theorem 6.20 (Cauchy Criterionm): [ f(p,t)dt is uniformly convergent on
*a
I fip,t)dt
*y

D <=» for each E>'DE| R * if T2>Tlik then

<g, YpeD.
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Proof: Exercise 6.74

Theorem 6.21: Suppose

(i) f = f(p,t) 4is continuous on {(p,t) : p € D, t €[0,=)] ,

(ii) I f(p,t)dt = F(p) 1is uniformly convergent on D.
0

Then F is continuous on D.

Proof: Exercise 6.75

Theorem 6.22: Suppose

(i) D has Jordan content ,

(i1) £ = f(p,t) is continuous on {(p,t) : pe D, t €[0,=) },
(iii) [ f(p,t)dt is uniformly convergent on D.

Then f {J £(p,t)deldp = [ {J f(p,t)dpldt .
D 0 g D

Proof: Exercise 6.76

Theorem 6.23: Suppose

(1) Eiz.t), ;%-(x,t} are continuous on {(x,t) : x e[a,b], t €lo,=) },

e
{11) J f(xn,t}dt is convergent for some X efa;b]
0

(ii1) fm %5-{x,t]dt is uniformly convergent on [a,b] .
0

Then 4. f(x,t)dt = a—é-{:i,l:]nm: » ¥V xe[a,b]
dx 0 0 3x

Proof: Exercise 6.77
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Note: The preceding theorems are still valid if the continuity in t is

relaxed to integrability.

Theorem 6.24 (Weierstrass Comparison Test): Suppose

b
) f £(p,t)dt =] ¥ [a,b] € [0,%) ,
a

(11) |£(p,t)| <M(t) , ¥ p e D and JH.; i
0

Then .[ f(p,t) 1is absolutely and uniformly convergent on D.
0

T T T
2 2 2
Proof : ” f(p,t)dt _j[ [f{p,t)dt i[ M., if TZ > T . The result follows
55 % 3
from the Cauchy Criteriom, O
Examples:
(1) r Eﬂ(‘;_tl dt is absolutely and uniformly convergent -= <x <=
1 t
since (2228} L. and J Loae=1.
t t Al S
(2) f e_xt cos t dt is absolutely convergent 0 <x <« and uniformly
0

convergent § <x <= , 1if & > 0 .

oo
F - 1
x>0 3 |enmat|£e“tnnd]extdt-;.

0

x>6>0: | cos t] g <e %t and rewﬁtdt =% ;
i}

To evaluate the integral consider

T—xt =Xt 1 T-—t
je cos £t dt = e ninti+x[exsintdt
0 0 0
T T
-(extsint-xextcmt]‘ -xz[e-xtmstdt
0 (]
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S o 1 xzj J e-xt cos t dt = efIT(sin T-xcos T) +x
0
...[E_xt cos t dt = 2
0 1+%
Exercises:
6.78: Use Example 2 and some of the preceding theorems to show
P 2
(a) te™ cos tar=—5"L  , 4f x>0
0 (1L+x)
. . =at -bt., cos t 1 1+bz
(b) {e -—e }——dt=Zlog (— ), if 0 <a <b .
0 x ¢ T+a® K
a2
6.79: Prove that each of the following integrals is uniformly convergent
for the range of values of =x indicated:
(a) [“‘z“‘h_z (all x) , {h]j S, (xl 28>0,
i il AR LB 0 t +x
dt =t
(e) 2 s kx>48 >0), (d) e = cos(xt)dt , (all x) ,
Bt +x li]
2
(e) r:m et sintxeyar ., Il3) .
0

Tests for nonabsolute uniform convergence:

Theorem 6.25 (Dirichlet's Test): Suppose

T

(i) Hf{p,t}dt B, 0T <w,Vped,
0 ;

(ii) lim g(p,t) = 0 uniformly on D and

=00

2£p, 09
Llat

dt 4is uniformly convergent on D .
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Then [ f(p,t)eglp,t)dt is uniformly convergent on D.
0

[(ii) holds in particular if g(p,t) is increasing or decreasing in

t and 1lim g(p,t) = 0 uniformly on D.]

o

T
Proof: Let F(p,T) = J f(p,t)dt ;3 (i) =»
0

&

|F{p,T]|_<B,"i' .peD, 0 <T <=

2
” f(p.t)g(p.t)dt{
T
1
T
2 a8
g ]?{P!TE}E{PiTE} o F{P!TlJE{F:Tll s J'T F(PlT} E'E (p,t)dt|

1

T
2
- 3
<B{g,T)| + |alp, T + L 5% (p,e)[dty, T, > T
1

Now use (ii) and the Cauchy Criterionm. O

Example 3: reqt E:-:—t dt is uniformly convergent, 0 <x <= .
1

T
(i) { gin t dt| =<2 , V x (x absent)
1
=%t
(ii) decreases to 0 as t—+= Vx>0

E—xt
1lim
e

= 0 uniformly on [0,=) since

Ia

=

~xt ‘




- 408 -

Theorem 6.26 (Abel's Test): Suppose

(1) J f{p,t)dt is uniformly convergent, p € D ,
0
(11) lep,e)| <B , j|§,—§ (,t)fat <B VpeD.
0

Then Jmf(p.t}g(p.t}dt is uniformly convergent on D.
0

[(11) holds in particular if g(p,t) is either increasing or decreasing in t

and |g(p,t)|<B Y peD.

Please note lim g(p,t) exists ¥ p € D but need not be uniformly convergent;

e

the bound B must be uniform on D.]

Proof: Exercise 6.80

Example 4: Jne'xt -E-i:—t dt is uniformly convergent, 0 < x < =

(1) f Ei%—E dt is uniformly convergent 0 <x <= since x is
0
absent.

(11) e ** is decreasing in t, |e *°| <1, Vx>0

[Compare with Example 3. Can you use Dirichlet's Test for this Example.]

Application:
As indicated in Exercise 6.78 improper integrals may often be evaluated

by the introduction of a parameter and differentiating or integrating with

respect to that parameter to obtain something simpler.
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Examples:
sin t o
(3) r iy
0
w0
Proof: We have seen F(x) = [ Rt 53%—5 dt is uniformly convergent,
0
0 <x <@, .'. Fe C[0,®), by Theorem 6.21. Also

d (" xt sint
dx Jq t

dt = = [ vat gintdt., x>0
0

the last integral being uniformly convergent x > § > 0 , by the Welerstrass

Test, since le_xt sin t| < M s % elh,») .
Thus F'"(x) = - J“e-xt gin t dt = nk =5 B 0 , from integration by
0 1+ x
parts (twice), and so
1

F(x) = - tan x+C, x>0

F e C[0,=) ®*>F(0) = F(0+) = C

Also 1im F(x) = 0 (Why ?}-ﬂ%+c S R
w

-‘.. F(G}-rsintdt'l
0

£ 2
E—hx _ oTax b
(6) [m dz = log (=) ,b>a>0.
0 x a -
w <bx __=—ax b i
Proof: J g 2 dx = Im ] & du dx
0 - 0‘a

b
= [ fm e ™ dx du (by Theorem 6.22)
a -0

b
1 b
J = du = log (a}
a
Theorem 6.22 is applicable since by the Weierstrass Test i T

a <u <b, so fme_“x dx is uniformly convergent for u e[a,b] if a > 0 .
0



(7) (1)

(ii)

Proof:

- 410 -

i 1 b1
i i e il o
Ju (x® + a2)? ha’

E%{tan-lt-%) - tan_l{i}}dx = % 103{2) s B R TH .

2 2 u u 2u

=]
r = 1 dx = & tanﬁl X - y the integral being uniformly
g x +u 0

convergent with respect to u, |u1 >46 >0, by the Weierstrass Test since

1

1

x2 +1.12

(1)

(11)

5 1 lu|l > &> 8 .

:|:+-52

Differentiate with respect to u

2 2,2

R e L TR L
0 {x" +u’) 2u

by Theorem 6.23 since the differentiated integral is also uniformly

convergent, 1u| > 6 » 0, again by the Weierstrass Test. Thus

1 m
—_— dam——, ad#0.
E (x2+aEJ2 fma

Integrate with respect to u (0 ¢ [a,b])

b b =
b b bl 1 1
—105(—}'—] -—'du-J [ sp—e— dx du
‘ 2 2 a O a IZI:r.2+u2

B

= r I s iy, A (Theorem 6.22)

2
07a " +mu

= E%{tanpl [l:E} - tan—]' {%}}dx
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1 o
(8) f X = Llayw loglotl) , o> =1,
log x
u+
Proof:
1 L
F(a}'J = —tdxeC,a>-1
o+ T
1
Ce F'(a) = J x dx , @ > =1, by Theorem 6.23 since this
o+

integral is uniformly convergent for o > -1 + & > =1 by the

Weierstrass Test

1
|xﬂ.! < x—1+|5' [ x-1+5dx e %.__

e F'(g) = E%E and F(o) = log(a+l) + C

But O = F(0) = C, so F(a) = log (atl)

Exercises: [#6.81(e), 6.93(a), 6.94(a) are important for Fourier series]

6.81: Use the result J &xx' dx = % and elementary manipulations with
0

trigonometric formulae to show:

o0 14 &=0
mg! sin(ax) 4y = ( 0, a=0
'IT[:I 4
-1, a <0
AP G
Tl x 2
5 SR e !
-1 , a <=1

(c)

EREE]

= - a=-|
J cosx sin(ax) , _ g_ ad ww 21
0

- -t a=\|
; &> 1
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2
() %r(i’—iﬂ—xl oz 3
0

& o
(e) 11m[ mdx-%, umJ Eigldx-ﬂ, 1f 6§50 .

n+e 4 - e S §
6.82: Show that I:tp e_t dt iq uniformly convergent for p [0,M] if
M >0 but not for p €[0,=) .
6.83: Prove r log(l + “—2} dx = 7a ; az20.
0+ x
bty | o wde il Teat 2, a, b>0,
‘o o 2 14a”
(b) : e E*bx gin x dx = tan_lb - tanhla . Bs B> 0
(c) Deduce from (b) -:E_“ Bj’% dx = ;;- - tan-la . A>0
(d) Deduce from (c) mﬁ“x—’i dx = 7

‘0

o o S -
6.85: Prove f .(L"m__ZEL dx = m log 2
0 x

oo

tanbliax] tan_lfbx) o

2

[Consider F(a,b) = I
] X

[- <}
dx L

0 (tez) (Mb7x%) &)

You will need to show J

= 2
{log(1 + -’:,z}} dx = 4 log 2

6.86: Prove J
o+ b4

6.87: (Frullani Integrals) Let ¢ € Eliﬂ.m} '

lim ¢(u) = A, 1im ¢(u) =B
L} u-+0+
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Prove rrﬁ(‘bx} ~ ¢(ax) dx = (A - B) log {h) sy b>az>0.
0 x a

[ Show rqg'(ux}dx is uniformly convergent, u e[a,b].]
0

we—hx_ —-ax o
Deduce (a]J —;—E——dx-log {F} s B =Aa>0D,
0

(b) r Lz [e” ¥ {1 + x(atk)} - e-bx{l + x(b+k) }ldx
0+ x

-(b—a}+klog{%},a,h>ﬂ.
rﬂ,ﬂjﬂ A R

6.88: r;ﬁn[ﬂx) S8 X gy = .3-'— a=]
0 * m 1
7 R
1 gyt
6.89: Prove j x dx = ) ;l_f;_
0 k=1 k

1
Approximate [ x* dx so that the error does not exceed .001 .
o

6.90: The error functionm (in statistics) is defined by
x 2
erf(x) = -Z——J et ar
el

(1) Show erf(») = 1 (Exercise 6.43)

(11) Express the following in terms of the error function:

L 2 ¥ 2
(a) J Eﬁl'!H ds (b) J xz e © dx
0 (1]
3 ghanistan _ 2
(©) J xe e @ ‘ZZJ e de
0 7 ‘0

2
x

- 2 -
(111) r 1o oL e (aze)
0



(i1)

(i11)

(iv)

6.92:

6.93:(a)

(b)

6.94:(a)
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Suppose

fn £ GID,») sa= 1, 2, s

fn{x} + g(x) uniformly x ¢[O,R] , YR>0 ,

g, <ue , [Mec,

0
lim &2 = w=,
pre B
x
n [e]
Show 1lim J fn = J g
n+e 40 0
- x. Bt k
Prove 1lim I (1 - E} s Er . ks, 1, 2 ...
e 10
= x. 0 x/2
Guess the limits 1im I (1 - ;ﬂ e dx ,
nr= 0
3 x 0 -2x
lim I (1+2) e dx and prove your guesses are correct.
o+ 10

Prove that if f e C[0,1] there is a step function g on [0,1]

such that |f(x) - g(x][ <e¢ , ¥ xe[0,1] if € > 0. [g 1is a step
function on [0,1] if the interval can be partitioned into subinter-

vals on each of which g is constant.]

Prove that if f e C[0,1] there is a polygonal function g on [0,1]

such that |f(x) - g(x)| <e¢ , ¥ x €[0,1] 4if € > 0. [g is a
polygonal function om [D,1] if g ¢ C[0,1l] and [0,1] can be
partitioned into subintervals on each of which the graph of g is a

straight line.]
b

If [ f exists then there is a step function g on [a,b] such that
a

b
f £~ &l S8 +3 €50
a
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(b} 1I1f Imf is convergent then there is a step function g on [0,=)
0

o]

with g(x) =0 1f x > R for some R > 0 and J [f-gl gl g kE: g

(]
6.95: (Riemann-Lebesgue Lemma)

(a) If f 1s integrable on [a,b] then

b
1lim ] f(x) sin(nx)dx = 0
n+ ‘a

[Prove it first if f 4is constant, then if f is a step function

b
and then use Exercise 6.94(a) to prove it if [ f exists.]
a

(b) If Jmf e Abs € then 1lim [ f(x) sin(nx)dx = 0 .
0 o <0

2 = 2
6.96: Let f(x) = e* [ e-t dt - Show that [wf is divergent .
x 0

m
6.97:{a) If In = J cuazua de , n=0,1, 2, ...

0
Prove I = 2;;1 iy B : R W A
{(b) Prove
1 r xz x&' ::E'
= | cos(x cos 8)dd = 1 - — + - + ane 5 all x
m 0 22 22_‘!'2 22--‘32*62

i1

(c) Approxlmate -% [ cos{cos 0)dé so that the error is less than .0005.

0

Justify carefully any assertions you make.
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REMARKS ON FOURIER SERIES

We shall need the following formulas:

1]
v
j‘ sin(mx) sin(nx)dx = ¢
-7

ki

§]

m
J cos(mx) cos(nx)dx =¢ =
-7

2n

o

E ]

m#n

m#¥n
m=n

m=n=10

y My T

Bl e

1m:ﬂ‘112, e @

m
[ gin(mx) cos(nx)dx = 0, m, n =0, 1, 2, ...
-7

Now suppose f(x}--];au-i- E {aknuskx+hksinkx} y = T <X <7,

2 |

0 k=1

m LI w
Lf(x) cos nx dx = J‘F“[E a + ) {a.k cos kx + b

k

o

sin kx}]cos nx dx

i
kJ gin kx cos nx dx
-

a m Lt m
ﬁ—;[ cos nx dx + E&kJ‘ cos kx cos nx dx + ) b
e k=1 -1 k=1
=7 a
n
1 m
(A) a -?[ f(x) cos nx dx , n=0,1, 2, ... .
—
Similarly
1 m
(B) hn'FJ f(x) gin nx dx , a=1, 2, ....
=T

> We have assumed here that convergence is such that the interchange of the

integration and summation is wvalid.
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Definition: For any function f on [-7,7] such that the integrals in (A),

(B) exist

a o
0 #
== + E {ak cos kx + b, sin kx}

E=1 k

is called the Fourier Series of f. We write this

a (= ]
f(x]~—-2{l+ E{akcnakx-l-hkninkx}
k=1

The Fourier Series may or may not converge to £(x).

A function f is periodic of period 2 if f(x + 2n) = £(x),

i o
VxeR. If f is periodic of period 27 and [ f exists then J i
-1 =70
L L
exists and f f = J £, Yoell.
- =7+
We denote

f(x +) = 1im f(x) , £(x =) = lim £(x)
e X+xd+ " x+xu—

whenever the limits exist; further

i - ' f - -
Pyt X -HEY | i) =im FOR - e
R O o

x+x + X -x L XX - x - X
o o o o

the right and left derivatives of f at x .

m
Theorem 6.27: Suppose f is periodic of period 27 , I i exists and
=T

a o
f(x) ~Tn+}: {akuaskx+'hkninkx}.
k=1

a [ -]
't :
'E{f{x+] + f(x-)} = 7§~+ kzl{ak cos kx + hk sin kx}

at any point =% where f;{x} and f;{x} exist.
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def &, 2
Proof: Sn(x} e T kgl[a.k cos kx + bk sin kx]
1 m 1 B TI'
o~ f f{t)dt + = E [ f(t) [cos kt cos kx + sin kt sin kx]dt
in T k=1L,
1 i 1 n
== | £f(t) [+ ) cos k(t-x)]dt
m 2
= k=1
1 (7 sin(n—i-]z;}(t—x}
== | f(t) dt [cf. Example 5, p. 367 ]
L= 2 sin li:t:---:|:}
S 3
1l
1 [T sin{rri-i-}t
e~ f(t4x) T dt
Ty 2 s5in 2 =
1
1" ain[n-li}t
== | {f(x+t) + f(x-t)} T dt
Tl 2 sin = ¢t

2

In the case of the function £(x) = 1, a, = 2 and a = bk =0, k=12, s

go that Sn(x} =1 for all n and therefore from the preceding calculation

b 1
1 Bin{n‘i"i]t
1w % | gp, w0, 1, 2, v
0 Hi‘nEt

Thus, for any function f(x),

S (x) - {£(x#) + £(x-)} = 2 j'“l?(t] sin(n + e dt
n 2 s 2

where  F(t) = [£(x+t) + £(x=t) = £(e#) = £(x=)] / 2 sin 5 t .
n
Note that F(H+) exists if fi{x) and fi(x} exist so that JrF exists and
T 0
hence lim Jr F(t) sin(n + %}t dt = 0 by the Riemann - Lebesgue Lemma
= 0

(Exercise 6.95 (a)); Therefore 1lim S (x) = i {f(x+) + £(x=)}.
i n 2
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Note: If f has a left and right derivative at each point in its domain the

Fourier Series converges to f(x) at a point x where f 4is continuous and

to the point midway between f(x+) and f(x-) if £ is discontinuous at X.
A more detailed discussion of Fourier series is given in Mathematics

437 and 443.

&
Example 1:
=1, - m<x <0 L pemitibmbi—
i
f(x) = o b
! : »
b 418 0 <x <7 :
1
1 ¢ .I.—_——_——l
g =— | f(x) cos nx dx = 0
5
s -
1 (" s (T
b == | f(x) sin nx dx = —-J f(x) sin nx dx
n v i
ER | 0
P
o2 [yina dr vt 1« 095"
T Jo nm
0D , n even
L ; 0 odd
nn
1, @ =% <N
o %~ ) 2kil sin(2k-1)x = 0, x=0
k=1

'-1‘—-”{}[':“

By periodicity the series converges to =1 on ((2m-1)7, 2mn) , to 1 omn

(2mv , (2m+l)7r) and to 0 at mw .
5,(x) =0
Sll::lc} = % sin x
Sz{x) = % sin x
53(1:} = % (sin x +*;- gin 3x)
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2k-1

n 1 1 1 1
_— - — —_— - = —_— s ef -
i1.e. 4 1 3 + 5 7 + 9 as we have seen before

Exercises:
6.98: Show r
i 0, -7 <x <0
o e+l
-+ vk L (-'-1] = 1} cos kx +£—L' gin kx] =
4 St 2 k
%, 0 =x <7
and for x =+ 7 the sum of the series is %—.
F
>
6.99: Show that for all x
lsiu x| __“__14? cunzﬂk:lr.
k=1 4k -1
oo oo k_
- 1
In particular ) —; -—% e | Jz—ll-i—%.
k=1 4k -1 k=1 4k -1

6.100: Show that, if - 7 =x <7 ,

o zan-.hw[ +E .E_EL{.:ua - k sin kx)]

2 el 14K

Sketch the graph of the sum on [-37m, 37].



1
Deduce I coth m ==+ E —
2 27 g1 14K

A function f is said to be odd if f(-x) = -f (x) ¥ x and even

if f(-x) = f(x), V x .

sl
f odd =* £=0
i
[
f odd == f(x) cos nx dx = 0 => . 0
im
Eil
f even =% f(x) sin nx dx = 0 => hn =0
R

Thus if we require a cosine expansion of f(x), 0 <x <n define f as an
even function on [-7,7] .

f(-x) = £(x)

------

¥

-f,,
¥
I
[
o
j ,
- _1

If a sine expansion is required define f as an odd function on [-T,7]

1
f(-x) = -f(x)

=

A mmmmm———
S

Examples:
X B XX 5%
(2) f£(x) =

-x =7 <% <0

o e ———— -
i

il
L S

i.e. £(x) = |x] ,-7m <x <
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1 ™
hn-? f(x) sin nx dx = 0
i t
even odd
1 ™
au-;[f{x} cos nx dx
Bl | | 4 +
even even i
e n=20
2 ™
-?[f{x}cnunxdx-
0 Tl
n

i T 4 cos (2k-1)x
A oy

k=1 {21:—1)2
112 s 1
In particular (x=0) B ) PN .
k=1 (2k-1)
(3) X 5 D =x =7
f(x) =

1
=

X ,-7 <% <0

f.e. f(Xx) = X ,=7 «x <7

e — e ——— iy

1 m
a =?Jf{x}cuuuﬂx-ﬂ
“ 2 ¥ $
odd even
1 i1
b -?If[x) gin nx dx
i Iy ¥ 4
odd odd
m n+l
-%[xsinnxdxﬂz-(-—iL

0

o kt+l
.'.x-zzﬂ——-ainkx,—ﬂ-:x-:w
k=1 K
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Exercises:
6.101: Show that both of the following series have sum ex, 0 <x <7 and

sketch the graph of their sums on [-3w, 37] .

&0 : ST -
(1) %{e"- 1}+% E _(:l_l_ﬁ.‘_:kmgkx
k=1 1+k

) 27 5 n- D el sinkx
k=l 14k

3

=3

6.102: Prove that

=L +4 J %Lﬂﬂskx,—ﬂ_fx_'ﬂﬂ
k=1 k
and hence
AR - | s ok
Rl o« 6 =1 k2

Sketch the graph of the sum on [-3w, 37] .

6.103: Show

(1) ,T_x__+_ E _c;-ﬂ_(.ﬂt_-llz L0 <x <7
1 (2k-D)7

sin kx
k

g0 =x <

(44) n-x=2 J
k=1

What is the sum of the serles outside (D,m) ?

6.104: Show

1 1 112
j = log(l#x)dx = =% »
0+

1, “2
J’{)+ = log(l-x)}dx = - <
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6.105: Show

e

cos x = 2 E % gin 2kx , 0 <x < 7

k-1 4k"-1
What is the sum for other values of x ?

References for Chapter VI

R.C. Buck: Advanced Calculus (Chapters 2,3,4).

R.G. Bartle: The Elements of Real Analysis (Chapters 3,6,7).
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T.J. I'A. Bromwich: An introduction to the theory of infinite series.
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THE PROFESSOR'S SONG

Words by Tom Lehrer - Tune: "If You Give Me Your Attention"
from Princese Ida (Gilbert and Sullivan)

If you give me your attention, I will tell you what I am.
I'm a brilliant math'matician-also something of a ham.
I have tried for numerous degrees, in fact I've one of each;
0f course that makes me eminently qualified to teach.
1 understand the subject matter thoroughly, it's true,
And I can't see why it isn't all as obvious to you.
Each lecture is a masterpiece, meticulously planned,
Yet everybody tells me that I'm hard to understand,
And I can't think why.

My diagrams are models of true art, you must agree,
And my handwriting is famous for its legibility.
Take a word like "minimum" (to choose a random word), (*)
For anyone to say he cannot read that, is absurd.
The anecdotes I tell get more amusing every year,
Though frankly, what they go to prove is sometimes less than clear,
And all my explanations are quite lucid, I am sure,
Yet everybody tells me that my lectures are obscure,
And I can't think why.

Consider for example, just the force of gravity:
It's inversely grnpurtional to something-let me see-
I1t's r?® - no, r? - no, it's just r, I'll bet-
The sign in front is plus-or is it minus, I forget,
Well, anyway, there is a force, of that there is no doubt.
All these formulas are trivial if you only think them out.
Yet students tell me, "I have memorized the whole year through
Ev'rything you've told us, but the problems I can't do."
And I can't think why!

(*) This was performed at a blackboard, and the professor wrote:
ANV



