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PREFACE

These notes are not intended as a textbook. It is hoped however
that they will minimize the amount of notetaking activity which occupies so much
of a student's classtime in most courses in mathematics. Since the material is
presented in the sterile "definition, theorem, proof" form without much back-
ground colour or discussion most students will find it profitable to use the

notes in conjunction with a textbook recommended by the instructor.

Probably the most important aspect of the notes is the set of exercises.
You should develop the practice of attempting several of these problems every
week. Many of the problems are quite difficult so please consult your instructor
if you are not blessed with success initially. Do not acquire the habit of aban-
doning a problem if it does not yield to your first attempt; a defeatist attitude
is your greatest adversary. Solution of a problem, even with some assistance
from the teacher when necessary, is a fine boost for your morale. You will find
that a strong effort expended on the earlier part of the course will be rewarded

by growing selfconfidence and easier success later.

Thanks are due to Olwyn Buckland who typed the notes. If you find that
some of the solutions given to the exercises are incorrect please complain to her

about it.
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Notation: Except when specified otherwise, upper case (capital) letters will

denote sets and lower case (small) letters will denote elements of sets.

ach means a 1s an element of the set A .
AcB means A 1is a subset of B .

BoA means B contains A .

Ag B means A 1is a proper subset of B .

P =xQ means statement P implies statement Q .

P<=>Q means P holds if and only 1f Q holds.

3 "there exists"
¥ "for each"
= "such that"
O "end of proof"

Remark: A slash through any symbol means the negation of the corresponding

statement e.g. & ¢ A means a is not an element of A . {x: «es} means

the set of all things x satisfying the condition following the colon.

AuUB={x:xeA or xe B} (union)
AnB={x:xeA and x e B} (intersection)
A-B= {x : xe A and x ¢ B} (difference)

AXB = {(x,y) t x e A , y € B} (Cartesian product)

$ : empty set



CHAPTER ONE

THE REAL NUMBER SYSTEM & FINITE DIMENSIONAL CARTESIAN SPACE

We begin by defining our basic tool, the real numbers R . The
real numbers can be constructed from more primitive notions such as the nat-
ural numbers N = {1,2,3,...} or even from the fundamental axioms of set
theory; this topic is studied in Mathematics 4|#. Here we shall be content

with a precise description of & .

- THE REAL NUMBER SYSTEM X .

Definition: R 1is a complete ordered field. We explain the three words under-

lined.

Field.

Definition: A field is a set F together with two binary operations + and

* (addition, multiplication) which satisfy the following axioms: For all

a,b,Cs4es in F

(F1) aetb ¢ F and a*b e F f:lusura}

(F2) atb = b+a and a*b = b*a (commutativity)

(F3) at(b+c) = (atb)+c and a*(b*c) = (a*b)*c (associativity)
(F4) (a#b)+c = (asc) + (bvc)  (distriburivity)

(F5) There exist unique elements 0 and 1l e F 0 ¥ 1 such that

at) = a and a*l=a Y aeF (identities)



(F6) For each a € F, J(-a) ¢ F such that a+(-a) = 0 and 1f a # 0

3;“1 e F such that ara ko=l (inverses) .

Remarks:

(1) a*b will henceforth be written ab .

(11) a(b+c) = ab + ac 1is a conmsequence of F2 and F4 and need not be

assumed (verify).

(111) The elements (-a) and n'l are uniquely determined by a . Suppose,
for example, that there are elements {—al}.ﬁ-az} such that

ﬂ'"{-li} =0 . Then

(-6,)'= (=8, )40 = (e ) # (a+(-a,))
= ((-a,)+a) + (-a;) = 0+ (-a)) = (-a)

(Justify each equality.)

(1v) It is customary to write a-b for at+(-b) eand %i for ah-l i

2 3

(v) aa , asa , etc., are usually denoted as a~ , a~ , etc.

(vi) {1, 141, 1+1+l etc.} is usually denoted (1,2,3, etc.} = N

Exerclses.

1.1: Establish the following properties of a field.

(a) a*0 =20
(b) a(-1) = (-a)
(c) (-a)(-b) = ab



(1) (ab"Ly)(ed™) = ac(nd) ™

(e) If ab=0 thenm a=0 or b=20,

Examples:

(1) The simplest (and least interesting) field is the set {6,e} with

binary operations

+ |8 e
;] 8 e
e|le B

(14) The set § of rational numbers, i.e., numbers of the form % (n#0)

with the usual addition and multiplication is a field.

(111) The sets R and C of real and complex numbers respectively with

the usual addition and multiplication are fields.

(iv) The set Q(t) of all rational functions with rational coefficients
(i.e. functioms of the form g—%} where p(t) and gq(t) are poly-

nomials with rational coefficients) is a field.
(v) The set N = {1,2,3,...} of natural numbers and the set Z of
integers are not fields.
Ordered Fields.

Definition: A field F 1s ordered if there is a subset P of F (called

the positive elements) such that:



(01) a,be P=>ath e P and ab € P
(02) 04{ P

(03) xe¢ F, x$#0=>x¢P or -xe P but not both.

Exercise,

1.2: Observe that

a) 1«2

(b) a+# 0 => 32 e P

(¢) If ne N then ne P

(d) The field {8,e} in Example (i) above cannot be ordered.

(e) The field C of complex numbers cannot be ordered.

(f) The fields Q and R are ordered by the usual notion of poeitivity.

(8) The field Q(t) in Example (v) is ordered if -&EB— e P whenever the
coefficient of the highest power of t in the product p(t) q(t) 1is

positive.

Remark: Every ordered field contains @ as a subfield (we do not prove this).
Thus § may be characterised as an ordered field containing no ordered proper
subfield, 1.e. @ is the smallest ordered field. (Two ordered fields are
considered the same if they are isomorphic and the isomorphism preserves the

order.) A discussion of this point may be found in

C. Goffman: Real Functions, Proposition 1 and 2, Chapter 3,01

E. Hewitt and K. Stromberg: Real and Abstract Analysis, Theorem 5.9,



We define a relation > on an ordered fiﬁld.

pefinition. If a,b € F, write a > b (equivalently b < a) if abe P .
Properties 01, 02, 03 yield the following:

(1) a>b ,b>cm=>g>c¢c

(1) If a,b € F then exactly one of the following holds

a>b ,a=hb,a<h

(i11) a*>b ,b>a=a=5bh
(iv) a>b=>atc >btc , YeelF.

(v) a>b, c>d=>atc > bid

(vi) a>b, c>0=>ac > bec
a>b , c<0=>ac <be

(vii) a>0mat>p
a<Ou>aren

(viii) a>‘b->n>£2b->h

(i1x) ab > 0 => either a >0 and b >0

or a<0 asnd b<0 .

Exercise.

1.3: Prove statements (1) - (ix).



Complete Ordered Field.

(a)
(b)

(c)

(d)

(e)

Let S be a subset of an ordered field F .

ueF is an upper bound of S if s <u, Vs €S
weF is a lower bound of § if w<s , ¥ 8 e€3$

S 1is bounded above (below) if it has an upper (lower) bound. §
is bounded if it is bounded above and below.
e.g. N ={1,2,3,...} 48 bounded below and unbounded above;

[0,1) = {x : 0 < x < 1} 1is bounded.

u 1is the least upper bound (or supremum) of S if

(1) s<u,V¥ees (1.e. u is an upper bound)

(11) a<v,VeeS=ux<v (i.e. u 4is smaller than any other

upper bound).
Write u=sup 5§ or u= lub S .

Similarly the greatest lower bound (or infimum) of 5 is a number

w which is a lower bound of S and exceeds all other lower bounds.

Write w=dnf S or w = gib 5 .

Definition: An ordered field F dis complete if each nomempty subset S5 of

which has an upper bound has & least upper bound (supremum) n 5

Remark: A is the only complete ordered field (to within an isomorphism).

Again we do not prove this. A discussion may be found in Hewitt and Stromberg

p. 45.



Exercise.

1.4: Guess the supremum and infimum of each of the following sets (when they

exist).
(0,1) = {x: 0<x <1} . )= Ixr 0<% 1}
2 :n=1,2,3,...) L fyEa

Properties of R :

Definition: An ordered field F is Archimedean if Y a e F, J nel = {1,2,...}

s n>a {i.e.' N is not bounded above).
Theorem 1.1: R 1s Archimedean.

Proof: Suppose not. Thenga >n,¥neklN, i.e. a 1s an upper bound of N .
% b=Sup N 3 since R 1is complete.

%+ b>n ¥YnelN and b-1<mn, for some no.-:ﬂ' (b-1 < b 1s not an upper
bound since b is the least upper bound). But them b < no+1 € N contradicting

b=gup ¥ . O

Corollary 1.1.1: If a>0 I3neNs0<ica .

Proof: 3 n > al>0 (Why1)

s '-}i}u' mr?} D

n



Exercise.

.53 X8 a>ﬂ3n£ﬂﬂﬂ€-%h—<a
(Hint: Show 2" >n, V¥Yne N .)
Corollary 1.1.2: @ 4is an Archimedean ordered field.

Exercise.

1.6: @&(t) 41is not Archimedean.

Corollary 1.1.3: If a,be R, a<b then there is a rational r such that

a<r<b. (This Corollary holds for any Archimedean field.)

Proof: I me ¥ » n(b-a) > 1 (Why?). Let m be the least integer such that

m>na . Hence m1 < na

=> na < m < natl < na + n(b-a) = nb

> g < %E{ Bl O

Exercilses.

1.7: Let F be an Archimedean ordered field containing an irrational element
E . Show that if a,be¢ F, a < b then there is an irrational element

N such that a<n<b>5 .

1.8: Show that B contains an irrational element.

(Hint: Show first that no rational p satisfies p2 = 2 . Then show

2

that p = sup{x > 0 : x" < 2}  must satisfy pz =2 ,



NHotation: If a,be ® , a<bh

[a,b] = {x e R : a<x<hb] closed interval

{xeR:a<x<bl} open interval

(a,b)
[a,b) = {x e R : a <x<b}

(a,b]l = {x e R : a<x<hb}

Theorem 1.2: Let In - [an.hn] , and In+1 = In yam 1.2 ... 5 then

n In ¥ ¢ (i.e. a nested sequence of closed intervals has at least one point
n=1

common to all the intervals).

Proof: a <b for all n,m.

# each b 1is an upper bound for {ln :n e N}
o u-lup{an=n£ﬁ'}f_b'.'l’n

aninibn,b'n:i.e.neln,#n. O

Exercises:

Archimedenn
1.9: Let F be nnﬂ.nrd;rud field, with the property that if {In} is a
oo
nested sequence of closed intervals in F them n Iﬂ ¥ ¢ . Show

n=1

that F 4is complete.

Theorem 1.2 and Exercise 1.9 together show that the supremum property

(completeness) and the nested interval property are equivalent.

1
1.10: Let Iu = {D,n} + Show that n In = ¢ .



1.:11:

1.12:

1.13:

1.14:

1153

1.16:

1.17:

30

Let Kn-[n,m)-{x:xin]. Show nkK =¢ .

If a set S of real numbers contains one of its upper bounds a then

a=gup S . Such a supremum is called a maximum of 5 .
Show that S c F camnot have two suprema.

Show that an ordered field F 1is complete if and only if every non-

empty subset of F which has a lower bound has an Iinfimum.
Show that & is not complete.

I1If 5 R 1is bounded and SD c § show

infsf_infﬂnilupﬂuisups

If 8= {(-l}ntl -%} in= 1,2.---} » fiﬂd sup 5 » in.f 5 L Prove

any statements you make.

Definition: x e R

||

- - if x>0
|x| =

=X ¥ if!":Q ]

is called the absolute value of x .
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Proposition:
(1) |x|=0<=>x=0
1) |-x| = |x] . ¥x

(111) |xy| = Ixlly] » V=¥
(iv) If n};ﬂ then Exl f_c{-:v ~-c<x<c

(v) “ﬂ-l-".bi'. < l,ni'h{ £ |n[ + |h1 (triangle inequality) .

Exercise.

1.18: Prove (i) - (iv).

Proof of (v):

¢ae) o ola] ca<la]l » -]}l 22 |b]
~(lal+|b]) < ab £-|a| + [b]

(4v) => |atb] < |a| + b]

which is the right-hand inequality. This implies the left-hand inequality

gince
b] = |b-ata| < [b-a| + |a]
= |b|-]a] < |b-a| = [a-b]

and, interchanging a,b



o

lal-[b]| < [a-b]

|Ibl-lal| 2 [a-b]

The remainder of (v) follows by replacing b by -b .

CARTESIAN SPACES

Recall AXB = {(x,y) : x € A, y € B} .
Definition: F®=RXREX.,. R (n times)

. {(x].'""xﬂ.} : z.i £ R ¥ im= 1,-10;“}

X i=1,...,n : the components of (11""’351
p= {xl.....xn} : a point in R® or a vector in R"

0= (0,...,0) : zero vector, origin.

Algebra:
P [Il,..-,InJ q= (yl,...,}rn]
phq = (xi+y1,....xn+yn} (addition)
Ap = {hl, L ,}.xn} (scalar multiplication)

where AeR (i.e. A a scalar).
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The following properties follow immediately from those of

(1) ptq = qatp
(11) (p+q)+r = pH(gir)
(111) +p =pH0 = P
(iv) pt(-1)p =0

(v) lp=p,0p=0
(vi) Auwp) = Qup

(vii) A(ptq) = Ap + Aq , O+)p = Ap + WP -

This means Rn is a vector space.

Inner Product:

™ {xll'll'li:n} g = (Fll“'r?n)

n
prq = 121 zi'jri = :1?1 # T :Lnyn
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Properties:

¥ p,g,r e B, AeR

(1) p*p20

(11) pp=0<=>p =10
(111) p*q = q°p
(iv) pe*(gtr) = p*q + p°r

(v) (Ap)eq = A(p*q) = p*(Aq) .
|p] = Vpep = L‘xi+ e z: M

Theorem 1.3: (Cauchy-Bunyakowski-Schwarz inequality).

peqa < |pll4| ¥ pyq e R
and '"=' holds <=> p=)g, A>0, if p,q¥ 0.

Proof: Let T = Ap - uq , A,be R« By (1),

0 < rerx
- 22 p*p = 2M4 p°q + uz q*q (by (111),(iv),(v))
2
- lal?lp|? - 2|p|lal p*a + [p]%]al

(choosing A = |q| , u = |p] )

= 2|p||a| {|p]lal = @)}
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and hence p*'q < |p|la| + If equality holds in this last expression them

work backwards through the proof to obtain

lpl
0=r=|qlp - |pla » 1.e. PP 0

Corollary 1.3.1: |p*q| < |plla] , 4.e., for any n-tuples {xl.....xn} .

(yl.....yn)
|;-1y1 +* oo ¥ znyni < {::i # sae ¥ xi lfz{yi + oo +yi}”2 .
Proof: Exercise 1.19.
Corollary 1.3.2: (Triangle inequality).
llpl-lql| < o+ al < Iol + lal .
Proof:
[pra]? = (p+a)e(ptq) = p*p + 2p°q + a°q
= |p]? + 2p0q + |a|?
< Ipl? + 2lpllal + lal? (CBS inequality)

(el + lab?
-- |P+':I| i IPI " |q| o

The left-hand inequality follows from this as in the scalar case.
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Properties of Norm:
@ |p| 20 ¥pekR
(11) |p| =0 <=>p =0
(141) |»p] = |A]lp]

(v) |lpl=lal| = |p + q] < |p| + |al

An interval in A" :

I-le...xIn

where I, are intervals in R , 1 = 1,.4.,0 . I 18 called a closed interval

i
if I, are closed intervals in R Jiveny Ct;_f.hi. =\ s
2 3

Interval in R

Interval in &

Theorem 1l.4. (Nested interval property). If {Ik} , 1s a sequence of closed

intervals in R® such that I, < I , k=1,2,... , then

n oL 4
;A | ¢ .
k=1 ¥



T

Proof: If Ik = I‘kl WL W Ikn y k= ),2,.,.. where Ik.:l. are closed

intervals in R then IHl,iCIk,i s k= 1,2,... and {:Iki!‘ff' for

gach 1= 1,.ensll » Listh,
BxiEIkivk M i-lgnlogn

(xl.....zu}eIle...XIkn-Ik.Vk o b 0

FUNCTIONS
T T S

Definition: A subset f of AxB 1s a function from A to B if

{!:_Fl}-(ln?z) € f => ?1 = Fz *

Write: £ : A+ B ("f is a function from A to B").

Notation: If (x,y) € £, y= £(x)

Ry = {y : (x,5) ¢ f} , the range of f

D

- {x : (x,y) e f} , the domain of f£

1f UCA.,EGJ}-{H::}:::E‘H} , image of U . If vcn,f'lm-

{x : £(x) € V} , inverse image of V .



T

Example: Consider f = {{x,xz} t=1<x<1} (.. £(x) = x?) £i1R+R

Dy = [-1,11 , R;=1[0,1] ,

1
£([-1,3D) = 0,11 , £(-1,3D = %.—}g}

Definition: A function f : A+ B 18 one-to=one if it also satisfies

(xllr}!(ley} € f - :1 = ‘2 L]

1-1
Write: £ : a{——-)—:- B .
(1-1)
Note: f : A > B8 then {(y,x) : (x,y) ¢ £} 1is also a one-to-one func-

(1-1)

tion, denoted £+ 3 B > A called the inverse function of £ .

NWotation: If f : A+BR , g:B*+C

gef(x) = g(f(x)) composition of g with £

-1
D™ f (B

g
Example:
£: R+ R £(x) = (|x|,x*+1)
g Rz + Ez glu,v) = (utv,u-v)
2

gef(x) = (|xf+ 12+1.]:|-:2-1) s
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Exercises.

1.20: ]p+q|2 - |p-q[2 = 2{|plz+|q|2} ¥ p,q € R© (Parallelogram identity).

1.21: p = (xl.....xn}

x| < lp] < Vo sup {lxglseenslx |}

2 2
1.22: |p+q|2 - Ip; e |qi <m> peg =0 .

In this case one says p and q are orthogonal,

1.23: Is it true that

Ipta| = |p] + |4l

<=> p=Ag or gq=Ap with A > 0?7

1.24: Two sets A and B have the same cardinality if there is a one=to-
one function ¢ : A+ B such that ¢(A) = B .and q:-]'(EJ = A . Show

that the following sets have the same cardinality:
(a) N = {1,2,3,...} and {2,4,6,...} .

() [0,1] and [0,2]) .

() (0,1) and (0,%) = {x: x>0} .

(&) [0,1) and [0,1) .

1.25: A set A 1s said to be finite if it has the same cardinality as an
initial segment 1{1,...,n} of the natural numbers and is said to be
infinite otherwise. (This means the elements can be labeled a,,...,8, o)
Show that a finite set of real numbers contains its sup and inf.

(Hint: induction.)



1.26:

1.27:

1.28:
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A set A 1is countable if it has the same cardinality as N , the set

of natural numbers, or is finite. Otherwise it is said to be uncount-
able.

Show that a countable set need not contain its sup or inf, (countability

means the elements can be labeled {al.az,...} 8

Show that the union of a countable collection of countable sets is

countable., [Hint:

-~ e
Sl : Ell [ ‘12 » 513 i ema

>
52 : 321 » 899 » 8pg 5 ses
T &

53 H l31 » 332 # I33 3 sww

The elements may be "counted' by the scheme indicated omitting repe-

titions., Deduce that & is countable.

[0,1] 4is uncountable. [Sketch of proof: Suppose
[0,1] = {al,uz....} . *

At least one of the intervals [ﬂ;%] ’ E%f%] 5 E%.l] does not contain

a, i call this interval I, . Subdivide Il into three closed subinter-

1
vals; at least one of these does not contain 8y » call it 12 . Con-
tinuing like this we obtain a nested sequence of closed intervals In =
In ‘ In F] n= 1,2,1.- ]
oo
e a ¢ n y mm L2l e
LA

=]
But n Ik # ¢ so there exists a number x ¢ [0,1] » x # a ¥n
k=1

contradicting *.]
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Convexity:

Definition: p,q € B° , p#4q

(1) {p+ t(g=p) : t € F} 1line through p and q .

(11) {p + t(gq=p) : t € [0,1]} line segment between p and q .

Definition: A subset C of B® is convex if
i.e. 1f p,q € C then the line segment between them is a subset of C .

Example: S = {p : [p| < 1} 1s convex.

Proof: |p| <1 , |qf 21.

=> |p + t(q-p)| = | (1-t)p + t q|

< |a-t)p| + |tq| (triangle inequality)
= (1-t) |p] + t]q] 0<tsl
L(Q=t) +t=1

s p+t(g-p) es , 0<t=<1l , i.e. 5 18 convex.

Exercises:

1,28: Prove that {p : |p| = 1} 4s not convex.

1.29: Prove that {(x,y) ¢ Rz : y > 0} 1is convex.
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1.30: Let C be any collection of convex sets. Show that nl 1s convex.

Is uC necessarily convex?

1.31: The convex hull H(A) of a set A 1is the intersectiom of all convex
sete containing A as a subset. Prove H(A) i1s convex, What is

H(A) if A 1is a set containing two points only?

1,32: A subset C of R 4s acone if {tx : xe ClcC forall t >0,

(1) Prove that a cone C 1s a convex set if and only if

{eby : xeC,yecClccC.
(11) Draw pictures of convex and non-convex cones in R? .

Exercises p, 1l4=15 (Buck).

TOPOLOGY
e

Definition:
(1) 1If P>G,anRn then
B(p,»P) = {p ¢ |p=p,| < o}

is the open ball of centre P, and radius p .
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(11) A neighbourhood of P, is any set U which contains an open ball

with centre P, a8 8 subset.

(111) A set A is open in R" 4f it is a neighbourhood of each of its

points.

Examples:
(1) E® .is open in RE"  (Why?)
(2) ¢ 4s open in R (Why?)
(3) (0,1) 4is open in R [If x, € (0,1) then
B(x,6) = {xn-ﬁ,xoﬂi} c (0,1) where ¢ = min{xn.l—:n] .1
(4) [0,1) 1is not open in R [B(0,8) = (=6,8) ¢ [0,1) ,¥6>0 .
(5) {(x,y) :+0<x<1,y=1} 4is not open in e (Why?)
(6) B(p,,p) 1is open tn E° .

To see #6 let P € B(pn,p) . We will show that B{pl,pll c B{pa.ﬂ) where

P Ipl—pol >0 , so that B{Po.p} is a neighbourhood of each of its

1
points p, and hence is open. Let p ¢ B(p,sP,)

lp=p | = |p=py + PyP, |

= |P—P11 * |P1-PGI (triangle inequality)

)

o ]pl-pﬂ| (p € B(pysPy))

P |P1‘Pn1 * ]pl-pD] (definition of pl}
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o P E B{pc,p} also

<o B(pyapy) < BlpsP) .

Open Set Properties.

(@ ¢ and R are open.
(b) A open, B open => An B open.

(c) The union of any collection of open sets is open.

Proofs:

(a) ¢ and R® are neighbourhoods of their points (vacuously true in

the case of ¢)
(b) P,e€ANnB=>p ¢ A and P, € B
=>3p,,p, ® B(p»,P;) <A, B(p ,p,) =B (A,B open)
=> B(p, p) <A and B(p,p) € B where p = min {pl,pz}

- B{po,p) cAngB

# AN3B open.
(c) Let { be a collection of open sets.

P, € ul =3 P, € A for some A e (C
- B(po.ﬂ) c A for some p >0 (A open)
=3 E{Pﬂrp} = B

=> uC open. O
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Exercise:

1.33: Property (b) implies that the intersection of any finite collection of
open sets is open. Show that it is not true that this holds for all

infinite collections of open sets.

Definition: A set A 1is closed in R if its complement
A e o a={peR :p¢al
is open.

Closed set Properties.

(a) F® and ¢ are closed.
(b) A closed, B closed => A u B closed

(¢) The intersection of any collection of closed sets is closed.

Exercise.

1.34: Prove (a), (b), (ec).

Examples:

(1) [0,®) = {x: x>0} is closed in R [(~=,0) is open]
(2) [0,1] 4is closed in R [(==,0)u(l,=) 1is open]

(3) [0,1) 4is not closed in R (Why?)



(4) {p : |p] > 1} 4s closed in E® [B(0,1) is open]

(5) {p : |p| £ 1} 418 closed in F"  (Exercise).

Proposition:
(a) C-V closed

C closed, V open -

(b) V-C open .

Proof:

(a) C-Vv={p:pecC,pdV!

=CnV° , closed since C and v® are closed.

(b) Exercise.

Remark: Notice that there are sets which are neither open nor closed

(e.g. [0,1) in R).

The sets K° and ¢ are both open and closed. We will see that

these are the only ones in E™ with this property.

Definition: 8§ c ., P ig a cluster point of § 4if each neighbourhood of

p, contains a point pe S, p ¥ Py

Remark: A cluster point of S mneed not be an element of 5 , e.g.

E% tn=1,2,...} has the cluster point O .
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Definition: S € RB°

is bounded if 3 p >0 =
s cB(,p) (lpl<p,¥ pes.

Equivalently ¢ ig bounded if it is contained in some closed interval in R

Exercise.

1.35: Prove these two definitions are equivalent.

Notation: I = [a;,by] X «v0 X la,b ] : closed interval in R®

Eui.hi] t gides of I

AT = {hl-al}z FE AR {bn—anjz : dlameter of I .

Note that if p,q € I then ]p—q| < A1) .

Theorem 1.5. (Bolzano-Weierstrass Theorem): Every bounded infinite subset

of R° has a cluster point.

Proof: Let K be a bounded infinite pubset of o 5

. KEcl a closed interval.

1 ¥

Bisect the sides of I1 obtaining 2" gubintervals of I1 . At least ome

of these new intervals contains infinitely many points of K = call it I, .
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Bisect the sides of I2 . At least one of the resulting intervals contains

infinitely many points of K - call it I, .

Inductively, we thus define a sequence of closed nested intervals

Ik each one containing infinitely many points of K . Furthermore
1
(1) 0 < :h(I.k) = F 1{11} s k= 1,244

(2) 3 p,enT #¢ (by the Nested Interval Property, Theoren 1.4).
k

Claim: P, is a cluster point of K .

(3) Ifnot 3 p>0m» B{pn,p} contains no points of K (except

possibly p_ )

3k-u<2Tlll{Ill<n (Why?)

0 < l(IkJ <p (by (1))
If pel lp-po| SML) <p, 1.8 pE B(p,sP) » 1.e. I, < B(psP) -

But I contains infinitely many points of K , contradicting (3). There-

fore P, is a cluster point of K .
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Theorem 1l.6: A subset K of Rn is closed

<=> K contains all of its cluster points.

Proof: "=>" : Let K be closed. Let p_ be a cluster point of K . If

P, d K (l.e. P, € KF} then since K¢ 1s open
Jp>0 »Bp,p) K
il.e. B{Palﬁ') NK=¢

contradicting that Po is a cluster point of K.
s P, €K .
"¢a" : Let K contain all its cluster points. If p_ € K° then
P, ¢ K and is not a cluster point of K.
= 3p>0 = B(p,p) c K
-z K© open => K closed .
Definition:

(1) A collection G of open sets is an open cover of a set K 1if

KCUG -

(11) A set K in " 1s compact if every open cover of K has a finite

subcover.
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Examples.

(1) A finite set is compact.

(2) [0,) 4is not compact [Let Gn = (=1,0) , = 1,2,.ss » {Gn tn=1,2,...

is an open cover of [0,2) ., There is no finite subcover. (Why?)

[0,2) 41is not compact.]

(3) (0,1) 1is not compact. (Exercise.)

Theorem 1,7: (Heine-Borel Theorem). A subset K of F° 1s compact

<=> K 18 closed and bounded.

Proof: "=>" : Let K be compact.

(a) K 1s closed: Let Py be any point in r ; wve wish to show that
B(*pn.zpll c K° for some p > 0 so that K 1s open and hence K

is elosed. Consider
- {p: |p=p_| > l} (open set)
Gk ¥ o k s

C= {Gk tk=1,2,...} covers R = {pu} and, in particular, & covers
K . Since K 1is compact there is a finite subcover {Gk tid=1,,,.,m}
i

of K. Let kﬂ-ml:l:[ki:i-l,_..,m} . Since Gi:-[:j i 4> .,

K c G, , and hence G: = {p : IP'PDIE%}CKC .
o )

o Blp,) © K°
o

s Ke- open {1-&- K Clﬂ.ed};

}
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(b) K is bounded: Consider G, = {p : |p] < k} = B(0,k) (open).

{Gk t k= 1,2,...} covers E™ and hence covers K . Therefore, a finite

+1=1,...,m} of K exists since K 1s compact. Since
1

subcover {Gk

G, 26 4f 1<3,Kc@

. 4 kﬂ,kﬂ-m{ki}.

"'*'IP[ikn:”FEK .

"em" Let K be closed and bounded.

If K is not compact then there exists an open cover by G = {Gor.}
of K such that K is not contained in the union of finitely many Gm'a "
Now, K 1s bounded so K < Il , some closed interval, Bisect the sides of
1, as in the proof of Theorem 1.5 (Bolzano-Weierstrass Theorem). At least
one of the resulting 9"  olosed intervals intersects K and this intersection
cannot be covered by finitely many Gu's + Call this I, . Proceeding like

this we obtain a nested sequence {In} of closed intervals each of whose inter-

sections with K cannot be covered by finitely many Gu'n . Further

1{11}
{1} A(Ik) - k-'l L] k - J'lz!"' -
2

There is a point P, € Ik , ¥ k (nested intervals theorem), and as in the
B=W Theorem, P, is a cluster point of K .
e P, € K , since K is closed (Theorem 1.6)

s P, € Gu for some o (G covers K)

o P, € B(po.p) <G, ,some p>0 (¢  open)

3k-1{1k)'=p (by (1)) .
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If g« Ik 5 fq—pn| i_l(Ik} <p

&% qe B(pn.p}

"‘ Ik < B{I’o!p) c GU. L

Therefore the intersection of K with Ik is covered by one Gq contra-
dicting the definition of Ik . So our assumption that K is not compact

must be false. [

Definition: A subset D of R 1s disconnected i1f there exist open sets

A and B such that

(1) AnD¥ ¢ ,BnDe¥ ¢
(11) (AnD)n(BnD) = ¢
(1i1) (AnD)u(BnD) = D .
A and B are called a disconnection of D .

D 1is said to be connected if it is not discomnected.
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Examples:

(1) ¥ =1{1,2,...} is disconnected [{dw;%},f%.WO is a disconnection of

N}'

(2) @ 1is disconnected [{—m,ﬁ],{ﬁ,ﬂ} is a disconnection of € ].

Proposition: [0,1] dis connected.

Proof: Suppose [0,1] s disconnected. J A,B open in Rw
(1) An [0,11%¢, Bn [0,1] # ¢
(i1) {Miulll)ﬂcﬂﬂ[ﬂillj = ¢

(1i1) (An[0,1])u(Bn[0,1]) = [0,1] .

We may suppose without loss of gemerality that 1l e B . Let
c = sup(An[0,1]) ; + 0<ecx1 (Why?)

% cedAduB (l.e. ce A or ceB) .

1If ceA,ceAn[0,1]. But 1B so

(11) => c e An [0,1) ; since A is open there exist points in
A n [0,1) exceeding ¢ contradicting c = sup(A n [0,1]) . If ce B,
(c=6,c) ¢ B for some & > 0 (B open) so if ¢ > x, ¥xe An [0,1] every
number in (c=8,c) 418 also an upper bound of AN [0,1] egain contradicting
the definition of ¢ . Thus no disconnection of [0,1] exists, i.e., [0,1]

is comnected. O
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Theorem 1,8: E® 1s connected.

Proof: If F° 4is disconnected, there exist open sets A,B c F® such that

(1) A+¢ , B#¥9¢
(1) AnB=¢

(111) Au B =R* .

let pe A, qe B and consider

A = {t e R : p+ tlg-p) € A}

Bl = {teR:p+ tlg-p) ¢ B} -

A,B open in R" => A, » By openin R (this is not obvious s0 think about

1
it). Now (1), (11), (1ii1) above =>

{1}1 *1 n [0,1] ¢ ¢ , 31 n [0,1] #¢ (0 € 41 2 3 & 31)
(11), Ckln[ﬁ.llln(ﬂlnln.ll} =¢

(111),  (A;n[0,1)u(B;n[0,1]) = [0,1] .

So 11 ) 31 is a disconnection of [0,1] which, we have seen, is connected.

So R® 1is commected. [

Corollary 1,8.1: The only sets in E" which are both open and closed are
F* and ¢ .

Proof: 1If A ¢ R° , ®, is both open and closed then so also is A, A and

A® would provide a disconnection of R" . [J
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More restrictive notions of connectedness are gometimes used. A
set C 1is polygonally connected, if for each pair of points Pp_ » P € C,

there is a finite subset {Pl‘""pm—l} of C such that the polygor
{?1_1 - t{pi-pi_1) : t e [0,1] o 1= 1,000,m}

is a subset of C . C is arcwise connected if, for each pair of points

p,q € C there is a path joining p and ¢ lying entirely in C (i.e.,
there is a continuous function £ : [0,1] + C such that £(0) =p , (1) = q ).
either of these types of connectedness implies connectedness in the sense adop-
ted here. However the converse is not true; e.g. {(x,y) € Rz ; x%0,
0<y=< :2} v {(0,0)} 1is connected (in fact arcwise connected) but is mot
polygonally connected; {(x,y) € R : y = sin % , x$0}u{(,y :-1<y21}

i{e connected but is not arcwise comnected.

Exercises:

1.36: Prove that the intersection of any finite collection of open sets is

open [use Property (b) and induction].
1.37: Prove that {p : |p| < 1} d4s closed in R".

1.38: Prove that a subset U of F® 1is open if and only if it is the umion

of a collection of open balls.

1.39: If A 4is a subset of A then X , the closure of A , is the inter-

gection of all closed sets which contain A as a subset.

(a) A 1is closed,



1.40:

(b)

(c)

(d)

(e)

(£)

(g)

(h)

If A 1s a subset of B then A° , the interior of A , is the union

i Pl v

(AB) = AuB

$=¢

Observe that A is the smallest closed set containing A .
Prove that B (0,1) = {p : |p| < 1} .

If A and B are any subsets of R then is ann-Ini?

of all open sets contained in A .

(a)

(b)

(e)

(d)

(e)

(£)

(g)

(h)

AD is open

A ek

(ﬁ“}"‘ - 10

(anB)® = A° n B°

& = B

Observe that A° is the largest open set contained in A .

Prove that (B (D,l})n = B(D,1) .

Is there a subset A of R such that A = ¢ and A=R?



1.41:

1.42:

1.43:
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Let Ac E™ . The derived set A' of A 1is the set of all cluster

points of A .

(a) Prove that A' 1s closed.
(b) Prove that A=AuUA'.,

(¢) Theorem 1.6 says that A 1is closed <=> A' ¢ A . A set A such
that A' = A 4s called perfect. Give examples of perfect and non-

perfect closed sets.

If A< E® then 9A , the boundary of A , is the set of all points p
such that each neighbourhood of p contains a point of A and a point

of A° ,

(a) Show A closed <=> 3A c A .
(b) Show 09A 4s closed (i.e. 3(3A) c 3A) .

(c) Show 9A =4 - A° .

For each of the following sets state A , A* , A" , 3A .

(@ {peR*:0<]p| <1}
1
(b) LE e Rsaw 3,500l
© (& e :am=1,23,..}

(@ {peR :|p] <1} .



1.44;

1.45:

1.46:

1.47:

1.48:

1.49:

1.50:

1.51:

1.52;

e B

Without using the Heine-Borel Theorem show that {(x,y) : xz+?2 <1}

is not compact in R ?

let A and B be open in R ; prove that AXE 1is open in Rz .

Show that a finite subset of i is closed.

Show that a countable subset of R is not open. Show that it may or

may not be closed.

Let S5 be an uncountable subset of R . Show that S has a cluster
point, [Hint: Show that at least one interval [n, n+l] must contain
uncountably many points of § .]

Show that a closed interval is a closed set.

Let Qz denote the set of points in R2 with rational co-ordinates.
What is the interior of Qz ? The boundary of Q2 7 Show that Qz is

not connected.

Show that Qn is not comnected. Show that {uz}c is connected - in

fact polygonally connected.

Show that an open set which is comnected is polygonally connected.
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CHAPTER TWO

LIMITS, CONTINUITY AND DIFFERENTIATION

SEQUENCES

Definition: A sequence in E* 1s a function p : N + e Sequences are

usually denoted {Pk} where p, = plk) .

1) py -% 3 {pk} is a sequence in R .

(2) P = E‘. Bin(kz)) : {p.} 4is a sequence in R? .
k k k

Definition: A sequence {pk} in R* is convergent 1f 3 p € R® such that
for each neighbourhood U of p 3 a natural number N = N(U) for which

k>N =>

pkeﬂ.

Write: lim p _=7p , O 1im {pk} = p . The sequence {pk} is said to be
]

divergent if it is mot convergent. Equivalently; {pk} converges if there
4s a point p € B such that for each € >0 I N=N(e) e ¥ = 1if k2N

then

lppl <€ 3

p is called the limit of the sequence.
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Exercise:

2.1: Show that the two definitions are equivalent.

Proposition: A convergent sequence cannot have two limits.
Proof: Suppose lim {p.k} =p and 1lim {pk} =q. If >0 then

IN =2k2N = [p-p|l<e
and

E[Hz-kiﬂz -> |pk-q|<5 .
Let k = sup {Hl,ﬂz} ; then

la-p| = la-p+p, Pl
< Ipgmal + Ipyopl
£ e .

Tl;erefnre |q-—p| < 28 for each € > 0 ; thus f‘-‘l"‘PI = 0 (Archimedean Property),

i-e-l q L p -

Examples:

(1} :k-lyk--l-’z,v-i lk_mika-l .

(2) lin%- 0 (from the Archimedean Property)

oo
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Remarks: Notice that if lim P = P then p 1s either

(a) a cluster point of the set {pk s k= lylieust OF
(b) {pk} is ultimately constant and equal to P .

(Le. 3 Nok28=>p =p) HNote also lim p, = p <=> lim ka—p! =0 .
13 ko

Theorem 2,1: A convergent sequence is bounded.

Proof: If 1:lm.'_pk = p, 3 anatural number N such that k > N => |pk-p| <1l.
|

By the triangle inequality

o, | = Ipl < Ippl <2 » 1F k2N

ol <2+ |p| 4f k2

LA |Pk] = sup {IPIIU"'!IPﬂ_llil + IP!} , k=1,8,... g

le: If Py = k. {pk} is divergent. By the Archimedean Property {pk}

is unbounded and so is divergent by Theorem 2.1,

Definition: If {kj} is a sequence of natural numbers such that
ky <k < kq < +os  then {pkj} is called a subsequence of {pk} N

Theorem 2,2: A bounded sequence has a convergent subsequence.

Proof: There are two cases tO consider, Either {pk 1 k= 1,2,..s} 18 2
finite set or it is infinite. 1f it is a finite set then there is at least one

value p such that Pp ™ P for infinitely many k - these terms in the sequence



1

form a convergent subsequence of {pk} . In the other case {Pk pikiw Lodeaael

is a bounded infinite set and so by the B.W. Theorem it has a cluster peint p .

!

Consider B(p,1) ; 3 k; such that p, € B(p,1) , If k, is such that

]

1 1
ij_i B(p, j) there exists kj >k 3 such that ij+1 € B(P,—j+1) go by induc-
tion there exists a subsequence {Pk } of {pk} such that ka -p| < &
3 . :
4=1,2,.2. «» The Archimedean Property implies limp, =7p . 0
o K

Corollary 2.2,1: Kc &',

K compact <=> each sequence of points in K has a subsequence cover-

gent to a point in K.

Proof:

"=>" : K compact <=> K closed and bounded (Heine-Borel). Thus any
sequence of points in K is bounded and so by Theorem 2,2 contains a convergent
subsequence, The limit of this sequence is either a cluster point of the sequence
(and hence of K) and so is contained in K (closed) by Theorem 1.6, or else the

sequence is ultimately conmstant so its limit is in K in this case also.

"<u" : Suppose each sequence of points in K has a subsequence convergent

to a point in K .

K is closed: If K 1is not closed there exists a cluster point p of K=
p { K. Thus there exists a sequence of points p, ¢ K= limp =p ¢ K

contradicting our hypothesis.

K_1is bounded: If K is not bounded 3 p, < K » kal >k, k=1,2,..0 .
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{pk} {g thus an unbounded sequence and each subsequence is unbounded and
hence divergent again contradicting the hypothesis. Thus K 1s closed and

bounded and is compact by the Heine-Borel Theorem. 0

Theorem 2.3: A sequence is convergent and has limit p <=> each subsequence is

convergent and has limit p .

Proof:

——m——

"a>" Suppose lim p, = p } i.e. for each € >0 JNwj>N=|p-p| <e.
k Ay ]

oo

1f {p, } is a subsequence of {p,} them j >N-=>k >4 >N=|p -p| <€e.
kj k n Fhaniiia kj

Thus 1lim p, = p also.
yro Ky

"<u" Suppose each subsequence {p } of {p, )} satisfies limp ™ P «
ky K el
{pk]' is a subsequence of {p, } so this part is trivial. 0

Example: If p, = (-1}]‘ : {pk} is divergent.

mp, =1 , limp I
i o | 2kHL

1f {P‘k} were convergent both of these limits would be the same number by

Theorem 2.3.

Theorem 2.4. If {pk} and {qk} are sequences in E® such that

1im p, = p , lim =q ,
o € o
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then

(1) 1Um (p,+q,) = phg
- EE

(11) 1im p, * q. = p*q &
e

Further if {xt} is a sequence in R such that

1im = X
e xk
then
(111) 1lim x p, = Xxp
w2
1 1
(1v) 1:Lm—p‘__--£p (if x ¢ 0).
oo ¥

Proof: Exercise 2.2.

The following result shows that it is sufficient to consider

only sequences in &,

Theorem 2.5: Let P " (xn,...,xﬁk} en? . {pk} is convergent <=> each of

the sequences {xik} is convergent, i = 1,...,n . Furthermore,

1im p, = p = (X ,eue;% ) <=>
ln-mk o n

lim x

mx ,1=1l,.,.p0 o
1 ik i



Proof:

Mgt

]‘Pk-Fl = lzik-zil » k

(Exercise 1.21). Finish the proof.

(T | = : =
< lpk-p|£v’r_laup E l,00s,0n} « Thus 1if
E
. % 5 L Deeesilt s Bi0AR B> 03N, B EZW W ol T e S
ool S Sl 1 1 s
{= 1,40e,0 « Let N = sup {Hi=i-1...,.n} go k>N =>
|x, =%, | <= » 1= less,n=> lp,~p| <€=> lmp =P -
i €T K T b
Examples.
(1) 1im (%,1—2+1) = (0,1) . Use Theorems 2.4, 2.5
Koo K
m%- 0 (Archimedean property). Therefore,
ko
1mnd; =0  (Theorem 2.4) lmis+1=1 (Theorem 2.4).
oo k Ko Kk
3
2 il
@ 1unZ <2 since - K gnd mi=0
e iz K+
> 1m%-1m%-u .
Koo oo

- 1,2,.;- L]

i

i i 1,.1-.“ .
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Exercises:

2.3:

2.43

2.51

and
Let x <z <y . Prove that if {x} and {y} are convergent

have limit c¢ then {zk} is convergent and has limit ¢ .

Discuss the convergence or divergence of the sequences whose

is given.

(a) ;—:'f

(®) ';l; n

(c) —22
In+l

(d)

(e)

(£)

2n2+3

3n2+1

E%iﬂ)

nl
{{'1) ,; .

nth terms

If {:n} is a sequence of nonnegative real numbers which converges to

x , show that lim vx =vx . (dint: x - v/x=

e

X, = %
v";_n+f':':

if x40 .)

Let x = Vo+l - Vi . Discuss the convergence or divergence of {:n}

and {fg-x ;
n

Show that & set € in R" is closed if and only if each convergent

sequence in C has its limit in C .

Show lim p, = p <=> lim |pk-pt w0 .
koo v
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2.10:

2.112

2121

T

1f 0<r<1 show limr"

-

=0 .

[Hint: T = E%E , 8> 0. Show (l+s)n >1+ns,n"= B Y |
1 1

0 <1 = <
(1+s)" e

.] Show

S b
limr =

-

r ¢ &£ r=1

and {r} is divergent 1f r = -1 or |[r|>1.

x
(Ratio Test) Let {x } be such that 1im [—E"—J'I = r ., Show
o o

(a) If 0<r<1l, then 1m:ﬂ-ﬂ v
el

() If r>1, then {:n] is divergent.

(¢) If r =1, give examples which show that {xn} may be convergent

or divergent.

[Hint: In (a), if r <8 <1, show that for some constant A and all

large enough n , 0 j_lxn| <A g® . Use 2.9.]

n
Show that the sequence {Er} has 1imit 0 1f -1 <x <1 and is diver-
gent 1f |x| > 1.

n

Show that 1im :‘:T = 0 for all real numbers X .

nee
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2.13: If x> 0 show lim 2™y,
n—lﬁ
[Hint: If 0 <x <1, given € > 0 3 H-nzﬂ-?*l_,,lm"x‘l
ﬂﬂ‘l??:l.
1 1
. < <x<1 (Why?)
(e
I S 1f n>N
1+€ -
BO

|x”“-1| <1—E+E<:e. if n>W.

Do the case x > 1 .]

2.341 ‘Show LmatPwd .

n-=e

[Hint: Let ::n-n”“-lbu. Show n = (1+:n}“>55§11z§ and

hence lim e 0 .]

Ild’lt’l = 1 , BShow

2.15: (Root Test) Let {x } be such that lim lln

n—)-m
(a) If 0<r <1, then J_'lm::n-ﬂ.
wlﬂ

(b) If r> 1, then {xn} 1g divergent.
(c) If =1, {xu} may be either convergent or divergent.

2.16: If a and b are nonnegative real numbers show lim (an_._hn)lfn =

-+

max {a,b} .
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Definition: A real sequence {zn} is
(1) increasing if x; < X, £ X3 £ «xe and is

(11) decreasing 1f x; > X; 2 X3 2 <+ »

{xu] is monotone if it is increasing or decreasing.
Theorem 2.6: A monotone sequence 1s convergent if and only if it is bounded.

Proof: Let {xn} be an increasing sequence.

{xn] convergent => {:n} bounded (Theorem 2,1)
{xn} bounded  => x = sup {:n tn=1,2,sss} exists. If € > 0, then

x~¢ 1e not an upper bound of {x } so J N® x-e <x <x. Since {::n} is

increasing
> N => E < £xX <X
n > X~ Wix £
f.e.n2Ne> |x-x| <e .
Thus the increasing sequence converges to its supremum. )

Remark: Given any ordered fied F , each monotone bounded sequence in F 1is

convergent (with its limit in F) if and only if F 1is complete,

Examples.
(1) lim " = 0  if 0<r<1l. Df_rn-l'l-rrn_grnfl so {r"} 1is
b o]

decreasing and bounded, hence convergent with 0 < lim i | {r™1} 1s a sub-
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sequence. of  so 1im rn+1 = 1im ™ « But 1lim rn+1

= r lm " < lm "
1f 1dm r° # 0, a contradiction. [A different proof of this is outlined in

Exercise 2.9.]

2 -u— - = --EL-IH.—]' 4
& = an zn B ii: nn 0 I!":1-1'-1 2n+1 Zn an
o OSE L, S8

r 3 {an} is convergent and lima >0 .

e O
] - -E-!:l'- -1 - -
Now lim an lim an+1 1lim 70 nn E-lin an > 1im a 0 .

(3) a

l.n
2 {1+n} I,{11‘.1:1] is convergent and Eil:l.maniE.

l.n
i - {1+;}

n
-1+3-24 8 ‘;1 v, +“(“E£i;i3'2 ;_1 +'E':'lﬁ'
n n n
-1+1+%T{1-%}+%-I—{1--:';)(1-%1+...+@;1;1—{1-%J e &
+a-b...dz.
"n+1'1+1*§_t(1“ﬁ}+%T{1'7.-'t_1){1'?i'1')+'” .

Each term in the expression for 8 is no greater than the corresponding term

in a1 (and there is also one more term in 8 41

>a 80 {an} 18 increasing; it remains to show it is bounded.

than in an}. Thus

B+l



= B2 i

R ! 1
2.5 8, & LWL RgpElr e ot
1
l-—-o-
T
<1+1+%—+i+,..+,1—--1+ B % 3
= a2 n 1 =
A 2 1--"2-

Thus 2 < lim (1 +%}n <3, This is sometimes taken as the definition of e .

-k
J_*rn-l-l
Note: We used the fact that 1+r+...+rn--—1-_—r— if r+1l. You
will recall that this is easily proved by denoting the left-hand side by .
and showing 8 =T 8 -1-—rn+1.
n n
(&) If A>0 >0 and % .. "% (x +2) , n=1,2 then
> oo TN Bl Yl T Ay
1lim = - VA . This is an algorithm for computing square roots.
=0
Xy > 0 => x >0 (by induction)
2
2 1 2 A
X 41 '?(‘n +2¢\+x2}
n
2 %59 SO | A2
X 41 -A=7 (x -2A+—§-}-E(xn-;-} >0
x n
n
S e g x .. > VA ne=1,2
ol = e okl — . s
:nz-';x 5 n-E*S.IIi {*}
N S :ﬁ-?{: +x'] -i-{xn x)
n n
1 xnz-.ﬁ.
=3 >0 by (}) N=2,D5--¢ o



e

Thus {xn] is decreasing and bounded below by VA > 0 (-E:e-r n -E’..?.)

S Uax =L>7A ,

But X .. 2(1n+xn} >L=3 0L+ 5L A=>L=vyVvA .

The results on monotone sequences are interesting in that, unlike
the preceeding examples, it was not necessary to first guess the limit of a
sequence in order to show that it converged. Fortunately we are able to do

this in general.

Definition: A sequence {pu} ta 2% 45 a Cauchy Sequence if, for each €> 0 ,

+here exists a natural number N = N(g) = if n,m > N then
[p=pal <€

Theorem 2,7: (Cauchy Criterionm). {pn} is convergent <=> {Pn} is a Cauchy

sequence.
Proof:
"=>" : Suppose limp_ = p . Thus, for each €> 0,3 N> n > N =>
o

}pn-p| < % « Hence, if n,m > N

le gl = [p ~pto-p,|
< leymel + [p-pl

£ E
(—..‘._
g8
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i.e. {p“} is a Cauchy sequence.

"('-" .

(a) {p,} 48 bounded and so by Theorem 2.2 (or the B.W. Theorem) has 2

convergent subsegquence.

Proof: 3N s nm 3 N => |p -p | <1 . In particular,
a2z Ne Ipn_Pnl <1

o> fogl < Ingl 1 -
oo 1pn| < sup {lplll“'ilpﬂ_llllPH]"'I} .
(b) If lim {pnk} = p then 1lim {Pn} = p also.

-l <% .

"

But {pn} is a Cauchy sequence, 50 3 N, mm> N, => |pu—pm| < % . Choose

Proof: 1lim {p } = p 8o, for each E>ﬂ,3ﬂ1 and k > N, => |p

k = sup {N;,N,} . Then if =n > sup (NN, }

lo el = 1Pn""'nk""’nk'1’1

< 1pn-pnk| + |p_ -pl

n.k

£
<=4+
2

ra|m

=E

Thus lim {pn} =p, l.e. {pn} ig convergent.
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Remark: An ordered field F 1s complete if and only if each Cauchy sequence

in F 1s convergent (with its limit in F).

Examples:

(1) {(-1D"} 1s divergent. 3. =", |% 41%,] = 2 for all n so {x}

is not a Cauchy sequence.

= 1 1
(2) x 1+ 7+ ee ¥ o {xn} is divergent.

1 1 1
e W S S ST
1 1 1
28 YRt %
e e
il S

Therefore i:2n-xn| 3;% for all n so {lh} ie not a Cauchy sequence.

Exercises:

2.17: Show that the following sequences are divergent by proving directly they

are not Cauchy sequences.

(@ {n ® {n"a-D3.

2,18: Show directly that the following are Cauchy sequences and hence convergent.

n+l 1 1 1
(a) {T (b) ﬂ""i'i""ﬁ"”"""n_l} :
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2.19: Determine whether each of the following sequences is convergent or diver-

gent. In the case of convergence find the limit,

2
(a) {w} ) o tl
(14n) (2+3) (n+1)

v Ty

n"+1 2

1
gin(= nm) + 3n
(- Ty ) — }

n

1 2
iin{3 nm) + 2n % {n2+1
n 3

n +1

(g) f cos® u.:% am) }

(1) {% n - [%‘l]} where [x] denotes the greatest integer not

exceeding x .

2.20: For what values of x are the following convergent, divergent? Wherever

you can, give the limit.

n
® N ()  {(a+1) (2t2) x"}
n n n-1
(c) (==-t=n_, o EELE__F 4
. xn+1 + n+l nxn-l +1
(e) {E; (£) {n! x"}

2.3y IE a = 2.8

lim {an} =3,

el ™ Vé+ta , show that {sn} is increasing and
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2.22: Show that the sequence 1 , 1.4 , «vs , 8 2 eee s in which

(Zan+3}n“+ = 4 + 3a_ , is monotonic and that lim {ﬂn} =2 .

1

2,23: If a, =1 and nn_‘_l(lﬂn} = 12 sghow that 1lim {un} =3 , [Hint:

show {a } 1s increasing and {nzn} is decreasing. ]

n+l
al+...+a
2,24: (a) If 1lima_ =0 , show 1lim 0 =0 where O = .
n n n n

oo n-He

(b) If lima = a , show 1lim 0 = a , [Hint: 1lim (an-a} =0,
n-i'ﬂn n—bﬂ?n e

use (&) with a replaced by a -a o)

(c) Give an example to show that {ﬁﬁ} may be convergent even though
{an} is not.

2.25: We have seen that 1lim xlfu

n-+.o

=1 4f x>0 (Exercise 2,14). An easier

proof is now available to us from our results on monotone sequences.

Show {xlfn} is monotone and bounded, hence convergent. Consider the

{:l!ﬂn

subsequence } and deduce the result.

2,26: Let {xn} be a sequence of positive real numbers. Show

x
1lim ol r => 1im xulfn -r

oo zn o

[Hint: If r > 0 and € > 0 then there exist positive real numbers A,B

and a natural number N such that A(r-¢)" j_xhlﬁ B(r+e)® for n *N.]
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2.28:

2.29:

2,.30:

o

n
By applying Exercise 2,26 to the sequence LET} show that

lim{—-T}-e (e = lim (1+-——) N

(nl)
1.n 1 1 1
Let s/ {1+n} » B L+ 97 +2|+... o ARG We have seen that
both sequences are convergent. Show that they have the same limit.
[Eint' First use the Binomial Theorem to show 8, = 1+ 1[ él (1 - %ﬁ +

(R + {1-“} (R (1"' nljitﬂ. L] HE!'I:. Wit-h m fiﬂd. ﬂn'd nf_ll »

show

1

1
g8 =1+ s

m=1
n— 1! 1{ )1-- ":1-_

1
2—{1-_)+--t+

and deduce 1lim s_ > t_ for each m .]
erle Bl

Show that every sequence of real numbers has a monotone subsequence

(be careful).

Let F be an ordered field. Show that the following statements are

equivalent.

(a) F 1is complete (sets bounded above have supremums) .

(b) F has the nested interval property.

(¢) Each bounded monotone sequence in F converges to an element of

(d) Each Cauchy sequence 'in F converges to an element of F .
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Discussion: All four statements in Problem 2,30 are equivalent. However (a),
(b), (c) are inapplicable if one wishes to consider completeness for sets which
are not ordered whereas (d) is applicable to any set X for which distance

between points, i.e., a metric, has been defined. A function p : XXX+ R 1is

a metric on X if
(1) p(x,y) 20, ¥ x,y € X
(11) p(x,y) = 0 <=> x =y
(111) p(x,y) = p(y,x) , ¥ x,y € X

(iv) p(x,y) < p(x,2z) + p(z,y) , ¥ x,y,2 € X . (triangle inequality)

The pair {X,p} is called a metric space. A sequence {xn} in X 1s a

Cauchy sequence (or fundamental sequence) if, for each € > 0 there exists a
natural number N such that m,n > N implies I:I(:n.xn} < E . A metric space
{X,p} 1s called complete if each Cauchy sequence in {X,p} 1is convergent (i.e.
dx € X » im p(x_,x) = 0 if {xn} is a Cauchy sequence). For example, the
space {R",p} 1s a complete metric space if p(p,q) = |p-q| . It is easily seen
that p 1s a metric from the norm properties (1), (11), (1i11), (iv) above; Th. 2.7

implies completeness of R .
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CONTINUITY
C——————

Let £ : R B , and let D < E® be the domain of £ .

Definition: Suppose P, € D; f is continuous at p, if, for each neigh-
bourhood V of £ (pn} , there exist a meighbourhood U of p, such that if

pelUnD then £f(p) e V (i.e. £(U) cV).

'"n y il gy )

& il

Equivalently f 4s continuous at p  1f, for each € >0 s 48 6>02

peD, |pp,| <8

=> |£(p) ~ £(@ )| <€ .

Notice: In general & = §(g, po] .

Exercise:

2.31: Prove that the two definitions are equivalent.



- Bl =

Definition: f 418 continuous on D if f is continuous at each point P,

of D .

Example: Let f£(x) =x° ,-1<x<1

D= [-1,11 , £ = [0,1]

l£@=£(x )| = [x2=x2| = | Gex) Gebx )| = [x=x | [xtx |
< lwc) Gl

<2lxx | ,» 1f xx e [-1,1] .

If €>0 let §=3; if |x=x_| <%, xx, € [-1,1] , then

| £(x) - f{xu)] <E

so f 18 continuous en [=1,1] .

Exercise:

2.32: Let f(x) =vx , x>0 . Show £ dis continuous on [0,%) .

Theorem 2,8: Let £ : D+ R D& Rk ; f 18 continuous at P, € D <m>

for each sequence {p } in D such that
1lim {pn} -y,
then

im {£(p )} = £Cp)) -
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Proof:

"s>" 1 f continucus at p =>V¥e€>0,] 8§>0» If pe D,

o <8 then £-£G] <€ Yow 5 €D Y,

=>JN=1f n> N then Ipn-Pu[ &8 a
Hence if n > N , ]'f(pn]-f(pn}] e, 1.8

_— n 0

"<=" ; Suppose 1im f(p ) = £(p ) for each sequence {p_} in D such
n o n

n-Hao

that limp = p . Assume f is not continuous at p_ . Then, negating the
e O o o

definition of continuity, 3 €, > 0 = each neighbourhood U of p_  contains

a point p for which

l£) - £ )] 2 €, -

1
Consider B(p,,2) , m = 1,2,... 5 dp ¢ B{pu.-:;’) » |f(p )-fCp )] 2 €, .

Hence limp =p , but {f(p )} does not converge to £f(p ) contrary to our
o S n o

hypothesis. Hence the assumption that f 1s not continuous at Py is false. [

Corollary 2.8,1:

(1) 1f £,g : R* + " are continuous at P, then f+g and f+g are

continuous at Py *

(1) 1f f;Rn-i-Rm and A : B® + R are continuous at P, then Af is

continuous at p, and -n}f is continuous at p_  if Hpa} ¥0.
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Proof: This follows immediately from the corresponding theorem for sequences

(Theorem 2,4).

Corollary 2.8.2: f : R®* + " . f is continuous at p o 1f and only if each

component of f 1s continuous at P,

Proof: If £(p) = (flip}.....fm(p}) and limp_=p, then 1lim f{pn} =
e e

f(po} <=> lim fi(ﬂ-:: - fi{Pﬂ} s 1= 1l,.0.,m , by Theorem 2,5. 0
n-m

Examples.

(1) D=1[0,1] , £f(x)=1 , 0<x<1

£(0) =0

-

f 1s discontinuous at 0 ; if X is any sequence in (0,1] such that

1im b 0 then f(::n] 1 so 1lim f{tn} -1 £0).
e e

(2) D=R , f(x)-uin% , X¥%0

£(0) =0 .

2 2 f
f 418 discontinuous at 0 since ﬂ ot DT = 0 but £ {W) = (=1)

is not convergent.

The discontinuity in Example (1) is removable, i.e. the discontinuity
at 0 can be removed by changing the value of the function at 0. The discon-
tinuity in Example (2) is essential; no matter what value is assigned to the

function at 0 the discontinuity cannot be removed.
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@ p=R , EHxy) == » @) (0,0
x'+y

£(0,0) =0 .
§ 41 discontinuous at (0,0) . Consider

5 o,
By QE ’ ;i 3

1 L 1 1
1im p_ = (0,0) and £(p ) =5/ 253 =7 ®° 1im £(p ) = 5 # £(0,0) .
gt B n ni nZ 2 gaes n 2
The discontinuity at (0,0) 1is essential since if g™ f% » %;ﬁ ’
1 R e
1im = (0,0) and £(q ) = ] (= + ) = g0
™ e Lo e b
lim £(q) = 3 # 7= Un £(2)) .
n+o - e "
:; 2
@ p=R f(l:.ﬂ-—z—’j' , (xy) ¢ (0,0
x +y
£(0,0) =0 .

f 1s continuous on Rz ¥

AR 22
{“o"’u] # (0,0) : If lim {xn,yn} = {:D.yn} then lim X'y = Xy, and
n*e neo
2 2 2 2
1im (x“ +y°) = (x_ +y)) #0 s0
e B n o o
2
oL O,
i i 1n+?n ’o+Tn

(xh,yu} = (0,0) : Corollary 2.8.2 camnnot be used here since :ﬁ + yi =0 .

However
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i

|£(x,y) = £(0,0)| = —55-1—5 , 1if (x,y) # (0,0)
- i i

{_—i- (x4 + 2:232 - :.rﬁ] - AT

= S ety

X T+ ¥
-1 =1 @wn-0,0]° .
Hence, 1f I(x:?) - (ﬂ'fﬂjl <YIE Ef{x,}r} - f{ﬂ,(}” i

Recall that 1f f : B°+ R , g t R° + F® , then gof is
defined by gof(p) = g(f(p)) the domain of geof being {peD; : f{p}eﬂg] =

-1

Theorem 2,.9: Suppose P, € Ds“ £ then geof is continuous at P, if
(1) £ 1is continuous at Pe and
(11) g 1s continuous at f (po} .

Proof: If {pn} is a sequence in D . © D; such that

limp_ =p
n*“u

o

then {f{pn)} is a sequence in DE such that

1im f(pn) - f {pn} (Theorem 2.8)
e

since f is continuous at p_, and since g is continuous at ﬂpn}
1im g{f{pn)) = g(f(pn}} (Theorem 2,8)
oo

1.e.
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lim gof(p ) = 8°£(p)) -

b

Thus, by Theorem 2.8, ge°f 1s continuous at p .

Corollary 2,9.1: If f : R + & 1s continuous at Py then |f1 : R* + R

is continuous at B

Proof: If glg) = |q| , q ¢ E® then g 1s continsous on F" eince

llal = lq 1] 2 la=q,] -
Thus 1f € >0, [q-q | <€ => |lal = lqI| < & . Therefore gof = |£] 1s
continuous at p, since g is continuous at E{Po} » 0

GLOBAL PROPERTIES OF CONTINUOUS FUNCTIONS

Again recall that if f : E® + ® with domain D c R® and range
£() c B then if Ac 7, £(A) = {f(p) : p e A np} , and if

BcR™, £1() = {p : £(p) ¢ B} .

Examples:

Q) f® =x*,-1<x<1,

o 1 1l 1 =1,.1 1 1
£([0,5]) = [U:E] ’ f([E:Z]} - i‘i’rll - ([I‘Ia]} = [-1,- E]Ut?r]»] .
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(2) f(x) =gin x , -0 < x <o,

oo

£1¢0,1)) = v ([20m, @utD)T) = {(ntD) 3 D)

n=m—o2
L -ﬂ H H_ LN ]
=2 _ 3T -7 0 ¥ % 27 s5m 3w
2 2 i 3

2
(3) f£x,y) = =+ ?2 s (x,y) € R? >
A

f(R%) = {xeR: x>0} ,

2

2
s = {(x,y) :54-+y wel, e>0.,

Y4
£

s e
=

= R 3
x

S = f-lf{r.'.}}

(4) f(x,y) =xy , (x,y) € Rz

£(RY) =R

§; ={(xy) : xy =1}

S, ={(x,y) : xy = -1}
Ya
ol B
2
R @ > R s
RE

{x~axis} v {y-axig} = £Xioh

+ c= £(8)

T 0= £(0,0)

3 m f(sl}

+ =] = f{Sz}
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Theorem 2.10. (Global Continuity Theorem). £ @ R+ F° ., f 1is continuous on

its domain <=> for each open set VeR J an open set U < E® such that

Flwy=unD.

Proof:

Mes" + Let f be continuous on D and V an open set in ;.o

P, € f-lf?) cD then f 4is continuous at P,

f(pa} eV

Since V is open and f 1is continuous at P, » B_G(pu) >0 =

peBlp,8(p,)) nD=>£() eV ,

60 fie. B8 ) nDc £IM Vo e £ M .

Hence, 1f U= U . B{pn.ﬁtpﬂ}} , U is open and (1) implies
Pef (M

e)) Unbe £V .

However, from the definition of U, p, ¢ f-I(?} > Pg € OUnD.

(3) i.e. UnDo> f-lf?) .

So U is an open subset of E* and, from (2), (3),

Unﬂ-f-lf‘i") .
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"em" : Suppose that for each open V c R* 3 open Uc R® such that
Und=itw .
Let p, ¢ D,E>0}; congider V = B(f(pn},e} i 3 Be E" » U open and
UnDm= f_lf?) .
In particular P, € U so U 4is a neighbourhood of P, and
pelUnD=>1f(p) eV .

Thus f 4s continuous at p_ - 0

Theorem 2.11. (Preservation of Connectedness.): £ @ R - " . I D 1

connected and f is continuous on D then £(D) 1is connected.

Proof: Suppose £(D) is not connected; then 3 open sets V, and V, in

P
W V0 ED) b, V0 EO) F 4
(1) [V, n £D)] n [V, 0 £D)] = & .

(111) {?1 n £(0)] v {?2 n £(0)] = £(D) .

By the Global Continuity Theorem (Theorem 2.10) there exist open

sets U, and Uz in " such that

i 8

) » U, nD=frW,) ;

b.nD=f%f 2

1 v

1



30

then
(1)" Ulnﬂft’ﬂ,ilznﬂi-:p (from (1))
(11)" (UlnD] n (Uznﬂ) = ¢ (from (i1))

(111)" (ﬂlnD'J u {anm = D (from (11i))

Thus D is disconnected contradicting our hypothesis that D 1is connected.

Therefore our assumption is false, f(D) 41s connected. O

Corollary 2.11.1. (Intermediate Value Theorem): £ : F®+R. Let D bea
connected subset of F®* and f a real valued continuous function on B-. IE

p,q € D and f£(p) < k < £(q) then HPDED-E{PD)'k-

Proof: If not them V, = (==,k) , Vo = (k,~) provide a disconnection of

£(D) contradicting Theorem 2.11. 0

Example: At any time there are two antipodal points on the equator at the

game temperature.

T(x) : temperature
T(x+2m) = T(x)
We suppose T 1is continuous

Consider f(x) = T (3c+7) =T (x)

£(0) = T(M) = T(0)

£(m) = T(2M) = T(W) = T(0) = T(M) = = £(0) .
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Case (1) : f£(0) = 0 => T(mw) = T(0) .
Case (i1) : £(0) # 0 e.g. f£(0) > 0 => £(m) = =£(0) < 0

=> Jec e (0,m) » £(c) =0

i-EI T(m} - T{C} M

Exercises.

2.31: Show that every real polynomial of odd degree has at least ome real

root.

4 3

2.32: Show that x + 7x~ = 9 has at least two real roots.

2,33: Suppose f and g are continuous real valued functions on {o,1]
such that £(0) < g(0) and £(1) > g(1) . Prove that there exists

x € (0,1) such that £(x) = g(x) . Draw a plcture.

Theorem 2.12: (Preservation of compactness.) £: R+, If D is

compact and f 1s continuous on D then f£(D) 1is compact,

Proof: Let G be an open covering of f(D) . For each V ¢ G there is an

open set UeR»

(1) UnD=ftwm (Theorem 2.1D)
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Since {V : Ve G} covers f(D) , {U:UNnD= f_lﬁl') , VeGl covers D~
a compact set so a finite subcover {Ul'""uk} exists; from (1) the corres=-
ponding V's satisfy foi} & ‘.Ti
contains a finite subcover of f£(0) so £(D) is compact. 0

80 {‘Fl....,?k} covers f(D) i.e. G

Exercise.

2.34: Give an alternative proof by showing directly that £(D) 1s closed

and bounded if f is continuous on D and D 1s closed and bounded.

Hint: If f£f(D) is not bounded Epn eDs Jf(pnﬂ >0 a™ 1,204 s
If f(U) 41s not closed there is at least one cluster point q of
f(0) , q ¢ £(D) 1.e. 3 P, € De lim f(pn} = q ¢ £(D) . Show that each

case leads to a contradiction of the hypothesis.

Corollary 2.12.1: A continuous function on a compact set is bounded.

Proof: f£(D) closed and bounded by the Heine-Borel Theorem. 0
nar\Emﬁ\{
Corollary 2.12,2: A continuous real-valued function on ajcompact set achieves

its supremum and infimum, i.e., it has a maximum and a minimum value.

Proof: Let f be continuous on D (compact). Then £(DJ) 1s a compact sub-
set of R (Theorem 2,12)., Let M = Sup {f(p) : p € D} = Sup £(D) . We wish

to show M € £(D) 1.e. M= f{pn} for some P, * Suppose M ¢ £(D) i.e.
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M>£(p) , ¥PpeD .
Consider
1
8 = 35y ~ 0

g 1is continuous on D (Why?), D 1is compact so g 1is tounded (Corollary

2,12.1).

e JA=0<gp) <A , ¥Ypel

1
<
2
i.e. Iil‘!—f(p} s Yopeld

f.e. £(p) <M=-+<M , ¥peD

contradicting the fact that M 1is the least upper bound of f(D) . Hence

we must have M ¢ £(D) . a

UNIFORM CONT TY

Definition: f 4is uniformly continuous on D 1if, for each e > 0,3 §>0 =

1f
p,q €D and |p-g| <8

then

l£@) - £(@]| <€ .



e

N.B.: & depends on £ only.

Examples:

(1) £(x) =x , = <x<eo; D=R, f uniformly continuous on D . If
x,y € B, |x~y| <€ then |f(x) - £(y)| <e . £ 1is uniformly contin-

uous on R .

(2) f{:}-xz s 0<x<1tDm [0,1] , £ uniformly continuous on D .
|£x) - £)] = |x2=y?| = |x=y| |=ty| < 2|x-y| 1f x,y € [0,1] . If
x,y € D, |x=y| <% then |£(x) - f(y)| <€ so £ is uniformly contin-

wous on [0,1] .
(3) £(x) =x*,0<x<w;D=[0,®) , £ isnot uniformly continuous on D .

|£x) = £ | = [==y] [xty| .

We will show that the condition in the definition is not satisfied, for

E=1,byany 6>0, Let & >0 ; 1if :-%,y-%+% then

ix—yl --g-*{ﬁ and If(x}—f{y)l-%(%-b%}}l. Thus f is not uniform—

ly continuous on [0,®) .

(4) £(x) mvVx ,1<x<e; D=[l,®) . £ 1is uniformly continuous on D .
| x=y|
x+vy

x,y € [1,®) then |£(x)-f(y)| <€ .

|E@)=£¢p) | = |Vx = V5| = <.i1. lx=y| . 1£ |x-y| < 2¢,
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(5) f£(x) = vx y 0 2x<® ; D= [0,0) , £ 4is uniformly continuous on D .

Again If(x] - f{}rJI = J__""L... (we may assume without loss of generality
x + vy

that x > y > 0).

Suppose |[x-y| < § ,

Case (a): x>y >6: In this case |f{x]-f(y]| <—‘;;_ = V6<3/5 ,

Case (b): 0 <y<&: Since x>y and |x-y| < é we have

0 <x<28 . Hence
[E(R)-£(y) | = Vx = Vy <Vx+ /5y </28 + /8 < 3/F .
In any case if x>0 , y >0 and |x=y| < & then
|£(x)=£(y) | < 38 .

2

If e>0, let 6= —%- to see that f 1is uniformly continuous on [0,=) .

Exercise.

2.34: Show that f(x) -% is not uniformly continuous on (0,1] .

Theorem 2.13: f : R"+R" . If f is continuous on 0 and U is compact

then f 4is uniformly continuous on D .
Proof: Let € > 0 . For each P, € D, 3 ﬁ{ﬁ,pﬂ}

= p e B(p,,8(e,p ) n D => [£(p) - £(p )] <§

U B(p, » % 8(e,p)) 5D
pueﬂ
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D compact => 3 PysssssP €D

k 1
(1) s B, .58 €p)) 2D .
j=1

Let 6(g) -%min {6(esp,) t 3 = 1,0005k} 3 1if p,qe D, |p=q| <& ()

]
then p ¢ B(pj 5 % G(E,pjj} for some j (from (1)). Thus

1
(2) lp=py| < 3 6 (&)
But |p-q| < &(g) i% 8 {E,pj} and hence (from (2))

(3 lpy=al < [p=p,| + |p=q < 8¢esp)
@ = |£@)-f(p)| <5 and () = |£(@-£(py)] <§ -

Therefore, from the triangle inequality, if p,q e D, |p-q| < &(g) , then

|E£(p)=-£(q) | < €,

so f 1is uniformly continuous on D . 0

Alternate Proof: Suppose f 1s not uniformly continuous on D . Negating

the definition of uniform continuity we find 3 E,>0m ¥ §>0 3

p,q € D with |p=q| <& and |[£(p)=f(q)| > €, >0 . Inparticular

Bnget, ¢ o I} X G

> If{pn)-f{qn}l 2e, >0

P, € D (compact) => ﬁ P“k =P, € D
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for some subsequence {pnk} of {pn} (Corollary 2.2.1). Mow

< - +
Iq“x-p“l 2 Fan pnkl FPnk“Pni

<+ |p

<a n.k-PuI >0

so that lim =—p, ¢ D also. But since f 4is continuous on D (in
Jeroo
particular at p_ ¢ D) 1im {f(p_ )-f(q )} = £(p ) = £(p.) = 0 (Theorem
o I nk q'ﬂ.k o o

2.8), contradicting [f{pn}-f{qn}l 2e >0, forall n. O

Exercises.

2:35: If £(x) -%‘ » X% 0, then f 1s continuous on its domain.

2,36: Show that a polynomial

f(x) = nn:n + ln_lxn-l + ses + ax -+ a (n1 constants)

is continuous on R [show that f£(x) = constant and g(x) = x are

continuous on KA and deduce the general result from Corollary 2.8.1].

2.37: Let f : R+ R be defined by

f(x)-l-: » :EQ »
f(x) = x ’ x¢§dQ .

Show that f i1is continuous at % and discontinuous elsewhere.
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2.38: Let f : R+ R be continuous on R . Show that if f(x) = 0 for

all xe€ Q then f(x) =0 for all x ¢ i

2.39: Use the inequalities |sin x| < x , |cos x| <1 and the formula

gin x = sin u = 2 sin fzégi cos fEEEﬁ

to show that the sine function is uniformly continuous on R .

2.40: Using the results of 2.35 and 2,39 ghow that if
1
glx) = x nin-; e 2l
g(0) =0

then g 1s continuous on R .

2,41: 1s it possible for f and g to be discontinuous and yet for g°f

to be continuous? How about gef ?

2.42: (a) 1Is it true that f continuous on D and D open => £(D) open?

[This one is easy.]

(b) 1Is it true that £ continuous on D and D closed => £(D) closed?

[Consider £(x) = 7 » X € R.]

1+x

2,43: If f(x) = ——é—-i then f is uniformly continuous on B
1+ x
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2.45:

2.46:

2.47:

D e

Let f be a real valued function with domain D , an open subset of

R ., Prove that f is continuous on D if and only 1f the sets

{ps: £p) >al , {p: £(p) < a}

are open for each a e R .,

If f(x,y) = xy + x* - yﬂ then the equation £(x,y) = 0 has at least
four solutions on any circle xz + yz -R%>0 .

(a) Let f be uniformly continuous on (0,1] and {xn} a sequence

of real numbers such that 0 < x <1 and limx = 0 . Prove that
T+

1im f(xh) exists, [What was Cauchy's first name?]
n—m
(b) 1f £ 4is uniformly continuous on (0,1] then f may be defined

at 0 so that f 18 continuous on [0,1] .

(¢) If £ : R"+E", domain D < R" , is uniformly continuous on D

then f may also be defined on D-D so that f 4s continuous on D

(D denotes the closure of D , see Exercises 1.39 and 1l.41).

1If £: R®+Rf" , domain D < oo ; the set

¢ = {(p,£(p)) ¢t p € D} c B™®

is called the graph of f . Suppose [ 1is connected; is it true that
f 4is continuous on [ <=> G 18 connected? What if "connected" is

replaced by "closed"? "Compact"? Prove statements you believe to be

true and find a counterexample for any false statement.
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2.48: If f is real valued and f 1is continuous at p, with f{pol >0
then f(p) > 0 for each p in a neighbourhood of P, [Hint:

e=3£() .]

2.49: Prove that f is continuous at a point P, in its domain D 4if and
only if, for each sequence {Pn} of points in D such that

lim p_ = p. we have {f(p_ )} convergent, (We say nothing about
et MR n

ii: f{an )

LIMIIS

The notion of a limit which was introduced for sequences can, &s

you recall from first year Calculus, be extended to any functiom.

pefinition: f : R* + R" , domain D c . Let P, be a cluster point of D
(1t is not assumed that p_e D). L€ E® 4is the limit at p, of £ if,

for each € > 0 , there exists a 6 > 0 such that pe D and 0 < |p—p°| < 8
= |f(p) =L| <€ .

Write
1im f(p) =L or limf=1L1 .
P, 2,

1f no such L exists we say the limit at p, of £ does not exist,.
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Examples:
(1) f£(x,y) = —Z— , (x,5) ¥ (0,0) ; D=R% = {(0,0)} , lim £ = 0
::2+y2 (0,0)
.2 2 2
I Xy ]"‘-"l X +y {Rgr.'all 2ab < a + b
=2 ,rxzﬂz since nz-ZaHbz = {a-blz >0

If e>0 then 0 < [(x,y)] < 2¢

=> |f(x,y)| <€ (l.e. & = 2¢)

(2) f(x,y) =0 41f vy ¢ x2

f(x,y) =1 4f y = x° .

{lin} f does not exist since each neighbourhood of (0,0) contains
0,0 :

points (x,y) ¥ (0,0) at which £(x,y) = 0 and f(x,y) = 1.

Exercise:
xz-ﬂz
2.50: 1f £(x) =E=2- | x4 a, show lim £(x) = 2a .

x+a
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Just as in the case of sequences there is a Cauchy Criterion for the

existence of 1lim £(p) .
PP,

Theorem 2.14 (Cauchy Criterion).

1im f(p) J <=>¥e>0 ,386>0=
P,

1€ p,qeD and 0 < [pp | <6, 0% lq=p_| < & then |£(p)-£f(q)| < € .

Proof:

N Suppose lim f(p) =L d.e. if €>0 ER
e,

speD,0< |pp,| <6 = [E@Ll <F .
Then 1f p,q ¢ 0 and O < 1p-p°| <§,0¢< |qu°| <§ then

le(@)-£(@) | < |£@)-L| + |£()-L]

£
<=+
2

rajm
]
[

so Cauchy's Criterion is satisfied.
Mem't Let Cauchy's Criterion be satified i.e. 1f €2 0
386>0 lp,qﬁﬂ.,EI<|p-§ol<6.ﬂ<]q-pa|<5-5{ﬂ
- |£(p) - £(q)]| <€ .

Let {p_} be any sequence in D for which limp =7p, » P #p ,n=12,...
n o n o n L+ ]
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S N=2n2N=>0<|p-p| <éCe)

S mn2N=>p,p eD,0<|p-p| <6 and 0<|p-p]|<s
=> |f(pn} - f{pm}| <e
=> {f (pn}} is a Cauchy Sequence

=> 1im f(p_ ) = L (say) exists.
n+eo 0

We now show that lim f£(p) =L . Since limp_ =p and lim f(p ) = L 1t
) n o - n
E E
follows that 3 n, » 0 < fpnl-pu| < G(E) and |£{pn1}-L| <% .+ Therefore

if peD and 0< |pp | < 6

[£)-L| < [£)=£Cp_ )| + |£(p, )-L]
1

1
E E
< 2 +"2-- €
1-e. 1im f(p}_L . D
P,

In fact general limits are reduced to consideration of limits of

sequences by the following result

Theorem 2,15: 1lim f(p) exists and equals L <=> 1im f(p ) exists and
e n
PP, ne

equals L for each sequence {p_ } in D such that 1limp
n

-

=P Pt .

Proof: Exercise 2.51:




Y

A point P, € D 1is called isolated if it is not a cluster point of D . Check
back to the definition of continuity and observe that a function is always con-

tinuous at an isolated point of its domain.

Corollary 2.15.1: f 1s continuous at a cluster point of its domain

<=> 1im £(p) = £(p)) -
PP,

Procf: Theorems 2.8, 2.15.

The following Corollaries follow immediately from the corresponding
statements for sequences.
Corollary 2.15,2: £ : B + R , £ = (f,0000f)

L= [Ll,...,l.n}

1im f = L <=> lim £, = L » i= lpv!ll’m .

i i
Pﬂ PD

Corollary 2.15.3: £, : B" +R

limf=L , limg=2¥M
Pﬂ pD

(1) 1lim (f+g) -L+H.
PG

(11) 1im fg = LM

Pﬂ
(141) Um ==X (if M40 .
; 8 ¥

o
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If Po 1s a cluster point of ﬂa c D we may talk about the limit

with respect to D at p_ , 4d.e. (D) lim f(p) =L if, for each € > 0
o o o
PP,

16>0 = if psDo and ﬂ‘:lp—pajﬁﬁ then |£(p)-L| < e .

Special Notatiom:

D = (xb.ﬂ} s (Dﬁ) lim f(x) = lin.+ £(x)

- X% XK
[+ ] o

Dy = (==x) : (D)) Um £(x) = lim _£(x) .

x+x X
[«) o

Examples.

() f(x)=1 , x>0
flx) »x ;. %<0

lim f(x) = 1 lim f(x) =0 ,
o0t ; x+0~

(2) £(x,y) =0 , y#x

E(x,y) =1 , y=x* .,

Evidently the limit at (0,0) with respect to points on the parabola
y = xz is 1 while the limit with respect to the complement of the per=
abola is 0 . Notice that in this case even though the limit with respect

to any ray through (0,0) exists and is 0 ,

i.e, :fg f(txn.tyﬂ} =0 1if {xb,yu} ¥ (0,0) ,
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lim f(x,y) does not exist.
(x,y)+(0,0)
F F
- f
5
’ x

The moral of this is that when limit properties of functions of more than one
variable are being considered it is not enough to look at their behaviour on

straight lines.

Exercise:
2
2,52: Show that lim —EEIE does not exist even though 0 =
(x,y)+(0,0) x"+y
2
{Dn} lim —%I—E for any straight line D, through (0,0) .

(x,y)+(0,0) x+y

We review the most important results on differentiation from first
year Calculus. Throughout this section s AR

Definition: If f 18 defined in a neighbourhood of X, and

£(x) - £(x))

lim
X - x

X"'In [+]
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exists this limit is called the derivative of f at x  and is denoted f‘{xu} .
Proposition: If f'{xﬂ} exists then f 1s continuous at X,

Proof: f'{xﬂ] 3 so (withe=1) 3J6§>0 =

f(x)-f{xﬂ}

D<i:—xﬂl'¢ﬁ-}] .
o

- f'(xﬂ}[ <1

=> |£(x) = £(x )| < {|£'(x)]| + 1} |x-x |
o o 2

=> 1lim f(x) = f{xﬂl .

)

Exercise:

2.53: Recall the rules for differentiation of constants, sums, products,

composites (chain rule) which you have learned, Prove one or two of them.

Definition: f has an interior relative maximum (minimum) at ¢ if there is

a neighbourhood U of ¢ such that

£(x) < £(c) (£(x) > £(c))

for each x ¢ U ,

Theorem 2,16: If f has an interior relative maximum (minimum) at ¢ and

f'(c) exists then f£'(c) = 0 .
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Proof:

£'(c) = lim Eﬁil.:.ﬁi&l 3
X-=-0

x*c

Suppose f has an interior relative maximum at c¢ . 38 > 0= 4if |[x-c| <4

then £(x) < f(e)

"-w
X =C T

(1) a> 1qm £ = £C0) o £r(cy <0 (Why?)
x+C K- =

Similarly, c=8 < x < ¢ => ﬂﬂ'—ﬂ:ﬂg 0

X=-c
(2) ->it:f’x::‘ = f£'(c) 20
(1) and (2) => £'(c) = 0 . 0

Exercise.

2.54: Draw the graph of the function £(x) = |sin x| , x e R . Check that
the derivative exists and 18 0 at each relative maximum but does not

exist at each relative minimum.

Corollary 2.16.1. (Rolle's Theorem): Suppose
(1) f 4is continuous on [a,b] ,
(11) £' exists on (a,b) ,

(111) £(a) = £(b) .
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Then 3 c ¢ (a,b) » f'(c) =0 .

Proof:
(a) If f(x) = f(a) = f(b) , ¥ x € (a,b) then f'(x) =0, ¥ x € (a,b) .

(b) 1If f(xl) > f(a) = f(b) for some x, € (a,b) then since f 1is

1
continuous on [a,b] (compact) f achieves the value

m= sup {f(x) : x ¢ [a,b]} at some point c ¢ (a,b) (Corollary
2,12,2); thus f has an interior relative maximum at ¢ so f'(c) =

0.

{c) If f(xl} < f(a) = f£f(b) for some X, € (a,b) then f has an interior

relative minimum at some point c¢ and £'(c) = 0 . a

Corollary 2.16.2: (Mean Value Theorem): Suppose

(1) f 4is continuous on [a,b] ,

(11) £' exists on (a,b) .
Then 3 c e (a,b) » £'(c)(b-a) = £(b) - £(a) .
Proof: Comsider o¢(x) = [f(x)-f(a)](b-a) - [f(b)-f(a)](x~-a) ; ¢ 1is continuous

on [a,b] , ¢' exists on (a,b) and ¢(a) = ¢(b) = 0 . By Rolle's Theorem

Jece (a,b) »

0 =¢"(c) = £'(c)(b-a) - [£(b)-f(a)] . 8]
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Corollary 2,16,3: (Cauchy Mean Value Theorem): Suppose

(1) f,g are continuous on [a,b] ,

(11) £',g8' exist on a,b .
Then J c e (a,b) » £'(c) [g(b)-g(a)] = g"(c) [f(b)-f(a)] .
Proof: Consider ¢(x) = [f(x)-f(a)]l[g(b)-g(a)] - [£(b)=f(a)]l[g(x)-g(a)] . O

Application (L'Hospital's Rule): If f,g are differentiable on (a,b) and

g'(x) #0 ¥ xe (a,b) and either

(1) lm_ f(x) =0 , lim_ g{x) =0,

x+b x+b
or
(1) lim £(x) => , lim g(x) == ,
b~ x+b"
then
b -+ (SRR £(x)

[Note: 1im £(x) = ® means that, for each real number N , 3 6§ > 0 and
x*b "
% € (b=6,b) => £(x) > N.]

Proof:
f'l
Case (i). Suppose :1::" f(x) = ;];::- g(x) = 0 and i.j;:'B_'Ei}L =L . If
E>0,36>0 »41if x ¢ (b=6,b) then

£¥ fx
(1 f-ErE;}-H <E .
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Let f,g be defined at b by £f(b) = g(b) = 0 ; then f and g are contin-
uous on ([x,b] if x >a . From the Cauchy Mean Value Theorem
f(x) _f(x) = £(b) _ £'(c) "
g(x) g%x% - gb) g'(c)’ it don pdR Aot
Therefore
fi(x £' (e
IE%E} -L| = IET%E% =Ll <&, 41f =z e (b=6,b) 3
tl'l.'l.lﬂ.
f(x
a =1
L]
Case (i1). Suppose lim_f£(x) = lim_g(x) = = and Lin_ & 1.
x+b b 8’

As before, (1) holds if x ¢ (b=8,b) for some & > 0 .

define f£(b) , g(b)

in this case so that

However we cannot

f 18 continuous at b . Let

A b=8§ , xe (b=§,b) ;:
f(x) - f(xb}
8(x) - glx )

Thus, from (1),

E;LEZ R e
- e some ¢ , b e<XxX<hb .

£(x) - f(:o)
T =say " <©
1= £(x)/£(x)
f(x)
Loe. It TG "t <
1= f(x_)/f(x)
f =]
(2) i.e. ]Eéi% h(x) - L| < €, where h(x) = — Efxn}fﬂij 4
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Notice that 1im_h(x) = 1 so 3 6, > 0 such that
x*b

(3) X € {b—ﬁl,h} => |h(x)-1| < € and h(x) -‘-*%- "

Thus, 1f =x € (b—ﬁl.b] 5

1 f(x £
LIER 1) < ho (S -1, from

| b (x) i—%]l - L+ L - h(x)L|

|n(x) -E-%‘}l- L| + || |1 = h@)|

1A

<e+ |L] e , from (2) and (3).

Thus, if € > 0 ,3 51 »if x e (‘b-ﬁl.‘b} then

L%- L| <2(1+ |L])e :

Therefore

T L SO 0

-

b B(X

Remark: Define %:I._:t(x} =1 if , foreach ¢> 0,3 Nax2N=>
|£(x) = L| < e . L'Hospital's Rule is also valid if "1im " 1s replaced by
x+b

"14m". Minor changes are required in the proofs however.
xﬂl
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Exercises: [In these exercises f' denotes the derivative of f when it

£(2)

exists, or f" denotes the derivative of £f' and, inductively,

n
(1) g will aiso write £ (x) = d—n £(x).]

dx

£ re derivetive of £

2,55: If f£'(x) =0 for each x ¢ (a,b) then f is constant on (a,b) .

2,56: If |f'(x)| <M for each x € (a,b) then

[£(x) = £(y)| < M [x=-y|

for all x,y € (a,b) and f is uniformly continuous on (a,b) .

2,57: Let f be Lipschitzian of type o on [a,b] i.e. there are positive

constants o and M such that

|[£(x)=-£(y)| < M |x-y|* for each x,y e [a,b] ..

(1) Prove that f is uniformly continuous on [a,b] .

(i1) Prove that f 1s a constant 1f a > 1 .

2,58: If h = fg prove

(1) "= Fig $dg ,

n
(11) hﬁu} - I -T—El——r f{n-k] g(kJ (Leibniz's Rule) .
k"‘ﬂ k- (’ﬂ.—k} L]

Assume all the differentiablity you need (0! = 1) .

2,59: Find a point c ¢ (a,b) such that £'(c) = 0 where

f(x) = (x-a)(b-%x) , x ¢ [a,b] .
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2.60: Prove that there is no real number k such that the equation

13—3::+k-u

has two distinct solutions in [0,1] .

2.681: If C seeesC ~aTE real numbers such that

¢, B k1 B
T g —_ -
i gL R i
prove that
e +e.x+ PR DY
o 1 i n-1 n

has at least ome solution in (0,1) .

2.62: If f(x) = V|x| then f£'(x) exists if x $ 0 and does not exist if

x=0 .

2.63: Prove that 10,243 < ¥105 < 10,250 .

[Hint: By the Mean Value Theorem /105 = /100 + L 5 where

2v/c
100 < ¢ < 105 .]

9.64: Prove l'Hospital's Rule with "1im " replaced by "1im". Prove that
x+b X+

1im:a-z-ﬂ+
b et
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2,66:

2.67
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Prove
(1) 1ipBrctanx _ .,
x+0
(11) lim € -e -2tanx_ _1
x+0 Hinjx
i 3 2
(141) Un X =X L OC +ox-8 4

252 x° =7x° +18x% - 20x+ 8

(iv) 1lim (cot x = %ﬁ =0
x+0

(v) 1im (1 + tan x)°9%eC X _

x+0
log {x--g*}
il L - i

If f'(x) exists for all x near ¢, f 4s continuous at ¢ and

1im £'(x) = A
*rc

then f£f'(c) exists and equals A .

(Darboux Property of the Derivative) Llet f£'(x) exist for each

x ¢ [a,b] and £f'(a) = o , f'tb) = 3 , Suppose a <Yy < B show that

J ce (a,b) » £'(c) =y .

[Hint: Show that g(x) = f(x) = Yx must achieve its minimum in

(a;b).] This exercise shows that derivatives, like continuous functions,

have the Intermediate Value Property! However, a derivative need not be
continuous on its domain, see Exercise 2,71 (i) and (iv).
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Is there a function g such that g'(x) = f(x) , =1 < x <

The function defined by

g(z}-zz y %€ R

gx) =0 , x{Q

is continuous at exactly one point. Is it differentiable there?

(Taylor's Theorem) Suppose that
(1) f{nﬁl} exists and is continuous on [a ,B] ,

(11) ¢™  exists on (a,B) .

(a) Show that, if m> 0,

n-1
£ = £@ + B £ @ + o+ BB D) 4 » (£10,8)

where

, (B-a e,
ln(f,ﬂ-ﬂ) - n(n-1) | £ ()

for some point Y ¢ (a,B) . This is called Schlomilch's form of the

remainder, Special cases are given by taking

n
m=n Rn{f;u.ﬂ} = LE-?E-L f"tﬂ:I ) Lagrange form

n=1
m=1 Rn{f:u.ﬂ} = %%}L f'l':“‘:II (y) Cauchy form



B

The Lagrange form is the easiest to remember and is adequate for most

purposes. [Hint: Let the constant C be defined by

n=1
£(B) - £(a) = 1&19!-1 ) = aes = % £@=1) oy = (B-)™ c= 0

and apply Rolle's Theorem to

n-1
00 = £(8) - £00 - LRy - s - EB 1OV 0-B-0" ¢ .

() (1) If f£(x) = e* show 1im R (f; 0,x) = 0 for all x.
e O

+|l!+

n=1

X X X X
(1.e. lim (1 + 7=+ w-e

— for all x .)
s 1 gl ¢

(11) If f(x) = sin x then 1lim R (f;0,x) = 0 for all x .
4 e B

(144) If £() =i, x# 1, then UmR (£50,0) =0, -1 <x<1.
-X B
(e) (1) How large must I take n to approximate e to four decimal
places by the expression

1 1 1
ook s : ldiacdhit — i 2

(11i) Approximate %‘E to five decimal places.

n!

(111) Prove that the closest integer to == is divisible by (n-1).

[Hint: Use the Taylor expansion for . > |
(iv) Compute Y97 to four decimals.
(d) Suppose f" exists and is non-negative (non-positive) in a neigh-

bourhood of ¢ and £'(c) = 0 thenm f has a relative minimum

(maximum) at c .
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(e) Suppose f" exists in a neighbourhood of ¢ and is continuous

at ¢ then f has a relative minimum (maximum) at ¢ 1if

f'(c) = 0 and £f"(c) >0 (<0) .

2.71: Let fn{x} = gin % " fl(z) - x :1n~% 4 fztx} - :2 sin % % f3(x) -
stnl, x40 and £(0) =0, 1=0,123.
(1) f are differentiable at any point x ¢ 0 (Chain Rule)
(11) £_ is discontinuous at 0
(111) £, 4s continuous at 0 but is not differentiable at 0
(tv) £, is differentiable at 0 , fi is discontinuous at O

(v) f7 is differentiable at 0, fi is continuous at 0 .

2,72: Let pg be defined by

a" 2 .0
p“(x} e =1}" 5, 0= L.l,use
dx

(1) Show that p, is a polynomial of degree n .

(11) The equation p_(x) = 0 has exactly n roots in ¢L3) .
n

2.73: Doesn't time fly when you're having fun?

References for Chapter 11

Bartle: Chapters II, III, IV, V

Buck: Chapters 2, 3.
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CHAPTER THREE

RIEMANN INTEGRATION

The definition of the Riemann integral is essentially the same in
higher dimensions as in one dimension. You may have learned Riemann integra-
tion of functions of one variable by the lower and upper Riemann sums approach;
the treatment adopted here is slightly different but equivalent to that

approach (see Exercise 3.17).

Closed Interval in " .

I=(a,b;] x .o. % [a,b )= {(x,000,%) 2 <x <b, , 1= Ersanghl &

i £ "

Diameter of I :

n
M) = [y + oo + (b -a P17 = 7 3 (b, -a,)?
k=1

If p,qe I then |[p=q] < A(I) .

Content of I. (Jordan measure of I):

n
u{I} - (h‘l"'.-].} (bz-lzjii-(bn-‘n} - kEl {bk-ak} .

1 2 3

In B , R ,R° ¥ 4s length, area and volume respectively. If you wish to

emphasize the dimension of the space in which you are working write U instead

ol U ..
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Content Zero: A set § c R has content zero (Jordan measure zero) 1f, for

each € > 0 , there exists a finite collection of intervals {Ii : Itk

such that
k
8 = 4 1
=1 1
and

k
I u{Ii} £E .
i=]

For such a set 5§ we will simply write u(S) = 0 . u(S) 4is now defined if §

is an interval or if 5 has zero content.

Examples.

(1) A set containing a single point only has content zero in R" .
(2) A set containing a finite number of points has content zero in A" .

(3) {(x,0) : 0<x<1} has content zero in R° .

+

B A e E
(0,0) e
4+
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(4) {(x,y) : |x| + |y| = 1} has content zero in 2.

b

B -
e

) u{Ii) = % < e, if n sufficiently large. [(4) also follows from (5)

(5) I1f f 4is a continuous real valued function on [0,1] then
{(x,£(x)) : 0 < x <1} , the graph of f , has content zero in B .
Let E>0; f is uniformly continuous on [0,1] (Theorem 2.13) so
Js<iax,y € [0,1] , |x-y| < 6 = [£(x)-£(¥)| 5_% . Now let m be that

natural number such that

md<l , (ml)d>1 .

2,

Consider the following intervals in R

I, = [kS, (k+1)8IX[£(kS) - ﬁ ., E(k8) + 5] S K= 0,e0e,01

I = [m6,1] x [£(ud)- & f@s) )
If x e [k8,(k+1)8] n [0,1] then |[x-ké| <8 =0
| £ (x)=£ (k8) | 5-&
1.e. £(x) e [£(k8) —ﬁ , E(k 8) +,E,] ;
thus

(x,£(x)) ¢ Ik 1f x e [k6,(k+1)8] n [0,1] .



= 102 =

Hence
m m
{(x,£(x)) 1 0<x <1} c bR kg u(I, ) = (m+l)S< %(H—S)(E

so U({(x,f(x) : 0<x<1}=0 ,

-

¥ e
e

i i L
T

0 é 28 mé (k1) 6

.

(6) The union of any finite collection of sets with zero content has zero

content.

(7) A circle has zero content in Rz

5 E-Elusz

iy
\ ) S; each has zero content by (5),
y 5

2
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Partition of I:

I = {nllb].] x [az'bzl X .un X [an,hn] "

Let Pi be finite sets of real numbers

{tij H j L G,..-,Ili}- » i= litt!jn »

guch that a, = t,. < t < <t b, s then P=P X P, % ... P

i i0 i1 oyl imi 1 2 n
is said to be a partition of I .
| -] a a [
13

Notice that a partition of I generates a subdivision of I into a finite

collection of closed nonoverlapping subintervals {I,} of the form

[6gy0taan, 1] X [Eppatigy 2] X vee % [Egptyyy o) -

There are m, «+» M such subintervals generated by P .
b n

A partition Q of I 1is a refinement of P 1f Q> P;. Notice that a refine-

ment d’l: P further subdivides the intervals I:I‘. generated by P .
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Riemann Sums: Let I be a closed interval in A" and £ : I +R", If
P 1s a partition of I which generates a subdivision of I into subinter—

vals I then

i

S(P,f) = } £(p,) u(r) , p, el
. i i i i i

is a Riemann sum of f corresponding to the partition P .

Definition (Riemann Integral). Let £ : I+ R"™ where I 1is a closed inter-

val in A" . Let a ¢ R™® « If, for each € > 0 , there exists a partition PE

o P N
of I such that 1fan =] PE and S(P,f) 4s any Riemann sum corresponding to

P then

|s(e,f) -a| <e ,

f 1is said to be Riemann integrable on I and to have Riemann integral o ,

Write;

(s B J L
1

or

G-deu L
I

Proposition: If f 41s Riemann integrable on I then the integral of f on

I 1is unique.

Proof: Suppose oy -J‘ f and oy -Jl £+ Lat € >0, 3 partitions
I I

Ple 3 Pze of I such that if P > Pie then
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sty =akse iutmg®
i

But P1 u Pz =P, amd P, U P, = P2 80

1 - il
|E(F1uP2,f} - ui[ g ., 48253 .

Therefore
|ul-u2| < |s(RyuP,,£) - “1' + |5[?1u?2,f}-u2|

<2 .

We have shown Iul - uzl < 2¢ for each € > 0 ., Hence ful -a,[ =0 ,

i.e. ul - “2 . O

Exercises:

3.1: If £ i1is integrable on I then f 1is bounded.

3.2: £1:11+A" 1s integrable on I <=> each component Ei s d =™ Lossasl ,

of f 1s integrable on I and

f_{J f.l‘lﬂi'[ f]’ -
I: r 1 x M

It therefore suffices to consider only real-valued functions just as in

the case of sequences.
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Theorem 3.1 (Cauchy Criterion): £ : I = g% . J f exists <=> for each
I

pactitions

€ > 0 there exists a partition PE of I such that ifjAP,Q > P_ then
|S(P,£) - S(Q,£)| <¢

for all Riemann sums S(P,f) , 5(Q,f) corresponding to P,Q .

Proof:

"=>" o = J f §=> foreach € >0, J a partition P. of I =
I

e parkiHon
if ,P > PE then

(1) Is(,£) - af -:% .
be poctiions
Let P,Q 31; i (1) =>

[s(e,£) - 5(Q,6)| < |8(R,£) - a] + |5(Q,8) - af

>
<=+
2

ra|m
]
m

i.e. the Cauchy Criterion is satisfied.

"«="  Suppose the Cauchy Criterion is satisfied. There exist parti-
LY~
tions Pn of I such that P,Q > Pn -3

(2) Is@,0) - s@,0] <2 , n=1,2,... A

n
Let Q, = Y P_; for each n = 1,2,... consider a fixed Riemann sum
k=1 k

Sumﬂ-f} « 1f m>n, then Qlll e Pn and Qn 5 Pn so, from (2),



i

' 1
[s,@ .8) =5 (Q,6)| <3 .

Thus {ngn'f” is a Cauchy sequence of real numbers so

(3) lim so{Qn’f} =- 0 (say) exists. ("Thed'rem qf?)
“-Hﬂ
It remains to show that a = J f « From (3) it follows that,
3

if € > 0, there exists a natural number N such that

(4)

o partition
IfAP is any refinement of QN then both P and QH are refinements of PH

-4 21

E
<% and |S (Quf) -¢|l <3 .

(from the definition of QH ) 8o each Riemann sum S(P,f) satisfies

s, 6)-a| < [s(p, ) = 5 QO] + |s Q0=

<

=]

E E E
A el ek Jett
by (2) and (4). O

Lemma: Let I be an interval in F*., If P is a partition of 1 subdivi-

ding I into a finite collection of nonoverlapping subintervals {I 1} i then

w(r) = J w() .
1

This can be proved by a straightforward induction on the number of

subintervals into which I 1is partitionmed. Do it.
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Corollary 3.1.1 gives an equivalent but more readily applicable version

of the Cauchy Criteriom.

Corollary 3.1.1 (Cauchy Criterionm). J f exists <=> for each € > 0 there
I

exists a partition PE of I such that if SI{PE.f} and SE(PE,fJ are any

two Riemann sums corresponding to PE then

ISI(FE.E} - 5,(P_,f)| < ¢ :
Proof: It is evident from Theorem 3,1 that the condition is necessary. To

see that it is sufficient let l‘:'e satisfy the requirement of Corollary 3.1.1

and let P and Q be refinements of P_ , generating subintervals {a } and

{B4} respectively.
(5) |s(e,£) - 5(Q,£)| = IE £(p) u(A) - § £(a,) u(s)|

=N 0L fr)uA) - I £q) ue))
3 3
i 5kc11 BJ:I1

where Ii are the subintervals generated by PE « Now there exists points

*
L r1* € I1 such that

(6) | £(P.) u(A,) - £(q.) u(B,)
‘kEI:L ey njzli i 1|

< [EG]) - £ 1 uI) . ()

() To see that (6) is true let f(r:) = gup {f(ka.E{qJ}} »

f(ri*) = inf {f(pk},f{qj}} where the sup and inf are taken over all k and
j for which ﬁk c 11 and BJ c Ii » There is no problem about the sup and

inf existing since the sets are finite.
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f(r,,) 1w - £t T us)

Ak:Ii Bjcli 3
£-TE e Jua) - T f£(q,) u(,)
k
Ak::[i BjCIi J 3
%
< 8x) ") wik) =-fr ) u(s,)
: o G e = B_’IEI:I. -

and (from the Lemma)

I oua) = I ou) =)
: 3 1
i By<ly

so (6) follows.

From (5) and (6)

ls@.0) - s@.0] <] [£Ge}) = £(r,,)] u(L))

= |51{%._.f} - 5, (B,f)| < .

Thus the Cauchy Criterion for integrability of f (as proved in Theorem 3.1)
is satisfied, i.e. I f exists. 0
I

Theorem 3.2: If f 1s a continuous real-valued function on I then

I f exists.
I

Proof: Since 1 4is compact (why?) f 4is uniformly continuous on I

(Theorem 2.13). If €>0, 36 >0 = |p—q| < & => |[£(p)=£(a)| < e/u(I) . We
may choose a partitiom PE sufficiently fine to ensure that the subintervals

I1 which it generates have diameter
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1{11} < é .

HBence if p,q € I, then ipf q | S ML) <6 and |£(p) - £(q)] < e/u(I) so that

if Sl(PE,f} and EZ(PE’f} are any two Riemann sums corresponding to Pe

s, ®c.6) - 5, ,6)| = |£ [£(p,) - £(q)] w(x)|

€ ¥ If{pi} - f(qiil u(I,)
i

£ 3
< =5 E u{Ii) - SOy u(I) (by the lemma)

=g ,

Thus by the Cauchy Criterion (Corollary 3.1.1) J f exists. 0
I

Theorem 3.3: Suppose
(1) £ 4is bounded on I ,
(11) the set of points of discontinuity of f has content zero.

Then I f exists.
I

Proof: Suppose

(1) |£@)| <™ , ¥pel

and K 1s the set of points of discontinuity of £ 4in I ., Let € >0 .

There exists a partition Poe of I such that, if Ii are the subintervals

generated by Pﬁe -



= 31) <

) ¥ W) < 7=
KnIi¥¢

gince K has content zero.

Let Ll =y Ii (shaded) , 1.2 -y I1 ; f 1s continuous on L,

Khlii¢ Kn11‘¢
which is compact and hence f 1is uniformly continuous on L, . There exists

E
§>0»9pqe Lz ’ |p—q{ < § =m> ]f{p}:f{q}| < e Let PE be a parti-
tion of I pgenerating subintervals I; , such that

PE =1 PoE and l{Ii} <§

thus if p,,q, € I, <L, then |py=ay] < M(I)) <& s0

£
(3) |f(pi) - f(qill SEa

|8, (B, ) = §,(B, )| = |§ [£0(p,)~£(q,)] u(@))|

< I [fe)-fa)| ud@p
i
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< I leep-g@)| w@p + I |£e)-f@) ]| u)
< ¥ u(: ) # e T u(@)
2u(I1) i
IicLl I:[ LZ

Thus f satisfies the Cauchy Criterion (Corollary 3.1.1) and J f exists.
I

Exercise.

3.3: Suppose f and g are bounded on I and £(p) = g(p) ¥ p € I-K where

K has content zero; prove that

RESRERN

2

f(x,y) =xy” , 0<x<1,0<y<1

I=1[0,1] % [0,1)] ; f 4is continuous on I so I f exists. Partition I
1

into nz subintervals of side %
(Partition Pn} H Ii:] - ﬂ —-]K{‘L—- -'1] s 2% Liaanstt 5 J = Lissssl o
; s 1
I ok, D G
I
!
e e i-1 31-1 4 j-1
0 i : : =T == n ‘in_) {ﬂ. » Jn_]'
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4-1, 4-1,2 iy
1 oy e Ty, EhdEh2 e 5 D,
n
) &L dh? Lsse,n< | 1421
1,1=1 M TN~ R

and the same estimate holds for S5(P,f) 4if P = P“ =

n n-=j n-i

A a A 1-n i=0
[sﬂ-lzn][ ;n—lln!h—l! ] l
s
n n n
) 1421 1 P- 4.3
1.1-1“(“ 2 o iml A=)

[n{n-l-l)”n(n-i-liﬂnﬂ.l] "
2 6 e 6

Definition: Suppose

(1) D is a bounded subset of E* (so Dc I, some closed interval

in B")

(i1) £ : D+ R .

Extend the domain of f by defining

f(p) = 0 if peéd .

Then we say [ f exists if and only if I f exists and define
D I

el
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f=0

Theorem 3.4: Suppose
(1) D 4is bounded and 9D has content zero,
(11) £ 4is continuous and bounded on D .
Then [ f exists [9D denotes the boundary of D (Exercise 1.42)].
D
Proof: f , with its domain extended to an interval I > D as in the

preceding definition, is continuous at each point in I except possibly at

points of 9D . But u(3D) = 0 , so by Theorem 3.3 [ f exists. Therefore
1

I f exists and, by definition, is equal to J | O
D I

Definition: A bounded set D c R° has content 1if J 1l exists and
D
u) %f [ T
D
equivalently,

Define the characteristic function xn of D by

Xp ® =1 , if peD

xn(pJ-D s T 2D
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and let I be a closed interval containing D as a subset. D has content

if I exists and then
IXD

def
u() = I X .
1 D
Theorem 3,5: A bounded set D ¢ E° has content <=> u(ap) =0 .

Proof: Exercise 3.4.

Exercise.

3.5: Give an example of a countable set which has content and one which does
not have content (contenfed and discontented sets?). Is there a countable

set with positive content?

Theorem 3.6 (Properties of the Integral):

(a) If I f and I g exist and a,B € R then J (af+Bg) exists,
D D D

and J (af + Bg) = a J f+B I E
D D D
(b) If £(p) >0, ¥peD and [ f exists then

D

) I I f exists then J |£] exists, and II f|i[ |£].
D D D

(d) If J f and I f exist and ].l(Dln'ﬂz} = 0 then
D D

1 2
{ocaabivel o
DlL!D2 Dl D,
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(e) If (1) D has content,

(11) I f exists,
D

(111) m< f(p) <M, ¥pe D, then

nutn)ij f<Mu@®d .
D

(f) (Mean Value Theorem for integrals), If D is a compact connected
set with content (i.e. u(3D) = 0) and f 41is continuous on D

then

BPnED'Lf'ﬂPu} u(p) .

Proof of (a): There is no loss of generality in assuming that D is an

interval in this case. Let € > 0 .

m

then |S(P,f) ~- I £| <

LJf 3 =>3 a partition Pie Of D» 4if PP, 4

then |S(P,g) - J £]l <e

Ifﬂ-:anpartitinnP of De» 1f P2 P
D D

2e 2

Let ?E-P uP . P:PE then

1e 2e
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|s(p,af+fg) - o J f~-8 [ g| = |« s(p,£) + B S(P,g) - O J f-8 J g
D D D D

A

ol 1s@.0 - [ £ + 18] Isce.0) - [

D

| .

(o] + [BDe .

f+BIg .

Thus [ (af + Bg) exists and equals O J
D D

D

Proof of (b): [Exercise 3.6.

Proof of (c): Exercise 3.7.

Proof of (d): Let X, (P)=1,peDd S B
i

xni(P}'ﬂ-Piﬁi »

and let I be an interval I = nl u D2 . By definition

Jnlf . JIf xbl I Jnlunzf KDI

D D
DZ .I 2 Dlunz 2

By part (a) of the present theorem

J'III uD

£{+x)3-[ f +I £
LUD, xﬂl Dy D, uD o D, UD %o,

fBy Tk 102
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But, by definition

D,uD, 3 Vg I 1 Dy Dy,
I
- | £X t)
e A
[
= g5 by
Dluﬂz

Thus f exists and equals £+ £ .
D.uD
: D, D,

Proof of (e): Exercise 3.8, [Hint: Use parts (a) and (b).]

Proof of (f):

Case (1): u(D) = 0 :

J‘f-n,by (e) since m u(D) = M u(p) = 0
D
Jt‘-f{pn)uﬂl}.\fpofﬂ .

D

Case (11): u(d) # 0 .

By (e) m u(D) EJ f <M u(d) where
D

S follows from Exercise 3.3 since

£( X = fy
xnl"’xnz D,uD, D,uD,

except on the set Dlnrl2 and ufnlnnz} =0 ,
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m=inf {f(p) : pe D} , M= sup {f(p) : p e D} .

L

u(D)

Thus

m < =M .

By Corollary 2.12,2, D compact and f continuous on D => 3 p,,p, € D
» f(py) = m, £(p,) = M ; therefore by Corollary 2.11.1 (the Intermediate

Value Theorem) there exists P, € D such that

£
D
) "wey

i.e. f{pn} u(p) = J £ 0
D

Exercises.

3.9: Prove that {(;l]f . -i-) : myn = 1,2,...} has content zero in R .

3,10: Prove that the set of points in [0,1]x[0,1] with rational coordinates

does not have content in Rz :

3.11: Let D be a subset of R which has content zero and f any bounded

function on D . Prove that J f exists and equals 0.
D

3,12: Let D be any bounded subset of R° and f(p) =0, ¥peD.

FProve that I f exists and equals 0. Note that D does not necessarily
D

have content.
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1
3.13: Show that I sin'i- dx exists and is independent of the value assigned
0

to the Integrand at x =0 .

3.14: 1If J f exists and Dl is any subset of D with content then
D

J f exists (D itself does not necessarily have content). Note that
D
1

b ¢
this exercise proves in particular that J f 3 = J £3,Yce (a,b) .
a a

3.15: If f(x) =0, x¢Q, f(x) =1, xe Q, then f is not Riemann inte-

grable on [0,1] .

3.16: If f(x) =0, x¢Q and f{ﬁ-’) -% (where m and n have no common
1
divisors) then f I= 0
0

3.17: If P 4is a partition of the interval I and £ : I + R, f bounded,

define S(P,f) and S(P,f) , the lower and upper Riemann sums corres—

ponding to the partition P to be inf {S(P,f)} and sup {S(P,£)}
respectively, the inf and sup being taken over all Riemann sums corres-

ponding to the partition P . Let J f= agp {E{P,f}} and

I
J- f= 1?f {S(P,£)} . The sup and inf in this case being taken over
I

all partitions P of I .

(1)  Show that Q > P => S(P,£) < 5(Q,f) < S(Q,f) < S(P,f)

(11) Show that J fg[ f.
I 1

(111) (ﬁefinitinn). f 1s integrable on I 1if j E-J f and then
I I
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we define J f= f fm= [ -
I =1 I

(iv) Show that f is integrable in this sense if and only 1f there

is exactly one number « such that
S(p,f) < o < 5(,f)

for every partition P of I and then J f=a.
I

(v) (Cauchy Criterion). Show that [ f exists in this sense if
I

and only if, for each € > 0 , there exists a partition PE of

I such that

|82, 6) - B@LD| <€ .

(vi) Show that, if £ 1s bounded, f is integreble on I in the
sense (ii1i) <=> £ 4s integrable in the sense adopted in these

notes and both definitions give the same value for [ £ a
I

Discussion: A subset K of E® has Jordan measure zero 1f, for each € > o,

there exists a finite collection of intervals {Ik} such that

(1) K>ul and J u(L) <e .
x > £ X

K has Lebesgue measure zero if, for each € > 0 , there exists a countable

collection of intervals Ik satisfying (1) (f:_l ¢, < € means lim I:-l €y
gl

exists and is less than €). This simple extension of the concept of measure
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zero has profound consequences. We know that the set of rationals in [0,1]
does not have Jordan content. However if this set is denoted by {rk :

E
k=1,2,...} then S u{Ik) = ;E 80 that

o
{rk S LI % S BT I, and ) W) = e kgl ;% =g

Thus the set of ratiomals in [0,1]) has Lebesgue measure zero. In fact the
same argument shows that Q or any countable set has Lebesgue measure zero.
Countable sets are not the only sets of Lebesgue measure zero however; in
fact they can be quite complicated. The remarkable Cantor set which you will
study in Math 417 has Lebesgue measure zero but nevertheless has the same
cardinality as [0,1] 4i.e. it has zero "length" but has the same "number" of
points as [0,1] . A simple discussion of the Cantor set may be found in

Bartle's book (page 51).

An interesting theorem of Lebesgue states that, if f 1s bounded,

the Riemann integral J f exists if and only if the set of points in I at
I

which f d1s discontinuous has Lebesgue measure zero. For example consider
the functions in Exercises 3.15, 3.16; show that the function in 3.15 is
discontinuous at every point in [0,1] ; on the other hand show that the function

in 3.16 is discontinuous only at rational points in [0,1].
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EVALUALION OF INTECRALS

Real valued functions of a real varjable:

Theorem 3.7 (Fundamental Theorem of Calculus): If £ is continuous on [a,b]

then there is a function F_  on [a,b] such that

Fi(x) =£(x) , a<x<b .

£ X
Proof: Consider Fﬂ{:} = I f,a<x<b (exists by Exercise 3.14).
a

x+h
F_(xth) - F_(x) = J' £ (Theorem 3.6(d))
X

= f(r:h)h (MVTh for integrals, Theorem 3.6(f))

where ¢, e [x,x+h] 1f h > 0 , and ey, € [x+h,x] 1f h < 0. BSince f

is continuous on [a,b]

F_(x+h) - F_(x)
1im —= - ©— = um £(c) = £(x) . 0
h+0 0

Any function F such that F'(x) = f(x) , a<x<b 1is an anti-

derivative of f on [a,b] .

Proposition: If Fl and Fz are antiderivatives of f then Fl—Fz is a

constant function.

Proof: Fl'{xj - Fz'{x} = f(x) - f(x) =0 , all =x .
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Therefore F, = F, 1is a constant (cf. Exercise 2.58). 0

Theorem 3.8: If f d4s continuous on [a,b] and F 41s any antiderivative of

f on [a,b] then

b
J f=Fb) - Fa) .

x
J f = Fﬁ(x) = F(x) = C (preceding Proposition)
a

b
:-b:f f-!'o(b.'l-l"(h)-c

a
a
Xx= g J f= Po{a} =0 =F(a) - C (Exercise 3.11)
a
s F {RJ = C
b
80 [ f=F(b) - F(a) . O
a

Corollary 3.8.1 (Change of Variable Formula): Suppose

(1) ®' exists and is continuous on [a,b] ,

(i1) f 1is continuous on ¢([a,b]) .

Then

(b) b
f= I (£e9) "
¢(a)
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(b) b
i.e. J¢ f(x) dx = [ f(p(u)) ¢'"(u) du .
¢(a) a

Proof: If F is an antiderivative of f (i.e. F'(x) = £(x)) then
ﬁ% F(¢(u)) = £(¢(u)) ¢"(u) so that Feod is an antiderivative of (fo0) ¢' .

Therefore

(b) b
F f=F(@¢®)) -~ F(d(a)) = f (fo9) ¢' . 0
¢(a) a

You will notice that we have used the Chain Rule here although it has not yet
been proved in these notes; a proof will appear in a more general context in

the next chapter,

Example:
/2
f Hinzu cos u du f(x) = :2
0
Cxith $(u) = gin u
T
- I:( ) ,Z dx $'(u) = cos u
0

1 3
2 i Wi e S

Corollary 3.8.2 (Integration by Parts Formula): If f' and g' are contin-

uous on [a,b] then

b b
I fg' +I f'g = £(b)g(b) - £f(a)g(a) .
a a
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Proof: fg 1s an antiderivative of fg' + f'g . Therefore

v b
J (fg' + £'g) = £(x) s{lea . 0
a

Example:

3 I 1
J xe® dx = x Exlﬂ - J e* dx = e-{az|n]
0 0

= g=(e=1) = 1 ,

Real valued functions on RZ T

The important theorem of Fubini allows us to extend the use of the

Fundamental Theorem of Calculus to functions of more than one variable.

Theorem 3.9 (Fubini's Theorem): f : I+ R,

I=[a,b]%[c,d] = {(x,y) :ta<x<b,c<y<d .
Suppose:

(1) [ f exists
I

d
(11) [ f(x,y)dy = F(x) exists for each x ¢ [a,b] . Then
c

b b
J F = [ {Jd f(x,y}dy} dx exists and equals I
a a "e I

Proof: The definition of I f states that, if € > 0 , there 1s a partitiom
I

PE of I such that 1f P = PE then
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|s(e,£) - J f] < ¢
I

for any Rlemann sum S5(P,f) . Thus, 1if

P = {:n.xl,...,xn}x{yn,yl,...,yn} = PE 3

|31 £Gg) e Doy, ) - [ #<e

i=1 j=1
if o W -E;i b3 ® o ?j-l ;EFJ = yj » This may be written
ey 15 apx_p (3 £G,.5¢ % - £l
£(x,,7,)(v,~y — J <€
4=1 b B 7% | =1 - Gdt, Al BT I

Condition (ii) implies that for any fixed set of numbers ;i g 1= 1,...,m,

the partition {yJ] of [ec,d] may be chosen so fine that

d

d
i=1,...,m , since each of the integrals [ ffgi,r}dy exists. Therefore
c

(2) sziz.r}(y-ﬁr N PR M C e R i (s
o5 Py Ol <52
(2) implies
n e m =
(3) |1£1 (x,~%,_,) {jgl £, T ) g7 - 151 x,-x, ) B@xp)|
o E
J Sy e

The triangle inequality with (1) and (3) gives
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m
| T Féx,)(x,-x }-I £| < 2¢ -
2y TR >

b
Thus, from the definition of the integral, I F exists and equals J RS
a I

Corollary 3.9.1 (Interchanging the order of integration): I = [a,b]x[c,d] .

1f
{ilffﬂ »
I

d

(11) [ f(x,y) dy 3 ¥ x ¢ [a,b] ,
c
b

(111) J f(x,y) d&x 3 ¥ y € [c,d] ,
a

then

b d d b
I {I f(x,y)dy} dx = I £ -J {J f(x,y)dx} dy .
a 1

c

Corollary 3.9.2: I = [a,b]*[c,d] . Suppose
(1) £ 4is bounded on I ,

(11) £ 4is continuous on I-K , Hy(K) = 0,

(1i4) ulikn{(xsﬂ te<y<d}) =0 for each x ¢ [a,b] .

Then

I f-r{rﬂ:,y) dy} dx .
I a ‘e

Proof: (1), (i1) => ]‘ f 3 , by Theorem 3.3. Condition (iii) says that
1

the intersection of K with each vertical line (considered as a set in R )
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d
has content zero so J f(x,y) dv exists for each x ¢ [a,b] again by
c

Theorem 3.3, Therefore all the conditions of Fubini's Theorem are satisfied, [

Corollary 3.9.3: If D= {(x,y) : a<x<b, ¢(x) <y < ¥(x)} where ¢ and

Y are continuous on [a,b] and f ;: Rz + A 1s continuous on D then

b W(x)
I f= I { J f(x,y)dy} dx ‘
D a “¢(x)

Proof: Use Corollary 3.9.2, The graphs of ¢ and Y have zerc content in

R2 » Each vertical line intersects each graph once.

4 E y = ¥(x) E

v

B p--
o
O

Examples.

1) £y =xy° , 1= [0,11x[0,1]

1 n 1
IE-I{J xyzdy}dx-[ lxax=% .
1 o Jo

w

Also

1 1 1
IE-J{I ::yzdx}d}r-J 3V ay=% .
1 0o Jo 0

We have already seen from first principles that this is the value of the
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integral.,

2) fy) =xy° , D={(xy) : 0<x<1l,x*<y<x

Also

In Examples (1), (2) the iterated integrals are all easily evaluated.
However one sometimes encounters iterated integrals where antiderivatives cannot

be found in terms of elementary functions. A simplification is sometimes achieved

by using Fubini's Theorem to reverse the order of integrationm.

T -
(3) I {f /% 4z} dy 4
g =y
= f f , by Fubini's Theorem y=x
D =1

v

y=0
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1 b4
-J {J' J/x dyldx , again by Fubini's Theorem

1 1
-j =3 T o j x{e-l}dx-%{a—l} .
0 y=0 0
2 x
(4) J {f £(x,y) dy} dx-J 3 b
1 D y=x
2 2
= J {! f(x,y)dx} dy il
0 ‘¢(y) x=1
y=0
1 5 Dxy ]
where ¢(y) =

1 2 2 2
- I {I f(x,y)dx}dy + I {J f(x,y)dx} dy .
1 ‘¥

Further worked examples may be found in Buck pp. 115-119.

Real valued functions on R 3

Fubini's Theorem may be stated for n-dimensional intervals as follows:

Theorem 3.10 (Fubini's Theorem): Let IJL 5 ]'.II be closed intervals in ﬁ'p' i

Rm,fﬁm'n,nn
I =IxI ={(pg) tpel, ,qel}

is & closed interval in EB° . Let f 3 In + R and suppose
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(i) J f exists,
In

Then

(11) F(p) = [ f(psq)dq , exists for each p ¢ IE p
I

ML

exists and equals JI - R
n

F= I {f f(p,q) dql} dp
L I£ Im

Notes:

(1) The proof of Theorem 3.10 is exactly the same as that given before when

n=2 ,

(2) The symbols "dp" , "dq" above are simply used as devices to indicate

the spaces on which we are integrating.

(3) For a more general formulation of Fubini's Theorem where the condition
(11) is dropped see "Calculus on Manifolds" by M. Spivak (p. 58). However

the above statement of the theorem is sufficient for our needs.

(4) We will prove a change of variables formula for integrals in higher

dimensions in a later chapter.
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Exercises.

3.18: Let f be a real-valued function on [a,b] such that f'(x) exists

for each x ¢ [a,b]- and Ib f' exists. Prove
a

b
£®) - £(a) -j £,

a

(You may not use the Fundamental Theorem of Caleculus. Why?)

3.19: Let f be a non-negative continuous function on [a,b] . Prove that

b
! f 1s the content in Rz of the set
a

D= {(x,y) : a<x<b,0<yc<£f(x} .

b
(i.e. show [ l= J )
D

3.20: Let D= {(x,y) : 1<x<3, x> <y<x°+l} . Show that

2

3 +1
u{n}-j{r dyl d&x =2 .
b 2

J f-—é—ah (aZ?) .
D

131

3,22: Let f(x,y) = xy , D the region in the diagram. Show [D fm= 120 *

(Do this in two ways.)
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3.23: Find [ £ £(x,y) =sinE+8) , D= {(x,y) : Dixi“—; X Di?i-?}-
D

3.24: Llet D be the region bounded by the curves x:dyz =1, x2+32 = 4

which contains (0,0) . Find [ f where f£f(x,y) = .
D

3.25: Let f(x,y) = x ; prove that I £ --%? where D 1is the region in R2
D

illustrated below.

w=0 1.

3.26: (1) Let f(x,y) = g(x) , (x,y) e [a,b]%[c,d] = I . Prove that if

b
I g exists then j f exists. Deduce from this that J £
a I D

exists where D is any subset of I which has content.

1

(11) Suppose g 1is defined on [0,1] and [ g exists. Prove that
0

I; [J: g(t)dt] dx = I: t g(t) dt .

3.27: (1) 1f f f exists then J' f2 exists.
1 I

Hint: [£()° - £(@)?| = |£(p) - £(@)| |£4) + £(q)| < 2M|£(p)-£(Q) |

where M= sup {|f(p)| : p € I} .
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(i1) Deduce from (i) that if [ Ty [ E exist then f fg
I I I

2

exists, (Hint: {:E-g]z = f° - 2fg + 32.}

3.28: The mean-value Theorem for integrals (Theorem 3.6(f)) implies the

following: "If f is continuous.on [a,b] then J c ¢ [a,b] =
b
J f = f(c) (b-a) "
a

Can you replace "continuous" by a lese restrictive condition which

still implies this result? What was Darboux's first name?

3.29: (Cavalieri's Principle) Let A and B be subsets of % with

content, If x € F define

Ax-{y= (x,y) € A} , BI-{y=(t.?}£B}

(sections of A and B). Suppose that, for each x , A, and B_ have

content in R and ul(ﬁx} - HI(BxJ . Prove that uz(a} = “2(3} -

Spell Fubini.
1
3.30: Let f be a real-valued function on [0,1] such that J f exists;
define a by :
an-%jl f(ii) 2 iR Slyren s

Show that {nn} is convergent and

1
l:l.ua-! . A
nteo O 0
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3.31: Let f,g be integrable on [a,b] and g(x) >0 ,a<x<b, f

continuous on [a,b] . Prove that 3 c ¢ [a,b] =

b b
Jfg-f(clj B

3.32: Let D be a compact subset of R° and f : B° + E' be continuous on

D . Show that {(p,f(p)) : p € P} has Jordan content zero in - o .

3,33: (1) Let f be a continuous real-valued function om [0,1] . Prove

m /2
J’ x f(ein x)dx = 7 r f(sin x) dx .
0 0

m
(11) Deduce I —-:5-"-1-535 dx = % 'rr2 from (1).
0 2 =-s8inx

3.34: Use Fubini's Theorem to show that

2

; {I: f(x,y)dyldx + I

L

2 {J(x-z}z
o 'y

f(x,y)dx}dy = I f(x,y)dv}ldx .

0 1 70

3,35: Show that j 3 i
D

% vhere D = {(x,y,2) : x2>0,y2>0,22>0,

0 < xty+z < 1} .,
3.36: Let D be a subset of Rz with content and f a positive continuous
function on D . Use Fubini's Theorem to show, 1f
K= {(x,y,2) : (x,y) e D, 0<2z< f(x,y)} ,

then
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HE(K} = J ls= I £ .»
K D

Deduce m uE{D]_i u3(K}'5 M HE{D) if m,M are lower and upper bounds

on f in D ..

3.37: Ewvaluate J

3.38: Show

v l—yz

1
I{J sin —2— dx} dy = 1 .

g 2 % 1oy s

Explain carefully why each integral you consider exists.

See also Exercises pp. 122-124, Buck,

References for Chapter III

R.G. Bartle: Chapter VI

R.C. Buck: Chapter III.
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CHAFPTER FOUR

DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES

ERELDONARIES

Linear Functions.
Definition: L ¢ #* + R" s L 48 linear if, for all p,q € F® and A eR,
(1) L(p+q) = L(p) + L(q) (additive)

(41) L(Ap) = A L(ﬁ) (homogeneous)

If v e E" and L 1s linear than M : BE® + R™ , M(p) = v, + L(p) , is an

affine function.

Theorem 4.1: L : R =+ Em is linear <=> there is a matrix [Cij] - G S S e

.1 - 1:-1-.“ such that if - (:i.-.-'xn) E Rn and L{P) . (rllf"'lrm} € Em

then
Yl cu B TwE cln. x.l
R x » » s or qr = pT (T = transpose)
?n cml P eee 3 Cm xn
n
1- & - c i L 1 sany M
Proof:

"<«" 3 If L 18 representable by a matrix then L is clearly linear.
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"=>" : Conversely let L be linear.

L@) = @y @) sernsl (@) = (ppeeesyy) -

if Ej - (0.-;-.1,.--.n} M J - 1,-.-.“ » then since

+
jth entry

p-{x ,.i-.x} n:11+".+:ne.n

L(p) = L(xlal L S xuen}

- 11 L{El} + st xn L{En) .

Li{p) - X L:l{ﬂl) P X, LI(EII} » 1=1,...,m

1.&-.

jzl L {a }x 5 “11 = Liiﬁj) ’
74 | -
En Lllad® o bou uibhngd” I
S f o = O

Recall from linear algebra that the rank of a matrix C 1is the
number of vectors in the largest linearly independent set which can be chosen
from the columms of C . Also, 1f L : E® + B® 1e linear with matrix repre-

gentation C then
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rank C = dimension L(R“]

1.0, L{Rn} = {xl L{el) + wee + x L{en} P X € R} , from Theorem 4.1, so the
minimum number of vectors which it takes to span L(.Hl:l } in B is precisely
rank C. The range L(R") 18 a linear subspace of R" (e.g. 1f m =3 it is
either the origin, or a line or a plane containing the origin or 33 itself).

If v e E" then

v+ L) = {v4vive L} = {v, +L(w) t ue B}

is called an affine space and is evidently L(l‘i'i:l ) translated by the vector

v,
Example:
1 1 0
rank 1 1 0| =2
0 1 p

Thus the range L{.R:!) of the corresponding linear function L : R3 -+ ES has
dimension 2. In fact it consists of all vectors of the form (e,s,t) 1i.e.,
the plane y = x . An example of an affine space in R3 is (0,1,0) + L(Ra}
which is the parallel plane through (0,1,0) , i.e. y = x+l .

Z A
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Theorem 4,2. If L 18 linear there is a constant M such that

)| <Mlp] ., ¥peR ,

Proof:

n
I?il Lo IL {P}l I x ij jl

(CBS)
j-l %13 /1-1
lLp) | = E 'J'

¥ igmy

I 1o [12
i=1 §=1 3-1

=M |p| where M= 1 E cij O
i=]1 j=1

Corollary 4.2,1: A linear function L : B +R" 1is uniformly continuous on

[L(py)-L(p) | = |L(p=py) |

<M |p1-p2| , by Theorem 4,2,

Thus 1f [p;-p,| <% then |[L(p,)=L(py)| <& . 0
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Definition: L : A" + R' 1is ome-to-ome (1-1) 1f L(p,) = L(p,) => p; = P,

equivalently p, 4 P, => L('p1) # L(pz)} .

Theorem 4.3: L : R* + F" , L linear. L 1is one-to-one <=> there exists a

constant k > 0 such that |L{p}| 2k |P| for all p e s

Proof:

"<=" : If such a constant k exists then
L)L) | = [Llpy=py) | > k|p =P, |

‘, Py ¥ P, L(pp) #1L(py) so L is (1-1) .

LN ]

“a3" : L 1is continuous on K (Corollary 4.2.1)

=> |L| 4s continuous on F® (Corollary 2.9.1)

=> |L| 1s continuous on S = {p : |p| =1} .

Now S 1is a compact set so, since |L| 1s continuous on S , |L| achieves

a minimum value on S (Theorem 2.12.2), at P, Say. Thus

def
k = min {[L@)| t pes}=| L], [p|=1 .

Now k = |L(pu}| >0 since L(0) = 0 (from linearity) and thus L(p) # 0
if p# 0 because L is (1-1) ; in particular L(p)) # 0 (e, | = 1) . 1f

pE i » P#¥ 0 then TlT pesS so
p

k < L p)| =2 L] . 0
Ipl Ipl
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Exercises.

§.1:

be 3t

Ga.bz

4.5

4.6

3

let L : R+ R~ be linear with L(el} = (2,1,0) , L(e,) = (1,0,-1) ,

e, = (1,0) , ey = (0,1) . Find L(2,0) , L(1,1) , L(1,3) . Draw

pilctures.
Show that Lcﬁz} # R3 for the function in Exercise 4.1.

Show that 42 L & 2245 1a linear then

L s &> .

Let L : Ra - Rz be linear. Show that there are non-zero vectors

P e R3 such that L(p) =0.

a b

If L3 R2 +~R2 has matrix [c d] » Bhow that

(1) L) = stugle podnt <> 4= b = o= dinD .

(11) L{Hzi = line <=> A = ad-bec = 0 , S ED A d 0.

(141) L(R®) = RZ <=> A 4 0 .

Show that in case (i111) L 1is one-to-one (and only in that case) and

L™ ts linesr with metrix

d/A -b/A

=cfh alh f
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4.8:

4.9

4,10:
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Show that the sum and composition of two linear functions are linear.

What are the matrix representations of these?

1

If 1L = - s Rm is linear and (1-1) them L ~ 41s linear on its domain.

Let £ : RB° +RF" be such that
(1) f(ptq) = £(p) + £(q) , ¥ p,q € B* (additive)

(i1) £ 4is continuous at 0 .,

Prove that f i1is linear.

Let £ : R+ RE" be such that
f(lx) = A f(x) (homogeneous)

Notice that f 1s linear, i.e. £(x) = £(1) x . Show that homogeneity

does not imply linearity for functions of more than one variable.

&

(Bint: Consider f(x,y) = %3, (x,y) # (0,0) , £(0,0) = 0 .)

x ty

See also Buck: Exercises pp. 227-229, 237-238,
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Straight Lines and Curves.

If ¢ and u are points in * then {c+tu : t € R} 1s the
straight line through c¢ 4n the direction u . Recall that {p + t(q-p) :
t ¢ R} 1ie the straight line through p and gq ; it may also be considered
the straight line through p in the direction gq-p .

p+t (g=p)
cttu

Notice that this representation of a line is not unique; you may replace u

by any multiple A u (A # 0) and still get the same line.

If £ : R+ R then we say {f(t) : t e R} is a curve in B

(acontinuous curve if f is continuous).

f{tu}
R b

The line through £(t ) and £(T) (£(T)F£(T))) is {f(r)) + t(f(r) = £(1)) :

t € R} or equivalently

f(t) - E(tu]

{g61) + 2 g : t € R} ,
(o]
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f£(1) - ffto}

i.e. it is the line through f{Tu} in the directiom e . We there-
o

fore define the tangent to the curve at f£(T ) to be {f{Tu} +t f'(Tn) :
£(1) - £(1)
T =1
(o]

te R} 1f £'(1.) = lim
o T

L]

f{Tﬂ} in the direction f'(TDJ}. Evidently

exists (this is the line through

f(T]-f{To) 21{1}-fl{rn} fn{TJ-fn{To})

- %$¥ ( — g sas T = Ta

L =
f (T ) lim
o] o

T =1
o o

- L L]
(£, (Tn} 9 W B fn fru}} .
It is also convenient sometimes to think of f£(t) as being the

position of a particle at time ¢t j then f£'(t) = {fl'(t) A e fn'{t)} is

the velocity vector of the particle at time ¢t .

Notice also that the linear fumction L(t) = t f'(ra] is the best
linear approximation to f(Td+t} - f(ro} in a neighbourhood of t = 0 in the

sense that

E{Td+t)—f{Tﬂ] -t f'{rn}l b
t

lim
t+0

Example:

The direction of the tangent to {(t.tzﬁ : te€ Rl=C in Rz at
the point (0,0) 1is (1,2t) o (1,0) . So the tangent line to C at

(0,0) is N

{(0,0) + t(1,0) : t € R} or {(t,0) : t € R} . ¢ {t,tzj

>

(t,0)
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Definition: f:Rn-hRm,dmin DeR®.
(1) If c¢ 1s an interior point of D , u e i , and

lin {£(cttu) = £(c)} % - e oy
t+0

exists then this limit is called the directional derivative of f

at c¢ in the direction u and is denoted f,(c) .

(11) 1If o WhsispLianaal) » f& (c) 1is usually denoted %i* (c) ,

+ i i
ith entry
i=1,...,0n = the partial derivatives of f at c .

When we compute the directional derivative

£,(e) = 1im {f(cttu) - f{c)}%-
t+0

we are in fact restricting our attention to the behaviour of the function £
at ¢ with respect to a straight line through ¢ in the direction u . This
straight line in R° (at least the portion of it that lies in D ) is mapped
by f 4into a curve in f(D) c B" . The vector £,(c) 1is the direction of the

tangent to this curve in R .

(e)+t J(c}
f(e)
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It is also instructive to consider the graph G(D) © il E ;

where € 1 B® + B™ {g defined by G(p) = (p,£(p)) , P €D .

2T (e.f) = 6(c)
(cttu, £(c)+t £ () =
G(e)+t Gu(c}

6,(c) = Lim [G(cHtw)=G(c)] ¢ = Ltn [ (ot £(eHen))=(c, ()] -
t+0

= lin (tu,£(cttu)-£(c)) £ = (5,f () .
t+0

Gu(c} = {u,fu{n}) is the direction (in Hn+”5 of the tangent to the curve
{G(cttu) : t € R} = {(cttu,f(cttu) : t € R} ’

at the point (c,f(c)) .
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Examples.

(1) £:R°+R , £(x,y) =x° +y°

o Rz e RB y Glx,y) = {xl?rxzﬂzj

£@2)

The directional derivative of f at (x,y) in the direction e, = (1,0)
1e 3 (x,y) = 2x . In particular 3£ (0,0) = 0 implies the x-axis in

2

R® 41s mapped by G onto a curve in R3 which has a horizontal tangent

at 6(0,0) = (0,0,0) .

(2) f{xl,:2) = {:1’=2’=§ - ::g}

c = {cllﬂz} p M. (ul,uz:l
1
[£(c*tu)=£f(ec)] 1
- +tu,, (e, +tu, ) 24 (e ttu,) 2)=( c2+c2)] L
= [{:1 1.'.1'.11,,cz uy, (e ttu, e ttu, €y265s¢,%C, -

g5 891
= {tul,tuz,Ztulcl + 2tu2c2 + t uy + t uz} 5

2 2
- (ul.uz.Eulcl + 21.12:2 + tul + tuz}
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s £ (e) = Lim [£(ettw) = £(2)] %
t+0

= (ul,uz,Eulcl + 2u2c2} .

Notlce that
uy 1 0 [ul]
u, = 0 1 u,

2u.c., + 2 2c 2c

j%y * SigFa

go that fu(c} is a linear function of u .

(3) £:R~+R such that f£f'(c) exists.

[£(ct+tu) = £(e) ]/t = [£(cttu) = f(e)] :“—u u

£(crtu)-£(c) £ (c+h) £ (c)
lim . = ]im ™
t+0 0

u= f'(c) u

i.e. fuic) = f'(c) u .

Again fufc} is 1inear in u (with matrix [£"(c)]). Now for the

bad news:

4 £:R2+R , fxy) =0 , yox
fxy) =1 , y=%x, (xy) # (0,0
£(0,0) =0 .

Then fﬂ: E}{D.ﬂ} =0,¥ @,B)e R% . Thus fu(Q.G) exists for every

2

ue B and is linear in u but £ 1is not continuous at (0,0) .
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The following example shows that fu(c) does mot have to be linear

in: wn
2 xz 3 2
) 2aR 2 f(x,?)-—a—Lz, x ¢y
X =y
S
f(x,v) = 0 . X =y "

f 4is not continuous at (0,0) but £

(M,V) € B and

& u}(ﬂ,ﬂ} exists for each

2
£ vy 0 = = l‘u— , 1f véo0

£ vy (0:0) = 0 . tEww

Notice that f (0,0) is not linear in (M,Vv) .
(u,v)

Remark: Notice from the preceding examples that, when f i1is a "nice"
function at ¢ , fuft} is linear in u but in general need not be linear

even if it exists for all u .

Observe however that all the fu(c) above, while some are not
additive, are homogeneous in u , i,e. flu{c} - ) fu(c) for all A e R .

This is always true when fu(c} exists,

Exercises:

4.11: Prove that 1if fu{cj exists then flu{C} exists for all Ae R and

f_lu{ﬂ} - A f'l.l.(c} .
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4,12: Prove that the expressions given for the directional derivatives in

Examples (4), (5) above are correct.

4,13: Check that the following partial derivatives are correct:

@) L@ Sy,

%{ (x,y) = 2x , % (x,y) = 35'2 .

(b) £(x,y) = (sin(xy) , e* , cos y)

3 e (ycosGay) X, 0) , §o = (xcosG) , 0, siny) .

dolb: £ 3 Rz * 33 , E(x,y) = {zz+g3 s B0V e®) .

Prove that f{u B)(:.?) exists for each (x,y) € % and each direc-
»

tion («,B) . Show also that f(u B){x.?} is linear in (a,B) with

matrix
I
0 cos ¥
e 0 &
Motivation.

Although the directional derivative performs some of the ‘tasks that
the derivative did in determining the properties of functions we have seen that
it has embarassing shortcomings. For example a function may be discontinuous
at a point where all directional derivatives exist. Therefore, to be useful,

a more restrictive type of differentiation must be introduced in order that the

role of differentiation may be extended to higher dimemsions. To this end we
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reformulate the definition of the derivative for functions of one variable.

f:R+R, f is differentiable at ¢ 1if J £'(c) »

lim ﬂ!::L:(ﬂ . £'(a)
rc .

| x=c|

1im F;:}:igcl - £(c)] = 14m |f§x1-f§c}-f'§c“x-c!| =
x*c s x+c

Thus f : A + R 1is differentisble at ¢ 1if and only if there exists a

linear function L : E+ R such that

| £(x)=f(c)=L(x=c
| x=c|

(*)

and L 1s given by L(u) = £'(c)u , ¥ u € R . We can consider L to be
the best linear approximation in the sense of (*) to f£(x) - £(c) in a neigh-

bourhood of ¢ .

(:!f{:} )

TR T R T L R

(x,£f(c)+L(x=c))
£(e) |r-m--= - - - |

Definition: Let £ : B* + F® with ¢ an interior point of D , the domain

of f . Suppose that L : F® + A 1is linear and

i |£(p)=£(c) = L(p=c)| _ ,
| p=c]|

1
prc
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Then we gay f d1sg differentiable at ¢ and 1L 18 called the differential of

f at c , and denoted D f(c) ; i.e. L(u) =D £(c)(u) , Yue R* .

Example, £ : R+R, £(x) = x>, £'(c) = 3¢

L(u) = 3¢’y , YueR
|£(p)-£(c)-Lip=c) | = |p> = ¢ = 3c2(p=0) |
= |P'-1-'.:|||f.t2 + pe + &* - 3::2[

2
= |p=c||p? + pe - 2¢°|

1im |p2+pc-2c2|-i} .
prc

Theorem 4,4: f 3 B® + R

D f(c)(u) = L(u) <=> D fi(njfuJ-Li{u}. ¥ ueRB® gy 1= 1,0e0,m
where

f{P) e ":-'E]_(P}-----fm(i’)) » L(I.'I.} - {Ll{u)"“'l'm(n)} .

[ £(p)=f(c) = Lip~c)| _
o Ip—c] %
1£,(p) - £,(e) - L, (p-c)
Ip = ¢l

<m> ]im =0 3 i= 1,'-!.‘ "

p+c
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Theorem 4.5: f : Vo +-Rm « If f 4g differentiable at ¢ then:

(1) fu(c} exists for each u e B° and D f(c)(u) = fu(c} .

(i1) The matrix of the linear function D f(e) 1s

ke Bfl Bfl i
o AR S B -l
1 n

Bfm Bfm
E{C} » e w ¥ E(n}

This is the Jacobian Matrix of f at ¢ , which is usually denoted
]
[ ()] or £'(c) .

Notes:

(1) We are assuming £(p) = (flipi.---.fn{p}} s P = {’1""”‘:;} .

(2) In the case m = n the determinant det f'(c) 1s called the Jacobian

of £f at ¢ and is often denoted

a(f ’I-i,f )
1
Jf(C} o a(xl,...,‘l::) (ﬂ) i

(3) Part (ii) of the Theorem means that 1if u = (ul,....un} e B then,
i - 1,-1-,“ ¥
n

of
i
Lifu} - D f’.{ﬂ)(u} = jgl -a-x'-j— (ﬂ} “j ('ﬂ-fl Thﬂ'“rﬂ &-1}
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Proof of Theorem 4.5:

(1) D £(e) I => 1If uleﬂn,uﬁﬂ then

vim | £ (cttu) - fin% =D f(e)(tuw)l _ 0
t+0 “

. 1im f f (cttu) t- £(e)
t+0

=D f(e)(u)] =0

since, by linearity, D f(c)(tu) = t D £(c)(u)

f(cttu)-f(c)
t

o' lim
t+0

=D f(c)(u) .
i.e. fu[n} exists and equals D f(c)(u) .

(11) Recall from Theorem 4.1 that the matrix of L 1is [cij] =
[LlfejJ] + Here

Lifej) =D fitc)(aj)

= fi (c) , by part (1)
a

h |

of

--E-E!'-(n} TR ON lif TSRO, L L (PR, |
3

Corollary 4.5.1: If the differential exists it is unique.

Proof: fu{r.J is unique (uniqueness of limits) for each u € R . Alterna-

of af
tively the partials 5;*-(:} are unique and hence the matrix f£'(c) = PEEL(E}]

k| k|
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is unique.

Theorem 4.6: If f 41s differentiable at ¢ then f is continuous at c .

Proof: Let L =D f(c) . From the definition of D f(c), if €> 0 there is

|£(p)=£(e) = L(p-c)| . .
|p=c|

t.e. [£(p) - £(c) = L(p=c)| < € |p-¢| . 1In particular, with e = 1 , if

a 6(e) >0 such that 1f 0 < |p=c| < &(e) then

0< |p—c| < 6(1) then

|£(p)=£(e) | < |p=c| + |Lip=c)|

< (14M) |p=c] (L is linear, Theorem 4.2)
I.I .'H.h f(P) - f{(‘.} L] D
p*c
Bfi
Theorem 4.7 (Important): £ : A" + « If the partial derivatives ol
3

i=l,.eeom, j=1,.0.,n, exist in a neighbourhood of ¢ and are continu-

ous at ¢ then f 18 differentiable at c .

Proof: By Theorem 4.4 it is sufficient to prove the case m= 1 (i.e. f is

a real-valued function). By the hypothesis, for each € > 0 , there exists

a §>0 such that if |[p=c| < & then

of of af
x, (p) exists and IE;I () - i;I'(E}I 28

Let

o= (xl,u-.xn} p C ™ {Tll"'lYn) » Ip-c[ <6 .
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Define P = (Xys+eerX) = B, | Pym(YpeYp)
(YysZgseessX ) = Py
(1‘1,*{2,:3,...,::“} =Py Pu-{zl'xz} Fl-wl':z}
¢ = (Y1»Ypreses¥n) = P e.g. in R?
(1) lp-cl < lp=c| < &
n
(2) £(p)-£(c) = £(p )-£(p ) = kzl £, _p) - £Gp1

Now on each line segment between Pr-1 and Py k=1,...,0 We are really

considering a real-valued differentiable function of a real variable so we may

use the Mean ‘Fal}:e Theorem,
) ) = o B ()
55 oy = Fp = T ) NN

where ;k is in the line-segment from p, _, to p, . Clearly Fk e {p:

|p=c| < 6} by (1), since this set is convex. From (2), (3)

n
f(p) - f(e) = ] - 4

(P (x,~v,)
oy B TR % "k

If u= {uljlit’un} let L('l.l} be defined b?

T B N,
k=1
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Then
| 1o} G )
f(p)-f(ec)-L(p-c)| = i e ] (x-v,)
L_ axk xk Tk
<t ( B - 5 © 2120 )12 o)
k=1 k=1
< v/n e |p=c| since |;k-c| <8 1f | p=c| < 6
I (p)=f(c)-L(p- [ =
Therefore D f(c) exists and D f(c) =L . O

Please note that the Theorem gives a sufficient condition only for

a function to be differemtiable at a point.

Examples.

3 2.2
(1) £ R + R g f{xl,xz} - (:l,xz,x1+x2) i

The partial derivatives are continuous on Rz go f 1s differentiable

and D f(l:l.lz} has matrix

1l 0
L] - .
f (:1,:2} 0 1
=,

For example if L = D £(0,0) , L : B> + B and

L1 u 1 0 o uy
L,u| = 0 1 . i where u = (ul.uz}
L, 1 ] 0 0
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i.e. D £(0,0) (ul.uz} = (ul,u ,0) for each {ul,uz} € R® . Check for

yourself that

D f[ﬂ,l}(ul.uz:l = {ul.uz,ﬂuz}
and
D £(1,1) (ul,uz} = (ul,u2.2u1+2u2:|

(2) £ : R+R> £(t) = (cos t, sin t, t)

-gin t D £(0)(u) = (ululuJ
£'(t) = | cos t| D £(3) () = (-u,0,u)
1 for each ue K .

(31T R+ R y f(x,y,2) = xzy + z

£'(x,y,2) = EEﬂ,xz.ll
D ftu:ﬂlﬂ)(ulluziua} - u3

D £(1,1,0) {“1'“2'“3} = 2111 + u, +uy

2 2

) £:RESR E(x,y) = (xty, () D)

£'(x,y) =
2 (xcty) 2(xty)

D £(x,,y,) (u,v) = (uwtv,2(x 4y ) (utv)) .
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Interpretation: £ : B° + R s Yt o (linear).

| f(ctu)=£(c)=L(u) |

ol =0 1f L =D £(e) ,

1lim
n+0

so L(u) 4is the best linear approximation to f(ctu)-f(c) near u = 0 , equi-
valently £(c) + L(u) i1s the best affine approximation to f(ctu) near u=0 .
You can think of this as saying that the affine set f(c) + L{Rn) is tangent
to £(&") at £(c) .

In Example 1 above f{xl. ) = (%)%, +x ¥ s
73

+ %2 p £(®%)

Zil v 1R
™ A

£(0,0)+L(R%)

If L =D £(0,0) the tangent at £(0,0) = (0,0,0) is £(0,0) + L(&) ,

the set of all vectors of the form (0,0,0) + (u 0) , 1.e. '{{ul.uz,D} $

1*V2e
(u,,9,) € B’} which is the plane y5 = 0 . Similarly the tangent at £(0,1) =
0,1,1) 18 £(0,1) + L&Y = {(0,1,1) + (u;,u,,2u,) : (uy,u,) € B} =

{(u, pU L, 2uptl) 1 (uy,u,) € 1 (wre L=D £0,1)). Thus the tangent is
the plane y3-1 = ziyzul} + Notice that the tangent at every point on f{RE)

is a plane since rank f'(xl.xzi = 2 for all {xl.xz} € Rz =
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In Example 2, £(t) = (cos t, sin t, t)

f\z

5 f£(R)

T

R> £(0) + L(R)

The tangent at f£(0) = (1,0,0) is £(0) + L(R) (L =D £(0)) {i.e.,
{(1,0,0) + (0,u,u) : u e R} = {(1,u,u) : u € R} a straight line through

(1,&,!‘.]) and (1, 1: 1) .

2
In Example 3, f(x,y,z) =x"y+ z.

T

W
-

x 33 R

3
The tangent at £(0,0,0) = 0 , if L = D £(0,0,0) , is £(0,0,0) + L(R") =
{u3 3 (ul,uz.ual e B3} 1i.e. the whole set R . The picture is not very

informative in this case.

Exercises:

4,15: In Example 4 above sketch the range f(Rz) (it is a curve in R2 Yo

Find the tangent at ome or two points of the range.
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6.16:1 £ 1 R°+ R , E(x,y) = (x%47,5°) . Check that
2x 1
o

L =
f (Ib'yn) -
0 2y

Write down D f{xb.ya](u,v} and verify that

If(li_.\#}-f@.ﬂ} =D f{ﬂ,ﬂ} (]J-V}l
lim = 0
V) > (0,0) 1,

4,17: If £ s B® + R 1s such that

(1) £ has an interior relative minimm (maximum) at c ,

(11) D f(c) exists,

then D f(e)(u) =0 for all ue R* .

[Hint: Show 3%2 (c) =0 , 1= 1,000,0 «]
: B

4.18: Let f be a real-valued continuous function on a compact subset K

of R® such that
(1) £(p) =0 4if p € 3K , the boundary of K ,
(11) Df(p) exists 1f p € K° ¢ ¢ (the interior of K).

Show that there is a point P, € K° such that
D £(p)(u) = 0, for all ueR

[This is a generalization of Rolle's Theorem.]
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4.20:

4.21:

b,22:
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For each of the following functions write down the Jacobian matrix at
the point indicated:

3

(a) f(X:F} = 3x1‘j" - xy + 23 {1,2} .

L

(b) h(u,v) = (u sin uv , v cos uv) ; f%*, Eﬁ .

@) g(x,3,2) = (Pyz,3xz2) 3 (1,2,-1) .

2

Let f be a real-valued function on an open set U in RE” such that

-g{ and % exist and are bounded on U . Prove that f 1s continuous

on U .

[Bint: £(x,y)-£(x_ ,y ) = £(x,y) - £(x,y) + f(xn.r) - f(:tn.rn} , the

old polygon-in-a-convex-set trick.]

Let f be a real-valued function on an open connected set U in Rz

such that -g-i- and % exist and are zero at each point of U . Prove

that £ 1s constant.

I1If f 18 a real-valued differentiable function on F® and ce R

then the vector grad f(e) = V f(c) = (-é-i—f 5 R A ?i—f (c)) 4s called
1 n

the gradient of f at c ., Show that
£,(c) = D £(c)(u) = V £(c) * u, for each wu e . i

Deduce that the largest value of f (c) , if ju] =1, 18 |V £(c)| :un.l,'r?

?FiH%thia value is attained when u =V f(c}fl? f{c}[ . This means that

the direction of maximum rate of increase of f at ¢ 18 the direction

of the gradient vector, What was Bunyakowski-Schwarz's first name?
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4.23: Sketch the surface {(x,y,xy) : (x,y) € HZ} in R (i.e. z = xy) and
show that the tangent to this surface at the point (1,1,1) is (1,1,1) +

{(u,v,ubv) & (u,v) e H‘z] (1.e. 2+l = x+y).

4.24: If L : B® + " is linear then the differential of 1L exists and

equals L at each point in 2,

Differentiation Rules:

Theorem 4.8: ¢,V : F" + 7" , both differentiable at c € R" ,

(1) 1f

h=o0od+ BY (3,B e R) them h is differentiable at c and

D h(e)(u) = o Do(c) (u) + B DW(c)(u) , for each u e R* .

(1) If k= ¢*Y (so k : I *R) then k 4is differentiable at c

and

D k(e)(u) = ¢(c) * Di(e)(u) + W(c) * Dé(e)(u),, for each u e B,

Proof:
(1) Let L¢ =D ¢(c) , I‘ﬂl = D Y(c) and consider the functian

L: En "‘Rl y L(u) = g L (u) + g wau) + Clearly L 1is linear and

¢

i_h(p)=h(c)=L(p=c) f
|p—c|

= |ad(p) + BY(p) - ad(c) - Bic) -0 L (p=c) ~B Lwtp-c}-lnp-ﬂ
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¢ (p)=d(c)-L, (p=c) | lw(p)=y(e)-L, (p-c) |
P e)=L, il P L, {p-c

i fﬂ.‘ |P_c[ B |'P"CE

by the triangle inequality. Both terms in this last expression have limit 0

as p + ¢ ; therefore D h(c) exists = L ,

(11) Let L : " + R be defined by

L(u) = 6(e) * Ly(u) + ¥(c) Ly(w) , ue g

Then
Ikggz-kgn!-LgE-nEI
p-c
= |6()*V(p) - d(c) V(c) - ¢(e) Ly (p=c) = Y(eH, (p=c) |/ Ip=c|
= |o¢p)LU(p) - V(e) - Ly(p=e)} + ¥(e){o(@) - ¢(c) - Ly(p-c)}
+ () Ly(p-c) = $(e)Ly(p=c) | /1p=cl

[W(p)=P(c)=L, (p=c)| |é(p)=d(e)-L, (p-c) | IL, (p=c) |
< |oep) | fp_cll‘w + |v(e)] iP""ig + |d(p)-t(e)| %‘T-—

+0 as p+c. In the last step we have used the CBS inequality several times,
the fact that I p{_p:c“ is bounded (Theorem 4.2, since LW is linear) and

the fact that ¢ 418 continuous at ¢ (Theorem 4.6).

Theorem 4.9. (The Chain Rule; very important): Suppose ¢ : o s
1P:R“+R£' and
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(ERn}l
(e B .

(1) ¢ 1is differentiable at ¢

(i1) ¢ is differentiable at b = ¢(c)

Then £ = Yod [i.e.

D £(c) = D Y(b) ° D ¢(c) .

f(p) = V(dp(p))Y 1is differentiable at

In particular the Jacobian matrices f' , ¥' , ¢' satisfy
£'(c) = ¥'(b) $'(c)
l.e.,
3f, oF, X 8y, _ail_
rll y sew 3 T:“:' F y Tama 3 '3;.: 311
':i ] "ew afE a‘pl aipl 5
S '5‘{1‘_ : L A 3;:_ b| %
il'Evl »
af m Bwi 3. '

i k
(c’) - (b} g {c} ¥ 1-1,4-5,24
E:j IEI 5§k ij

c

and

This may be stated more conveniently but less precisely as follows:

f= f(}fl:-riifl) ¥ Yk - Fk(xl""'xn} ' k= 1,-.-,“ then

h

f _ ? ot ik
e M %y

provided all the functions involved are "smooth".

j-l,-.-lm

If
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Examples:
(1) n=mn=§ =1,
£(t) = ¥(¢(t))
If ¢'(t)) and ¥'(4(r) exist then £'(t)) exists and
£1(t) = V'@t )) 6" () ,

less precisely,

(2) n=m=2 , =1,
£f(x,y) = P(u,v) where u = u(x,y) , v = v(x,y)

i.e. £ = yo¢p where ¢(x,y) = (u(x,y),vix,y)) .

If D ¢(x,y,) and D Y(u,v ) exist, wvhere u = u(x,y) ,

i v{xu,yu} , then D f(xo.yo} exists and

2 ) - w'(uo.vni ¢'{xn.rn) .

l.e.
of d ] x ¥
[Ex -5;](: y} [-EE ’ %‘(uﬂ,vﬂ) %‘E %‘1 ( }
x Y 3ano
1|E|,

ay Hu av
Bu Bx E*



- 169 -

af - 3u 3y By
Bu 3y | v By

e.g. 1f h(r,0) = g(u,v) , where u=rcos 6 , v=r gin 8
gz %Et:ua&-i—%&ainﬁ,

Bh EE (=r sin 8) +----a r cos B ,

(3 =] . a=2 LIsl .,

F(t) = h(x,y) where x = r(t) , vy = s(t)

dx
42 an, dt
dt '&_'ay dy :
at
1.a.,
dF dh x af d
v 2 s

(4) Suppose a particle's position (x,y,z) 4in space is given at time t
by x=cos t, y=sint , z=t (it is moving on a helix), and the
temperature at any point (x,y,z) i1s given by T(x,y,z) = x? + 52 + :2 .

If H(t) 41s the temperature of the particle at time t find %% .

In this case H = Te¢f where
T(x,y,z) = xZ + Yz + 22 g f(t) = (cos t, sin t, t) .

From the Chain Rule H'(t) = T'(x,y,z) £'(t)
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-g8in t
dH
EEE] = [2x,2y,22] | cos t
1

—g—ﬂg-—zxaint+2ycust+23-2t .

In this case it 18 in fact easler to find &—if:l directly

2 2 2 2 2

H(t}-T{x.y,z}-x2+y +zz—cnst+sint+t =1+t

dH
80 E-Zt.

Proof of Theorem 4.9: Let L¢ =D ¢(c) , Lw = DY(b), b = ¢(c). We make two assertioms

(1) Lm V@) - (@) - L @ (p)-6(c)|/lp=c| = 0
pre v

(2) Um |1 (6(p)=(c)-Ly(p=c))|/Ip=cl = 0 .
pe

Now, if f = Yoo ,

If{p)-f(c)-Lw°L¢{p-c}l
lp=c|

= V(@ (@)-¥(@(e))-L, @ @)~ () + L, (®(@)~¢(e)-Ly (p=c)) |/ Ip~c]

|$(¢(PJ)-¢(¢(EJ)-L${¢(F}-¢(E})[ EL¢{¢(p}~¢(nJ-L¢(p-c)J!
z Ip=cl - lp=cl

+0 as p+c by (1) and (2). Since LwﬂL¢ is linear D f(c) exists and

equals LW'L T
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Proof of assertion (1): Let € > 0 ., Since ¢ 4s differentiable at c
there is a neighbourhood U of ¢ and a constant K > 0 such that if pelU

then

(3) [$(@)=b(e)| < K|p-c]|

(see the proof of Theorem 4.6). LW is the differential of ¥ at b = ¢(c)

80 3 6>0m |g-b|] <6 =>
(4) [¥@-¥®) = L,a-5)| < [g-b] .
Thus, from (3) and (4), 1f p 1s sufficiently close to c ,
[V @N-¥b(e)) - 1, G@)4(eN | = § [6(I=0(c)|
< elp=c| .

Therefore assertion (1) is true,
Proof of assertion (2): Since Lw is linear there is a constant M > 0
such that le{u)[ < Mlu| , for all ue R®. Thus

!’Lw{ii?(!’)-ﬂnl - L¢{P-=}}I 1 Ml¢p(p)=¢(c) - L¢(p-nJI
Tp=cl - lp=c]

+0,a p+c, by the definition of 1L a

¢ L]
The Chain Rule in higher dimensions is even more interesting than

in one dimension; for example it includes the rules for differentiating sums

and products as special cases. Thus Theorem 4.8 is a corollary to Theorem 4.9.
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This can be seen by consildering the functions

P: B +F , R = ()0

G : Hzm - Rm » G{ql,q2] = uq,l + ﬁq2 3 qliqz E Rn

2
B:E =2, H(q,,9,) = 9,9,

so GeF=qap + BY and HeF = =9 .

Theorem 4.10. (Mean-Value Theorem): £ : B° +R . If a,b e E® and £ 1is
differentiable at each point of the line segment 5 between ‘a and b then

there is a point c € S , c ¥ a,b such that

f(b)-f(a) = D £(c)(b-a) ,

¥ _of
1*&. f{h’}-f(ﬂ) = E - (ﬂ} (B -u } EY 'iﬂ'lﬂre A= {u -lIl’u' } ] h = (B l""'IE } -
3=1 H:j Yol 1 n 1 n

In the notation of Exercise 4.22 this may be written

f(b)-£f(a) = V £(c)*(b-a) .

Proof: Consider the real-valued function F omn [0,1]

F(t) = f(att(b-a)) , AR ¢

= f£(A(t)) » A(t) = att(b-a) .
By the Chain Rule F'(t) exists 0 <t <1 and

F'(t) = D F(£)(1) = D £(A(t)) » D(A(£)) (1)

= D £(A(t))(A"(t)) = D £(A(t))(b-a) .
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By the Mean-Value Theorem for F
F(1)-F(0) = F'(ta}(l-ﬂl =),
for some t € (0,1) ; fin.,
f(b)-f(a) = D £(A(ty)) (b~a) = D f(c)(b=-a) , c = At ) . 0

This theorem does not hold for functions £ : F* + e if m>1. Can you

tell why? If you can't, try to carry out the proof with m > 1 . However see
Exercise 4.29 on page 174.

Exercises:

4.25: Let f :R+R be differentiable, If F : R + R is defined by

(a) F(x,y) = f(xy) then x%& - ?'g—: ’
®) F(x,y) = £(axtby) then b 4L = o 3F

dy °*

(&) F(x,y) = £(x*y%) then y g{- = x% ;

L2860 LB en | GG e Py sia 5, 1f (x,y) % (0,0) ,
x4y
£(0,0) = 0 . Show that f is differentiable at (0,0) but %5 ,‘%f

are not continuous at (0,0) .

4.27: Let f : F® + R be a differentiable function and C a smooth curve
in R" on which the function f 4is constant. Prove that for any
point ¢ € C the tangent to C at ¢ 1is perpendicular to

v f(ﬂ} - {%‘- (EJ § eres 5 _g-:_ {c}J .
1 n
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colinear

f:Rn-ar,

points {pl,...,pn} in E® the determinant

f differentiable. If for all collections of n

of af
1 1
B (? } [ RN Y v {P }
Bxl 1 Bxﬂ 1
Bfn Bfn
Hl‘ (Pnj » TER] ¥ Fx—;‘ {Pn)
is non-zero show that f is (1-1) on R° , Thus if n =1 and

(1-1) on R . Show that if

f(x,y) = (:3-3;,.;’“3'} then f 18 (1-1) on R* .

£'(x) 0 for each x€ R them f 1is

If £ : BB is differentiable at each point ¢ in the line segment
between a and b and satisfies |D f(c)(u)| < M|u| , for each
ue R then |f£(b)-f(a)| < M|b-a] .

(Euler's Theorem) f (xl....,xn) is homogeneous of degree m if

{*J f(t leou.t !.'n]' - tm f(xlplil’:nj 5 YtelR.

ot o
2 :.'5+3r-;z T SO R
(x+y+z)

3,0, 9 respectively,

3 3

 +y + Xy, are homo-

For example,
geneous of degree Prove that 1f f is differ-

entiable and homogeneous of degree m then

o df _
KIE"'--- +:naxn m f .

[Hint: Differentiate (*) with respect to t and set t =1 ,]

Was Euler an Edmonton hockey player???
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(Project)

(1)

(11)

(111)

(iv)

Suppose f 1is continuous on [a,b]%[c,d] =1 to R ; prove

that if
d
F(x) = [ f(x,y) dy
c

then F is continuous on [a,b] . [f is uniformly continuous

on I.]

Suppose f , %i- are continuous on I ., Let F be as in (1).

Prove that F' exists and is continuous on [a,b] and
d
af
rwe[ Eane

d
[Let &(x) = I ~g—i (x,y) dvy ; ¢ 1is continuous by (1), use the
c

Fubini Theorem to show that J ¢ = F(x)-F(a) . Hence F is an
a

antiderivative of ¢ so F' exists and equals ¢ .]

Suppose 0(x) and PB(x) have continuous derivatives on [a,b]

and f ,%i- are continuous on I . Show

a (B (X ¢
J’ f(x,t)dt = £(x,B(x))B"'(x) - f(x,a(x))a'(x) + oo (x,t)dt.

& Ja(x) a(x)
[Apply the Chain Rule and (ii) to

z
F(x,y,z) = [ f(z,t)dt , x=x, y=0a(x) , z=B(x) .]

¥
From the formula
T
dx o
& a20 un Iv)l s
JD a+b cos x {az_hﬂjlfl ’
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establish the results

J“ dx A
0(a+b cos x]z (az-—bzi

3/2

r coe X dx = P
0 (a+b cos x}z i.[itz-lmzjj‘,2

b

(v) Evaluate [ zdxz , a>0 , and from your result deduce
0 x +a
Ih dx 3. b
- an =)+ — a>>0
0 (x*+a®)?  24° R )

Show also that

dx k]
= - ;y a>0 .,
J‘:I (Jl:2+m2:|n2 Imj

def T
[| £ = limj f 1if this limit exists.]
0 0

Definition: Let f : R + F be such that % exists at some point. If

b
w2 (ﬁ} also exists at this point then we write
axj Exi
" RN N
Exjal:i ij Bxi
and, in particular,
8% D 02,
=, 0% X
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Example: f(x,y) = x3 + 312 + 2xy .

-g-i--ﬂxz+23 %-Eydih
2 2 2 2
I = . S F g g e
32 6% = oy 2 Byox * .2 B .
x 9y

Partial derivatives of third and higher order are similarly defined.

It is usually (but not always, cf., Exercise 13, page 249, Buck) the
case that successive partial differentiations may be taken in any order we
please, e.g., in the above example

e
dyox  9xdy

The following two theorems give sufficient conditions for this. There is no

2

loss of generality in the fact that these theorems are proved in R“ only; we

are only concerned with the behaviour of f with respect to two variables
anyway.

2 2
Theorem 4.11. ¢ ol Rz . If __Br 3%5-5 exist and are continuous on an

open set U c Rz then

e

er‘ﬁ-yx on U.

Proof: Let I = [a,b]%[c,d]c U . By the Fubini Theorem
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d
af of
= L {B_Y (b,y) - 3y (a,y)} dy

- f{b,d) - f{bp":} = f('ﬂjd} + f{ﬂ.,ﬂ) »

I
g = II Tyox I {I Tyox v} ax

b
of of
= L {'EE (x,d) - == (x,c)} dx

= f(b,d) - f(a,d) - f(b,c) + f(a,c) ;

2

therefore Jl = Jz for each interval I c U . MNow suppose -3—:-5-5 (:l.'n.::a} ¥
_3_;___ (:u: 'Y, ) for some l'.'x " ) € U. We may suppose further that

2’ a%s P
0y (x,s¥,) = Byox (x,5¥,) > 0 ; by the continuity, 3xdy - Tydx >0 on some
interval I , (zﬂ,yﬂ} € I . But then Jl - J2 L J {Eizr -E.,-E-z—:) >0, by
Theorem 3.6(e), contradicting Jl - Jz = 0 , Therefore Xy :;gx through-

out U .

Theorem 4.12 is more general than Theorem 4.1l but also more diffi-

cult to prove. ——

Theorem 4.12: f:Rz'*R. If

2
(1) ‘é Bf .h%sfr. exist in a neighbourhood U of (14;'?.:} .
i __33_,5 i in ( )
(11) 3%y s continuous at (x .,y ) ,
2

a?
then £ (xn,jrn} exists and equals -3::_3; {IO,YGJ .

]
By ax
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Proof: (Optional). We must show that

9’ 3¢

Eyﬂx {x Yo }

(x |Y}‘1m['ﬁ_{:s +k}-—'{x,}r}]fk3

=0 Exﬂjr

Let ﬂh f(x.r} dEf [f{xi-h,?] e f{x-?}];h « Then

(1) i_ii_: A f(x,y) 3 = '5- (2iy) » by (1), I (x,¥) ¢ D ,

(2) -%; .-!Lh f(x,y) 4 , by (1) 1f (x,y) e U and h small.
Now comeider
(#) ?_ii (x,»y +) = —— < (x, Yy Yk , k small,

= ;:I:; {ﬂh f{zo.yo-l'kJ -8, f(xo,}'o}ifk » by (1)

3
= lim-a; ﬂh f(xo,ynﬁk} s 08 =08(k) <1 , by M-V Theorem.

But () % b, £(x_,y +0k)

o E%'}fr (xﬂ-!-h.}"u-l-ﬂk} - %';- {zo,rn-i-ak}]!h (definition of ﬂ.h f)
32
By (11), 1f €>0 ,3 8(c) > 0 » [h] < 8(e) , k| < 6(e) =>

32 2
st (x g,y ) = T"iai (x )| <e

2
Therefore, from (%) I% .hh f(xn,yu-l-ﬂk} - '5'??3-;- '[:o.]ra)[ < £ . HNow from (#) we
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may take 1lim in this inequality to obtain
h+0

2
|E§5-f=n=ro+k} -*%5 (x,¥,) 1/k = EEE%"‘n"u}l LeE

if 0 < |k| < 6(e) . Therefore

2 2
3 9°f
9x (xn'ya} 3 = Ixdy {Io'?n} 4 O

Notation: D < " .
C(D) :+ The set of continuous functions on D .

I:k{DJ : The set of functions on D having all kth order partial

derivatives continuous omn D .

The range of the functions involved will be obvious from the context

in which the notation is used.

Theorem 4.13 (Taylor's Theorem).

2 n
(1) Let n-(ul,uZ),h-(Bl.Ez}eRz. If £+ RE+R, £eC,

where U i1s a convex open subset of Rz , and a,b e U then

ol | : 3.k
£0) = [ gr ((81=0)) 35+ (B,-a) 351" £(a) + R,
=0 ™"

1 3 8 .n
where Rn - {(Bl-alj '55_"- {Ez-az} -é;} f(c) and ¢ 1s some point on the

line segment between a and b , c ¥ a,b .

(11) Let a= (3,0ees8) 5 b= (Byyees,B) € . fe€®D, U a

convex open subset of F® and a,b € U then
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£(b) -nfli{(s—ul—a—+ B0 22" £(a) + B
k=0 k! | S Bxl 3 m m qu n

ik e 9
where Rn i {{El-:l-lJ 3"'1+ ke bk {Bm-um} a:‘m]* f(c) and c¢ 1is some point

on the line sepgment between a ;nd b, c¥ab.
Proof of (1): As in Theorem 4.-1:[] (M.V. Th.) let

F(e) = £(A(t)) A(t) = a + t(b-a) .
By the Chain Rule F'(t) = D £(A(t))(b-a)

= (B;0)) 3% () + (B;=a)) 35 (A(e)

- {(Ba) =+ (B,=a)) 2} £QA(E))

1’ 9x 258 8 i
By induction
P (e = (B may) o= + By I £ .

Now Taylor's Theorem for F implies

n=1
F(1) = } 1 _(k) N
wp kT 7 WY R R meFU(e) 4 £, € (0,1)
1l'=-|.
n-1

1 d 3 1k
£(b) = kgﬂ ' ((Bmay) 55 + (B,=a) 553" £(a) + B

R, = 2 {B1-a)) 32+ (By=0) 221" £(E)) . 0
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Application (Extrema of functions of several variables): The symmetric matrix

a b
[ ] is positive (negative) semidefinite if
b c

£, Gk 2 2
Q(x,y) = [x,y] = ax“ + 2bxy + ey~ 20 (£0)
b c

for all (z,jr}el?z . It is said to be positive (negative) definite if Q(x,y)>0

(< 0) for all (x,y) # (0,0) . Otherwise it is called indefinite (i.e. if it

is not a least semidefinite).

-

(i) positive {nas,nthre} semidefinite <=>
sn—bziﬁ and a>0(<0) , ec20(0 ,
(i1) positive (negative) definite <=>
lc—b2>ﬂ and a>0¢0) ,
(411) indefinite <=> ac - b* < 0 .
Proof: (a) 0Q(x,0) = ax’ has the same sign as a
(b) Q(0,y) = cyz has the same sign as ¢

(e) aQ(x,y) = (ax*-by}z + {m-‘hz}}fz .

The Lemma follows from (a), (b), (e).
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Definition: (1) f : R"+R . 1If '5:E1_f (e) ,1=1,...,n exist and are all

i
zero then ¢ 1s called a stationary point of £ .

(11) If c 41s an interior point of the domain of f and f£(p) < £(c)
(> £(c)) for all p in some neighbourhood of ¢ then f has an interior

relative maximum (minimum) at ¢ .

Theorem 4.14: If f has an interior relative maximum (minimum) at ¢ then

¢ 1is a stationary point of f .

Proof: Exercise.

Classification of Stationary Points: An interior stationary point may be a

(a) Relative Maximum if £(p) < f(e) ¥ pe U, aneighbourhood of ¢ .

{ﬂpf(ci} f((‘.)
6w £(U)
Rn+l P
Foi

G(p) = (p,£(p))

(b) Relative Minimum if £(p) > f(c) ¥ p ¢ U, a neighbourhood of ¢ .

G(u)

@ e “ > f£(c)

(cyf(c)) U
H“"'l n
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(¢) Saddle Point (or Minimax) if there are points p, , P, in each

neighbourhood U of ¢ such that f(p;) < f(c) , £(p,) > £(c) .

(c,£fec)) 1

G ¢ C f T f('c}

i .

R

Moreover ¢ 1is called a strict relative maximum or minimum when the

inequalities in (a), (b) are strict.

In the following :h& u‘y‘:ﬂ;ols fz f-;:.!r fxy " fy‘x . fx:.l ¥ fﬂ" denote
2
the functions -g% Bf -5-?-5—- W E-—g § _E'__z_ respectively.
dy

Theorem &4.15: f : R +R i £ & sz] s, U a neighbourhood of (xﬂ,yn} .

Suppose
(1) £(x,y,) = £.(x,30 =90,

fn(:.ﬂ fﬂ(x.r}
(11) A(x,y) = (symmetric. Why?)

fﬂ(x.yl fﬂ,{x.?}

Then, at (xo.yn] , f has a

(a) relative maximum if ﬁ{:ﬂ.yo} is negative definite,

(b) relative minimum if A(xﬂ.yu} is positive definite,

({c) saddle point 1f A[:n.jru) is indefinite, and
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(d) anything can happen at (x,sy,) 1f A(x ,y ) 1s properly semi-

definite (i.e. det A(zo,yﬂ) = ) eritical case

(@) ff - (£ )%>0, £, <0 a (x,y,) => naximm

(b) fmfﬂlr - lff:w,.‘l2 >0, £,>0 at (x,y) => minimun

(e) f,_,‘:‘l:f}“,jr - (fﬂ}z <0 at (x,y ) => saddle (minimax)

(d) fnfyy - (fﬂ)z =0 at (xn.yn} => 7?7 i,e. critical case

Proof: By Taylor's Theorem, if (x,y) 1is sufficiently close to (xn.}*uJ

£xy) = £xy) + 47 (Gex) 55+ Gmy) 353 £G,3,) + By(x,y)

- f{:{}’yﬂ) + Rz{lly} » by (1), where
1 d d.2
Ry(x,y) = 57 {(x=x)) 3=+ (y=y,) E} £(x,,y,)

where (zl,le is a point on the line segment between (:ﬂ,yn} and (x,y) .

Thus
a%s 3¢ 2 a%¢
R,(x,y) = -- { (x=x0)2 » 2 (x3,y,) + 2(x=x) (y-y,) -3-—- (%;,5,) + (y-y_) a—-i- (%1550}
y

fx:(xl’?l) ’lfaqi*"::‘l"yl:II i
ke [x=x |
21 07 Y,

f(:

1Y |y

ETl l:—xn,?-?ulihillsrlﬂ (*)
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(a),(b) : If the conditions of (a) ((b)) hold at [xn,yo} then by continuity
(f ¢ CEIU)} they hold in a neighbourhood of (xb,qu so that if (x,y) 1is
close to (xu,?u] then A (x,y) is still negative (positive) definite, i.e.

from (*) Rz{x,y} <0 (>0) for all (x,y) near (In.?u) .

() + If [w,V] [A(x,,y)] []1 <0 (>0) for some fixed (i,V) then
it holds for each scalar multiple of (M,v) . Furthermore, by continuity,
the same inequality holds with &{xﬂ,yﬂ) replaced by A(x,y) 1f (x,y) 1is
close to {xb,raj « Thus 1f h(:ﬂ,yﬂ} is indefinite szx,y} takes both

positive and negative values in each neighbourhood of {:n.yn} .

' 2
d) : The cage f_f - (£ = 0 is illustrated by Examples
(d) critical case f oy ( zllr] 8 ¥

4, 5 below,

Remarks :
(1) It may be evident which behaviour the function has at a stationary

point simply from consideration of £(x,y) near (xb.yo} (Examples 4, 5).

(2) The sign of the remainder Ezix.?} may be clear by considering the

matrix A(:l.yl) directly rather than from continuity as was done in the proof

of the preceding theorem,

Examples:
(1) f(x,y) = %% + xy + yz s %i-- 2x +y=0
£
= +2 = )
¥ = ¥

(x,¥) = (0,0) 4is the only statiomary point.

f £ 23
xx xy 2>0, 2.2-1,1=3>0 , positive definite

f f 1 2
yx ¥y



(2)

(3)
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f has a relative minimum at (0,0). In fact it is a global minimum
since the matrix above is positive definite for all (x,y) and so

EE{x,y} >0 for all (x,y) # (0,0) .

f(x,y) = x2 + 4xy + yz S -%5 = 2x + 4y = 0

%- bx + 2y = 0

(x,y) = (0,0) 4is the only stationary point

£, ¢ 3 &
S - 2.2-4.4 = =12 <0 , indefinite

f f 4 2
yx ¥y

f has a saddle point at (0,0). Alternatively we can see this by
observing that if (x,y) # (0,0) , f(x,y) >0 on the x and ¥y
axes and f(x,y) <0 on that portion of the line y = x which lies

in the third quadrant.

f(x,y) = 3:2 - yz + :3 . -%é = 6x + 3:: = 3x(2+x) = 0
af
- =y =
G B
(0,0) and (-2,0) are the statiomary points.
& o]
(0,0} 1e indefinite => saddle at (0,0)
0o =2
=6 0
(=2,0) : is negative definite => relative maximum at
0 =2

{"2,ﬂ}
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(5)
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f(x,y) = x& g %5 = 4x" =0
X P
Stationary at (0,0)
fxx f:y = 1232 0
E?: fﬂr 0 12?2

0O 0

This matrix at (0,0) 1ia [ ] which gives no information

g B

(critical case). hwwrlh?iﬂ,ﬂfiﬂ,l%ﬁ

yz_i 0 so

that the matrix is positive semidefinite for all (x,y) (positive
definite if x# 0 and v # 0 ). Thus the remainder Hz(x,y} >0
for all (x,y) and f has a minimum at (0,0) . Of course elemen-
tary considerations yield f£(x,y) > £(0,0) if (x,y) # (0,0) without

any consideration of second order partials.

f(x,y) = x4 - rﬁ

Again the only stationary point is (0,0) and

fx: f:y 12::2 0

o o 5 e

which gives the critical case at (0,0) . However the matrix is
postive semidefinite on the line y = 0 and negative semidefinite on
x=0 8o that (0,0) is a saddle point. In this case it is also

obvious without considering second order partisls that

£(x,0) > £(0,0) if x# 0 and f£(0,y) < £(0,0) 4if y # 0 .
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Examples 4 and 5 illustrate the fact that anything can happen in

2
the case that fmfw - {fxy} 0 at the stationary point.

The problem is similar for functions of more than two variables. A

symmetric matrix

311 » LR [ aln
A=| - < L
- 2 = &1j aji
1 F T Teed
has an assoclated quadratic form
x|
n

Q(x,--ll.xn) - {xll'l'!xn] A

: A%
e B

-

A 1is called positive (nngntive) gsemidefinite 1if
q{:l,...,xn} > Hkcoy , ¥ {xl....,xnl

and 1s called positive (negative) definite if the inequality is strict for all

(::1....,an # (0,...,0) ; otherwise (i.e. 1f the range of Q has both positive

and negative values) A 1s said to be indefinite.

The following criteria may be found in the book Gantmacher: "Matrix

Theory" pp. 306-308.

(a) A is positive semidefinite <=> the determinants of all kxk sub-
matrices (k=1,...,n) of A gymmetric about the main diagonal are

0.
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(b) A is negative semidefinite <=> the determinants of all kxk sub-
matrices (k=1,...,n) of A symmetric about the main diagonal are

<0, >0 according as k 1is odd or even.

(¢) A 1is positive definite <=>

8y 815 817 0 sen s 814
a4 >0 , =0 5 aaw » >0
321 122 aﬂl 3 mEs 3 B.m
(d) A 1is negative definite <=>
ﬂll ﬂlz 2 311 5 sms 3 alﬂ.
511{0 ’ >0 45 een (-1) >0
=1 22 5 T

(e) A is indefinite <=> it satisfies none of (a), (b), (c), (d).

The nature of a stationary point can be determined as before by the

use of Taylor's Theorem: a = {ul.....un) , b= {31,...,Bn)

3

£(b)-£(a) = Tli' {(B,a,) e (8 -0 ) ’éi_} £(a) + Ry(b)
n

= Hﬁ{b} if a is a stationary point (i.e. O (a) = 0).

axi
1 ] d 42
Rg(‘h] -t {{El-ul) Wl"' iss ¥ {ﬂn-‘—'l'-n} E} £(c)
n 2
-1y EHE 66

1,9=1 “*19%y 33



=191 -

1 = a1 -

wigT IBl—ﬂl,...,ﬂn-ﬂ.n] fxlxl(r.'} Al Ty fxlxn(c} El |
L x.(0) £ _ (@] |B. -0

L n l » L . x x n n

=] no - = e

-

where ¢ 18 some point on the line segment between a and b . We see that

the matrix of second partials determines the nature of the stationary poinmt.

Example:
f(x,y,2) = x* + yz + z2 + 2xyz
g—i = 2x + 2y=z
3¢ Stationary points at (0,0,0) , (-1,1,1) ,
gy 2y + 2zx
2 (1,-1,1) , (1,1,-1) , (=1,-1,-1) .
%E = 2z + 2xy
fﬂ fx? fzz 2 2z 2y
f f = 2
i vy yz 2z 2%
£ax f:y zz = A R
(0,0,0) : 2 0 0 is positive definite so f has a
P e 8 relative minimm at (0,0,0) .
0 O 2

Other stationary points

B e - 4-42m=0 4f |z| =1

2z 2
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2 2z 2y
2z 2 2x| = B{l—x;—y2-22+21yz]
oy 2 2

<0, if |x| =|y| =|z] =1, myz=-1 .

Thus the matrix is indefinite at all other critical points so that these are

gaddles.

Exercises:

In these exercises assume all the differentiability you need unless otherwise

specified.
4.,31: Find ?I § ?? . ?z ; Fu ’ ?:Y > vzyz 5 vxyzu for the following functions
L
(1) EZ.LZ% (11) 5+1+£+E+£
az_z i R R e
2 2 22
2xy"u 2x"yu 2x"v uz x
[Solution: (1) V » ¥ ' vV ¥ ’
x 2 2 y n! & z (52_22}2 u n2-32

vo=AEL e LJBUR. .y ._351=_2
xy az_zz xyz {EZ_ZZ}E xyzu (52_22}

Wl TR . S P N 2 e Aol SIS -
(11) ?: y 2+zu’vy 2+z+zu'vz 2+u AT
£ y z z u
=z . 1 _3¥ 1 1 1 1
V == +== A e A, S - ;
u u2 x uz: xy ;I' zu ' xyz s xyzu “2;2
4.32; If Vmxiey? , xm3u=-4v+2,y=2u+3v~-1, show that
?u = 6x - &4y , ?v = =f8x = 6y .
4.,33: I1If V= :3 + Byj - 18xy find the points (x,y) at which ?x - ?Y = 0

and investigate the nature of V at these points. (Solution: (0,0)

saddle, (3,%& minimum, )
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4.35:

4.36:

4.37:
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If P = x;y - y3 - yzz s Q= 332 - x3 - x;z s R = xyz + x:? » 8how
that P{QZ-RF} + q[Rx—Pz} + R{Pyrqx} =0 .

If u=x+y+z,v= :2 + 32 + 2? W= :3 +-y3 + z3 - 3xyz , show

3(u,v,w
3(x,y,2) - O "

If V,P,Q,R,u are cl

functions of (x,y,z) satisfying the relatioms

S gE ?? =uQ , V,=uR (u¥0)

show that
r(qz-n}r) + Q(B.:-Pz) + n{rr-qx} =0 .

(1) P,Q @ Hz +R 3P 0 %5-. %2- continuous, Prove that there is

a real valued function £ on Rz such that
£'(x,y) = [P(x,y),Q(x,y)]

if and only 1if %E-% .

[Hint: "Only if" easy. "If" - consider

X

¥y
f(x,y) = I P(t,yn}dt + I Q(x,t) dt .
x

o FD

Use Exercise 4.30 (i1).]

(11) State what you would consider to be a generalization of part (1)

for functions of three variables.
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(111) Verify that each of the following is the Jacobian matrix f£'(x,y)

of some function £(x,y) and find £(x,y).

(a) [2xy,x%+3y°] ,

2

(b) [2?ax+2:may,eh-—zzainy].

4,38: If P = —= G———L,ahw
12*_?2 ¥ xz_wz

(1} Fr e Gx » FI o -GT

|
P

2
(11) Vo7 « V¢ = 0 whers 'V = +-§-2-

9x oy

(%]

4,39: (1) If V=V(x,y) , x=x(u,v) , y= y(u,v) then

L N A S v, ?FJ x X,
- S
(b) uu L 4ee [xu yu] vzx xy x1.1 x
‘H’w v e e e X ?F?.. Ya ur_
+ vx qu uv + V}, 3‘r'l.t’l.i ?'I.W' .
*ru Fv _?\ru Tw_

(1) If U = U(x,y) , V= V(x,y) , x= x(u,v) , y = y(u,v) , show

ALY L AN, L HET. | e (1) (a).]
(111) If x=rcos 8 , y = r sin 8 show

(U, V) ;agn,v;
d(x,y) r a(r, ’



4.40:

ﬂ-ﬁll

4,421

4.43:

4,44

b.451

4o46:

- 195 -

If V= 3x2 + 25?2 + ¢[x2-yz} prove

y‘irx-lnx‘i.'y-lﬁxy .

1f V= :2+yz+¢(xy)+1p{-¥} prove
2 2 T
:‘Fn-y vy}r+xv1_?v3r 4(x"-y") .

If V=v(x,y) , x=pcos¢ , y=p ein ¢ show

2 _ def 1 1
v T o + = Y + = + =V
i Vax vyr 'op ¥ Vp 0% b¢
[Hint: p -:"zz-l-yz , b= tan'-l{%) -]
cZ
If V= V(r,0) , ﬂ-—r-. ¢ = 2m-6 show
pz‘lil’ +pV _+7V -rE? +rV.+¥
pp p ¢ rr r e

If V= V(x,y) , x= x(u,v) , y= y(u,v) and 5T Yy et S
show

v + Vv
uu vV 2 2 2 2
vn+v -;u+xv-?u+?v o

(Euler's Theorem, continued cf. Exercise 4,30.) If V 4is a homogeneous

function of (x,y,z) of the mth degree show

2 2 2
x "J’n'i':r ‘Fw+: ?z=+2xy "c'xy+2]rr. ‘F.F?z+2=z Voo m(m-1)V .

2
i L]
If zY F{zz}.Fiu,thmn E =z »
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4,47: 1f z = x F(xty) + G(x+ty) show that

4.,48: (a) If z = F{y+'m1:|:] + G(;rt-mzx} and m, , m, are the roots of the

2
+ -+ - + 2 + b - n "
quadratic equation am 2hm + b = 0 then a 2z h z z

Show that this equation is satisfied by z = x F(yd-nlx:l + G(rﬂllx] if

m 1s a double root of the quadratic equatiom.

(b) The equation of lateral vibration of a taut string is

2 2
8 . ::2 E—; = 0, Deduce from (a) that z = F(xtct) + G(x-ct) 18 a
gt 9%

solution.

(c¢) A vibrating string for which initial displacement and velocity are

2 2
specified is governed by relations of the form -E-F;- - cz 'a—% =0,
ot i} 3
z(x,0) = £(x) , z,(x,0) = g(x) . Show that
1 1 ct
z(x,t) = 5 {f(xt+ct) + f(x=ct)} + e rd- E
X-ct
ie a solution to this problem.
4,49: (a) If z = x ¢(~:-) + q.(-::) then
2 2
+ 2 + =0 .
X By Xy zxy y zﬂ
®) 1f z=x" 6@ + 5 Y@ then
x :f'l' x
xza + 2xy =z +yzz +xz +yz =9,
XX xy ¥y x ¥y

[If you are observant you don't have to do all that differentiatiom.]
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4.50: Discuss the nature of the stationary points of the functions
() 3%x? - 24xy + 4ly° [Solution: (0,0) minimum.]

2

(b) 3x" + 4xy - a‘qrz

[Solution: (0,0) gsaddle. ]

2

(c) xzy - 4::2 -y [Solution: (0,0) max., (£2vV2,4) saddles.]

(@) Py + 2% = 2xy + 3y° - bx + Ty
[Solution: (1,-1) min., (1+/6,-2) saddles.]

(e) ::2'5'2-ny=+xzz+12+}rz+zz+yz—2n-2:+2?+z

[Solution: (1,-1,0) min., (1+/Z,-2,1) , (1#/2,0,-1) saddles.]

4,51: Show that the funectiom

£(x,y) = (3=x2) (y-2x")

does not have a relative extremum at (0,0) even though it has a rela-
tive minimum at this point when the domain is restricted to any line x=t ,
y=o0t . [In the (x,y) - plane sketch the curves f(x,y) = 0 , then
determine the regions f(x,y) <0 , f(x,y) > 0 ; check that on each line

through (0,0) f(x,y) > 0 = £(0,0) 4if (x,y) is close enough to (0,0).1]

4.52: Show that the box of maximum volume which can be inscribed in the

ellipsoid
:2 ﬁ EE
B+l +5=1
a b c
has sides of length 8 . 2. ’ £8 .
V3 V3 V3
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2 and desire to find a

}2

4,531 Suppose we are given n points (x,,v.) € R

-

n
function F(x) = Ax + B for which the quantity E (F(xj}-?j is
=1

minimized. Show that this problem leads to the equations

I 2+8 ) =]
A x; + B x, = x.y
gag " Tgm e Ty

n n
AJ] x,+nB= I y
j=1 3 i=1 i

which are easily solved for A and B ., The line y = Ax+ B 1is the

line which best fits the given set of points in the sense of least

Bquares.

4.54: Let {¢u} be a sequence of real-=valued continuous functions on [a,b]

such that

1 » if n=m

B 5 if n¢é¢m .,

Let f be a real-valued continuous function on [a,b] . Prove that the

choice of comstants Tl TR () which minimizes the quantity

b 2 2
f (f— ] Yy ¢k} , for any R , 1is
a k=1

b
| e J Ed, » k= ) S S
a

This problem arises in the theory of Fourier Series.
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4,55: The capacity of a condenser formed by two concentric spherical conduc-

tors of radii a and b, 0<a<b is

ab
C(a,b) =+ -

Suppose that in measuring the rhdii a and b of the spheres the mea=-
surements are subject to errors of amount §a and &b respectively.
Given that products of the errors are negligible relative to the other quan-

tities involved derive the following approximation on the error im C .

— — | T—

4.56: The breaking weight W of a cantilever beam is given by the formula

WL = kbd®

where b :breadth, L : length , d : depth , k : constant
depending on the material in the beam. If thebreadth is increased by 2
per cent and the depth by 5 per cent, show that the length should be

increased by about 12 per cent if the breaking weight is to remain unchanged.

4,57: In a triangle ABC the area is calculated from the elements a , B, C,
the measurements being subject to errors &a , 6B , 6C . Show that the

error 65 4in the area is approximately given by

&8

T

Sa P 4B + b 6C D

2 1: asin B asin C

4.58: Let f : B> + R » £ of class c?2 on a convex subset D of .
Ren &
Suppose that at each point p ¢ D the matrix V| 1s positive
f £
yx ¥y

semidefinite, Prove that if p,q € D then

ffzgi) 5;% [£(p)+£(q)] . What does the result mean geometrically?
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Recall that 1f £ : F* + B° (i.e. f£(p) = (fl(p}....,fn(p}} s P = (xl.---.xn}}

which is differentiable at P, then the Jacobian of f at p_ 1s

o
) R
ax * st = x ff ]---’f
det £ (pn} = - i 3 H (p,) = Jf{Pn}
Y of 1.
n
Bxl 4 # Elxn "

Definition: A function f 4is locally one-to-one on a subset [ of its domain

if there is a neighbourhood of each point p ¢ D on which f 1is one-to-one.

Lemma 4.16: If £ : R® + F° 1s of class cl at p, and Jf{pn} ¥ 0 then

there is a neighbourhood U of P, on which £ 1s one-to-one.

Proof: Since the partials of f are continuous at p and Jc(p ) # 0 there

is a convex neighbourhood U of P, such that if Py € U,1=1,...,n then

Bfl Bfl
'ax—l {Pl} $ ey VIS {PIJ
n
& ! . #0

Bfn af
-sfq () » eev 'ﬁ' ()
n

If a,be U then, applying the Mean-Value Theorem to each compoment of £ , we

find
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n of
£f.(b) - £.(a) = (B -a ) (p,)
1 1 i= i Xy 1
(2) ® 8 8 8 @
n Efn
£ () - £ (a) = 1E1 By-%y) 3%, ()

where a = (0 s----ﬂ“} ; b= (Bl.....ﬂnJ and Py i=1,,..,n are some points
on the line segment between a and b . But (1) and (2) imply fi{bl - fi(ai -

0,1=1,..,n <> B0, =0,1=1.cc,n, L, £(b) =£(a) =>Db=a.

Thuse f i1is one-to-one on U . o

The following theorem is aﬁ immediate consequence of this lemma.

Theorem 4.16: £ : R°+R " , m>n. Suppose D 1is an open subset of E" and

1) f£ect

(i1) rk £'(p) = n Vpe D
then f 1s locally one-to-one on D .

Proof: Suppose f = (fl....,fm} (m > n) ; we wish to show that f is ome-to-
one on a meighbourhood U of each point p_ € D . Since rk f'(pu) = n Wwe may

assume without loss of generality that

3(f1,...,fn)
52:1,...,:£5 {Po} $0 o

(This can always be achieved by relabeling the f's .) Thus, 1if f:R"+R"
1e defined by F = (£1,0.0,8) , F € cl@) and J:(p) # 0 s, by the Lemma,

T 1s one-to—one on a neighbourhood of P, * But since f{plj - f{pzl
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= i) =iy , fa-1 = £0-1 .

f 1s not necessarily globally one-to-one on [ as the following

example shows.

Example: f(x,y) = (e* cos y , e* sin y)
e cos ¥ -e* sin vy

Je(x,y) = =X g0, ¥ixy) e B .

x X
e ginvy e cos Yy

Thus, from Theorem 4.16, f is locally one-to-one on R? + However £ i1s not

globally one-to-one on R° since

£(x,y+2m) = £(x,y) ¥ (x,y) € B>

Ty v
H v -
2 x "L o T tan lk
t k . 3 §
AT ' s
r‘x,.‘._ ‘L /’.,..-a—-...‘:} \ ; u
> <1
uz-l-'\rz-ec

£({(x,y) : xe R, ye [0,042M)}) = B® = {(0,0)} , ¥ a e R.

Exercises:

4.59: In Exercise 4.28 a sufficient condition was given for f : R®+R" o

be globally one-to-one. Verify that this condition is not satisfied by

the preceding example, [If you did not do Exercise 4.2B a proof is
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contained in the preceding lemma. ]

4.60: Show that if f : R+ R and f£'(x) # 0 for each x e R them £ 1is

one~to-one globally on R .

Lemma 4.17: £ : R* + F°. Suppose

(1) D openc B , £eC'(D) .
(i1) JE{P)fﬂ,’h‘pEﬂ 3

then £(D) 1s open.

Proof: In order to prove £(D) open we must show if q_ € £(D) ,36,>0>»
B(qu,ﬁo) c f(D) . Let O f(pﬂ} e f(D) ; 3 d>00»

(a) Elpn,d) cD (since D 1s open)

(b) f 4is one-to-ome on B (p,»d) (Theorem 4.16)

S £(C)
ey
c P
N : *
SR
* -

Let C = 3B(p_,d) = {p : 1p—‘pul = d} . £(C) is compact (Why?) and
q, = £(p,) ¢ £(C) (Why?).

1f & = inf {|Jq—q | : q ¢ £¢(c)} , 6 >0 (Why?).

Claim: B':q,;.*%} c f(D) so £(D) 4is open.
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To prove this claim suppose q, € B(qn ,%} ; we wish to show

q; € £(D) . Consgider

¢(p) = If{p)-ql[z s, PE -B'(pn,d]

(1) $ec®d => 3 p, e Blp,d) »0(p) <6(p) , ¥peBlp,d)  (Why?).

py £ C since p, e C => r’d:-(p,,j ,?,_%— g > %ﬁ}f'tb ipoj contradicting (1). There-

fore ¢ has an interior minimum at p, so the partial derivatives of ¢ are

all zero at p, (Theorem 4,14)
) = |£(p)=q, % = (£()=qp)* (£(p)-q,)
T (e @)y,
- f (p o
i=1 i i
q,l - {?1jliljrn} p = {31.-..,:l:n)
? afi
i 0= 2 = (p (£ (p)=¥.) » 3= l,eea,nt
i=1 Elx:I s Bt i
Efi
Since dat[ﬁ ()] = Jf(p*} # 0 we conclude
b
fi{P*J s Fi ¥ . 1!"'!“
i.e. f(p,) = 9,

i,.e. q; € £C) .

Therefore B(qn,%} c £(D) and £(I) 1is open. 0
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Remark: The condition Jf{p} # 0 may not be dropped even at a gingle point
ta D3 gy it £Hg) =, xcR thea £(R) = [0 I8.00% dped even though

£'(x) # 0 except when x=0 .

Theorem 4.17: £ @ B+ F (m < n). Suppose

(1) D ogenCRn.fe-:i:]'{D] ’
(11) rk £'(p) =m ¥pe D,

then £(D) 1is open.

Proof: Given c = {Tl,...,‘rn} e D , we must prove f(e) € intarinr‘?(ﬂ). We

a{f .I.ijf )
may assume F(xi,...,x:) (¢) # 0 from (i1) (relabel the x's if necessary);

3(fl.- e ’fﬂ.}

gince f ¢ EI(D} ,-5{———-—; (p) #0 ¥ p in some open neighbourhood U of
xlpiii.:m

c. Let T: A"+ R be defined by £(xjseeesX) = IO W5 SRTITUR
the open set U= {(xl,-...xl) 3 (31,-!||:m|TM_1’----Tn) € E} c Rm . Since

~ -~ i~ A e

f e 61(1]) and J’E(xl,...,zn} 0, ¥ (::1....,:“} e U, Lenma 4.17 => £(U)

open
. £(c) = E(c) € £(U) open c £(U) < £(D)

» f(c) € int £(D) , ¥ c e D s0 £(D) 1is open.

Question: Why is U open?

Lemma 4.18.1: 1f f 4is continuous and one-to=-one on a compact set S then

-1

£ is continuous on £(8) .
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Proof: Let q_ e £(S) ; we wish to show that ¢ 45 continuous at q, + If
£l 1s not continuous at q, then for some € > 0 there is a sequence of

points q, € £(5) for which
(1) lim {qn} =gq, and ff_l{qn}-f-l(qoil L T
{f-ltqn}} € 8 (compact) so there is a convergent subsequence {f-ltani} and

€S , p ¥ f'itqu} from (1) .

(2) lim {f"lfan}} - p,

But f i continuous at p, and f 15 one-to-one 8o, from (2),
1im {an} = lim {f{f"l(an}}} = f(py) ¥ f{f'ltqn}) = =

i.e. lim {an} exists and is different from 9, contradicting (1). Thus

=1

£ must be continuous at each 9, € £(5) . 0 :

In general the requirement that S be compact cannot be dropped; it
cannot be replaced even by the ra&uiranent that £(5) be compact. Consider
£ 1 [0,2m) + {(x,y) : X% + ?2 =1}, £(8) = (cos 6,8in 0) , 0 <6 < 27w ,
£eCl0,21) , £4s (1-1) and £([0,2m) = {(x,y) : x> + y> = 1} 1s compact

but fﬂl is discontinuous at (1,0) .

Exercise:

4,61: f : R+ R . Show that if f 1s continuous and one~to-one on a connected

subset § of R then £ 1 is continuous on £(8) .
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Lemma 4.18.2: £ : R =+ 0 et s Cl at p, and Jf(pn} # 0 then there

is a neighbourhood U of p, and m >0 such that if p € U then

Proof:

(1)

l£e)-£ )| 2 mlp-p | -

(1-1)
Je(p,) # 0 =>D £(p) : B —

= Jm>0s|D f(pa)(ujl > 2m|u|, ¥ u e F©  (Theorem 4.3)

A n
s D) p )| 2 mlp-p,| » ¥R .

But from the definition of D ﬂPo) there is a neighbourhood U of p_ =

pel=>

3 |£@)-£(p) = D £(,) (=) | < mle-p,| -

But

(&) l£@)-£(p,) = D £Go ) (e=p) | 2 D £(py) (e-p )| = [£@)-£(p)]
> 2m|p-p | - |£(@)=£(p)| , from (1) .

2),(3) = 2m|p-p | - |E@)-£G )| <mlp-p | , 1f P

=> m|p-p | 2 |£(@) - £(p))| -

Theorem 4,18: f : il o Suppose
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(1) D opencE, feC (D), Jelp) $0,¥peD,

(1i1) £ 1is one-to-one on D .

=1

Then £ ' e CH(E(D)) and D £l = (0 £) L.

Proof: Let u : B + E® be defined by

def

(4) u(p) Top.T [£(p) - £(p,) - D £(p_) (p~P)]

(5) 1lim u(p) =0 (definition of D f(p ).
PP,

Stnce J(p) #0 , (D f(pﬂ)}_l exists and, from (4),
6 lp=p | @ £ ) (uip)) = @ £ N EGI-E() - D £(p ) (B-p,))
= @ £ )N HE@-£G)) - (-p) -

By Theorem 4.17 £(D) 1is open and in particular it is a neighbourhood of
f(pﬂ} « Hence, with gq_ = f{pn) , q = f(p) , we may deduce from (6) and Lemma

4,18.2
%) 3l 1@ e 0™ wen| 2 £ @ - £y - © £, )7 )|

if p is in some neighbourhood of P, * Furthermore from Lemma 4.18.1 f and

-1

£ are continuous at P, and g, A gohg f-ltq} + f-l(qn) y 1.8,

P+ P, - Therefore from (7) and (5)

1m |£1(q) - f-ltqu} - (D fu{pu)i'l{q-qollflq—qnl =0
q*q

L+
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since

1a @£ ) ) = U @ £ ) HwE) =0 .
q*q, i

Thus, since (D f{?o)}_l is linear, D fﬁl(poi 4 =1(D f(pn}}dl .

£ L ¢ ¢'(£(D)) follows from the fact that since D £l = f}'l the partials

of f‘]' are rational functions of the partials of f in which the denominator

Jf[p} does not vanish. O

Example: We have seen that £(x,y) = (e* cos vy , e¥ gin y) 1is one-to-ome on

the strip 0 <y < 27

e* cos v -e* sin ¥
L] 21
£’ (x,y) = y Jg(x,y) = e # 0
el gin ¥ e* cos Yy
e* cos ¥ e* sin v

o @yt - P

-e” gin y e* cos y

To find £ golve (u,v) = (e* cos v , e gin v)

u2+v2-ezx . tany-%
LR -2].: lug(uzhfz) y Y= tln-l ad
u

e f-ltu,v} - ('% 1“5(“2w2} . t.ﬂ.‘lﬁ

and
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babb:
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u v
1.:12+"'.\r2 u2+v2 u v
e 1
{f 1)I(u’v} = = 2 2
u +v L o
-v u
__uz 2 uzwz_
e* cos ¥ e* sin y
g N - [£' et .
x X
- gin ¥y e cos y
=1 =1
Thus we see that D f ~(u,v) = (D £(x,y)) .
Exercises:
S ey )
4.62: 2 -

- ses . - aen 0 h
1f ¥y YI.{!].’ ,In) e C' , 1=], o0 and m # ghow
a{yli#-igru} 3(:1,...11 )

L] n = 1
sixl|“4‘:ns szrluutrynﬁ i

Let f(x,y) = (xz.i} , Xx¥ 0, PFind £f'(x,y) . Show f 1is one-to-one

1

on its domain by finding £ > . Check that [£'] X = (£°1)' .

= Y . = 2 -—
L'Et f{x!?} - {(12.},?2)1!2 ¥ (xzﬂz}lxz} L] show JEIK.F} ﬁ v (x:?} € R
{(0,0)} and £ 4s not locally one-to-one anywhere on its domain.,

1.|2+'ar2

Show
that the range of f 4is the circle = ] and thus contains no

open subset.
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IHE IMPLICIT FUNCTION THEOREM

Question: Under what circumstances does a system of equations

fi(xljlll’xm|yl,.l s .?n} - 'D ¥ i= ljill‘,n

uniquely define Yy 0 1 =1,,04,n , implicitly as functions of (xl.....xn} i.e.

}'i =; ¢1(11.---,xu} L= liasssnt ?

1f £, were linear in  ELERTS then the requirement is, of course, that the

i
determinant of the coefficients of Yyrreeo¥y be non-zero. An analogous answer

in the general case is provided by the following important theorem,

Theorem 4,19 (Implicit Function Theorem):

f= {fl,...,fn} s, P ™ {xl,....xm} , Q™= {yl,..,,yn} "
Suppose
W) £:EMAR , fect® ,D openc AT,

(11) {Pﬂ’qc} e D, f(PG!qu =0,

(111) R——Ta(fl'm’f“} (Pp,q) %0 .
yll""'lyn 0’0

I. Then there is a unique function ¢ : F™ + " defined in a neighbourhood

U of p, such that ¢ € ¢t

(a) ﬂpn} g

{b] f{Pl¢'(P}) =0,¥p e U .
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I1. Hﬂrenv&r if Yi - ¢'i{p) 2 i = 1.1-1,’: 5

af af . -3
(@) B3 = -5

(b} & x a?i hd E{E_L_"...igg_ j a{f-;j_lil’fi : i= 1.--..:1
axj .gj' E{ylpcnujxjpilipyn} 3‘{?1,.,.,yn} j - 1,...|ﬂ
.*
ith place
Example: £(x,y) = x’-y .
fiﬂ.ﬂ] = 2

f(x,y) = 0 is solved by y = ¢(x) = x

d in a nelghbourhood of x=0 ,
Fg{u,u} = -1 o

Notice that

P I P T 11
- el Sl e A

How about solving for x as a function of ¥ ?

£(0,0) = 0

Condition (4iii) of the IFT is not satified.

9 5.0) = 0

f(x,y) = 0 cannot be solved in the form x = Y(y) with ¢ defined in a full
neighbourhood of y = 0 . Notice that there are two solutions of the form
x=+ Yy defined and continuous on [0,») but even these are not GJ‘ at 0.

There are infinitely many discontinuous solutions defined om [0,®) , e.g.

q"{T)-"’?—iTEQI'H‘{T}"Gl?‘Ql
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You will see from the simple exercises at the end of this section
that when condition (1i1) is not satisfied there may be no solution, OT no cl

solution, or indeed infinitely many solutions.

Proof of Theorem 4.19: Consider F : e e

F(p,a) = (p,£(p,q))
. (;1|-4-.xm,fl(xlll-|,xml.?l,--l,}"nj,o-i|fncxlp"‘lxuiyll"":l?n)}

£ect) >F e D)

and

1 0 |
Sk ) : 0
.1 I
| — —
BRI A g B at,
f
= 1 1 1 1
Jr{pujqu} 'ﬁ » eww ¥ ‘E’; I F;']_‘ » “ew ¥ '5;;
- - I - -
y LA TR £
af 3¢ | o 3f
o ¥ " Ew » F-E‘ i TE Y -n Y
o ! X | Wy T [(py»a,)

3(51.....£n} .
- 3-(———5'?1,_“_?“ (p,a,) #0 -



A B (8) . Rq)’ g R"
F(W) P W —— £0d)
(P29, ' .
(p,+0) 1 e R (p) ST
F(p,q) (®,q)

By Theorems 4,16 and 4.18 F has an inverse function in a neighbourhood W of
{PD:QO} and F e Cl(F(W}) and F(W) 4is a neighbourhood of {po,ﬂj = F{pu.qoi

by Theorem 4.17.
F(p,q) = (p,£f(p,q)) = (r,s) (Notice p=r)

(0 & (p,q) = F X(r,8) = (r,8(r,8))

3 p=r,q= H(I,ﬂ}
s (r,s) = F(F’lfr.t)} = F(r,8(r,8)) = (r,f(r,06(r,8)))

for all (r,s) in the neighbourhood F(W) of {pn.ﬁ) . In particular
s = f(r,0(r,s)) (r = p)
and thus
0= £(p,8(p,0))
for all p 1in a neighbourhood U of P,
S 0= £(p,0(p)) 4f ¢(p) = 6(p,0) ,

and ¢{pﬂ} = 3(pn.0} = q, so that I (a), (b) hold. ¢ ¢ cltu} follows from
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(1) since F‘l € Cl{F{W}) . To prove II apply the Chain Rule to 0 = £(p,9(p))
to obtain

1I (a) 0 = — i=
T B e B

1,‘..'n L]
1.0‘ s rea 1

2
Solving this system of equations for_-si—k , k=1,...,0 , by Cramer's Rule gives

3
3 *wm 3 g waw »
%, | g L B(E, yesesE)
II (b) 3 : . / 1 n
-, p . : W
i of af 3(3qsesea¥y)
— e 1
» wEmE § @ ®sa@ §
1 9%y Wy
+
kth columm
3(£1’Iiilqrﬂ|-|'fﬂ) f a{flj'-"fn}
= - ﬁ(?lt-.-,xj.-.-.?n} EE}"I."-QTH}
+
kth place

Remark: ¢ 4is the unique solution to f(p,9(p)) =0, ¢~(po} = since 1if
£(p,¢,(p)) = £(p,¢,(p)) = 0 and ¢1{p} ¥ ¢,(p) for some p ¢ U then

F(p,$, (®)) = Fp,b,(p)) = (p,0)

contradicting the fact that F 1is one-to-one on W . This means that the

graph of ¢ d.e. {(p,¢(p)) :t p e U} 1s the whole set :E'J‘(D} nw.
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2

Corollary 4.19.1: Es R +R . 1f £ 418 of class Cl in a neighbourhood of

fxﬂ.yn} and

af
(1) £(x,y) =0 (11) 3y X ,¥,) # 0
then the equation £(x,y) = 0 has a unique solution ¥y = ¢(x) , ¢{xﬂ} il R
which exists and is continuously differentiable in a neighbourhood U of L

and

af ; 3£ af
T x ay

') == -
Corollary 4#.19.2: £ : R°+R . If f is of class C' in a neighbourhood of
{xu.yn.zo) and
(1) £(x 2)=0 (11)£(z z)¢#0
0"V’ % 3z 0’70’ %
then the equation f£(x,y,z) = 0 has a unique solution =z = ¢(x,y) , ¢{Inirnl -

Z, » which exists and is continuously differentiable in a neighbourhocod U of

{xo,?o} and

USSR T T
bt A I Ak U
Corollary 4.19.3: £ = (f,,f,) : R’ + R , If £ s of class C' in a neigh-
bourhood of {:n'?n”n’“b'vh} and
3(£,,1,)
(1) fltxb'rn'zu'“o'vﬁ} =9 () _ETE_;T_ x '?u’to'“n'vb} i
fz{xg’rﬁ.zg’un’v ) =0

then the equations
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fl{xlylzlu:vﬁ s n

fz(x,y.z,u,v) =0

have a unique solution

u= ¢1(=,1r.=} Uy = (xu,?a.zn}
v = ¢,(x,y,2) v, = by (x ,¥,02,)
with
3¢1 3u 3(f1.f2} a{f £,) a¢2 o Etfl.fz} 3(f1.f2}

e & T aE,v) E(u v) *? i i T TR / 3(u,v)

%y gy A(ELE) : MELE) B, 5, B(E,E) y 3£y, £))
3y 9y 3y, v) 3(u,v) * 0y Oy E‘_{u.'ﬂ' 3 (u,v)

ﬂ g (£, £,) , 3(£,,£,) 3¢_§ v (£, £,) ; 3(£,,£y)
8z Bz a(z,v) ofu,v) * 8= 3= 3(u,z) 3(u,v)

Exercises:

4.65: Prove Corollary 4.19.1, i.e. work through the proof of Theorem 4,19 in

this speclal case.

4.,66: The equation j’z - xz = ) has two ﬂl solutions, y = + x in a neigh-
boorhood of x = 0 4i.e. uniqueness does not hold. What condition of
the Implicit Function Theorem does not hold? Check that there are four

solutions of class C and infinitely many real-valued solutions.
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4.67: Show that the equations

2
X e gDy 0By WS 8

xy +uv =20

define u,v implicitly as functioms of x and y in a neighb ourhood of any

2 v rth
point {xo.ro) 1f yu, $0 and X ~yu 0, x5, +uv, 0 . Check

that the Implicit Function Theorem gives

u _2x du__uw ¥ __3y_2vx % _X,3
9x y ' 9y y * ox u uy * 9y u ¥y

and verify these results by solving the equations directly.

4.68: Consider £(x,y,u,v) = {x3 +yu+v, xv+t y3 - u) . At what points
(x,y,u,v) can one solve f£(x,y,u,v) = (0,0) in the form (x,y) = (¢,(uv,v) ,

¢2{u,v}) ? Find the differential matrix

'a¢1 3¢,
“ou Tav
%, 3,

| T3u “av

4,69: Suppose ¢1{u1....,uh,:l....,:n} =0, 1i=1,...,0 1is satisfied by

m:l - uj(xl,...,xn} , the ¢'s and u's being Cl functions; prove

a{¢'1|lilj¢n) a{uqu--‘unj a a(¢1|-l|.¢n}
Ezull Ty ,u-nj szl.lli ,Ins (-1) szljll . ':ﬂj ”

[Use the Chain Rule and think matrices. ]



- 219 -

4,70: If u2+v2+2uvx+y-n,uv+{u+v)y+xz-ﬂ prove that

dlu,v - uviutv) = x
5{1,3} (u—v}{{w\r}ﬂil—xﬂ 3

4.71: If u, = x +12+x3+xﬁ,uu -x2+x3+:ﬁ.u1u2u3-x3+x¢,

1 i: 12
uluzujuh L P show
8(xy 1%y X50%,) 32
-g(uliuz.HB’u'ﬁ) 1 2 3 =

4,72: (a) If V = Y(u,v) , ¢(u,v) = E(x,y) , X(u,v) = F(x,y) and

-g{%:%% ¥ 0 prove
v, 3 J OE 3 oF 3
x F(L%{u,? 3% m}a{u,v * o E{u.v!% *

2 2

(b) If ".’-u2+v +uv , uwtv = X +y2,u3+v3-21’y prove

2
3 3 2r) s gyl
(x"+y")

4,732 If V= ll'(ul..n.un) M %{ulglol*un) - fk{xl,...,lm} ¥ k= 1,-1-,“
(P seeest )

L B4 0
allul,--..un]

show

and

kth position

+
av a{¢1ltttl¢n} n afk a{¢1!-l-|¢|'*-i¢n)

— - I — w
hj Eiul,--.,unj k=1 a:j _a{ullcinnnoln--unj
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4.74: 1f F e Cl show that the equation

F(F(I,}F},?} =0
may be solved for y as a function of x near (0,0) provided
F(0,0) =0, F_(0,0) # -1 and r}(n.ﬂ) 0.

2

4.75: Suppose f(x,y) = 0 where f ¢ C° , 3y # 0 ; prove

of f
0 ax ay

d_z% edkoalide pde e

dx %f )3 | Bx 5,2 Oxdy
38 2% 3%
ay 3yox ayz

Dimension:

We have a notion of dimension for linear objects, specifically vector
spaces 1.,e., the number of vectors in a basis, If L ': Rk + 5 (1linear),
L(x) = Ax , then the dimension of L{R}'} c B 1s the rank of A (rk A) ; in

particular 1f rk A= k then L{Rk ) 1is k dimensional, the same dimension as

&,

Definition:

(i) A subset 5 of Rn is a k~dimensional segment (k > 0) if there is

an open connected set D c Rk and a functiom £ : Rk + 7" such that

1-1
: ;E.f{D)-S,

(a) £ eCXD) , £: D

(b) xk £'(p) =k , VpeD .,
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A o-dimensional segment in F" 1s a single point in A" .

(11) A subset § of R" is a k-dimensional manifold if ¥ q ¢ S 3 an
open neighbourhood V c B® of q such that VYV n S 1is a k-dimensional segment.
Remarks:

(1) k<n
(2) a k-dimensional segment is a k-dimensional manifold

(3) 41if the condition that f is (1-1) 4is dropped from (1) then £ is still
locally (1-1) by Theorem 4,16 so f(U) is a k-dimensional segment if U

is a sufficiently small open subset of D ,

Examples:

(1) 8= {(x,y) : y=3x, 0<x <1} is a l-dimensional manifold (segment) in

.

y
Let D= (0,1) c R 1 £
— 5
f(e) = (t,3t) , 0<te<1 (1-1)
£1() = [3] , tk£' =1 3 "
R R®

(2) s ={(x,y) : x* + ?2 o1} 4 & I-dinsnstconl wentfold da BT .
Consider the map f(t) = (cos t , sin t) , t € &

= gin t
rk £'(t) = rk [ ] = 1. Thus £ 41is locally (1-1) and is in

cos t

fact (1-1) on any open interval of length 2T,
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§ = £((-m,m) v £((0,2m))

A,
=

(3) 5-{(:,y,z}:xz+yz+=2-1.x>n,y>ﬂ,z>0} is a 2-dimen-

(4)

sional segment in R . -

Consider (x,y,2)

£(8,4) = (cos @ sin ¢, sin 8 sin ¢, cos ¢)

m
ﬂ{ﬂ{z

T
0<¢<3

= (x,¥,2)

£ e cl{(ﬂ.§JX(D.§i}

-gin O sin ¢ cos O cos ¢
f is (1-1) and £'(6,9) = [ cos O sin ¢ sin O cos ¢:|

0 - gin ¢
3(y,2 2 0<e<y
tk £'(0,9) = 2 since e.g. F%'E)}---nnnﬁaintbiﬂ, . e
’ 0<¢<5

s = {(x,y) : (:|:+1}2+-yr2 = 1} u {(x,y) ¢ (x—l}zﬂrz = 1} 1is a l-dimensional

segment in Hz - :

Consider £ i (-2m,2m) » B ' >
defined by

(=14 cos t ,sin t) , £t € (=2m,0]
f(t) = )
(14+cos (T=t) , sin(m=t)) , t € (0,2m)



- 223 -

Check that £ e El{—zﬂ,EH} , £ 18 (1-1) and rk f' = 1 throughout.

In particular check that there is no trouble at (0,0) .

(5) By Theorem 4.17 5§ 4is an n-dimensional manifold in FR" <=> S is an

open subset of -l

(6) S 1s a O-dimensional manifold .in R" <= ¥ pe S 3] an open set
VeVnsS={p}l i.e. S consists of isolated points. Thus {% : el 2ol
1s a O-dimensional manifold in R but { : k=1,2,...} v {0} s not a

manifold by our definitiom.

The function f (=f(p)) in part (i) of the definition is called a

parametrization of the segment (the variable p being called a parameter). A

local parametrization of a manifold is essentially a local coordinate system

for the manifold e.g., in Example 3:

|

w/2

S ERCIE R

0 w/2

Exercise 4.8l below shows that the definition of the dimension of a manifold
is consistent i.e., an object cannot be both an r-dimensional and an s-dimensional

manifold with r ¢ s .
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2

In R~ and 3 you are familiar with non-parametric representations

of manifolds in the form of the equations £(p) = 0 (shorthand for f{p : £(p) =

® 2

0} = f-lfﬂ) ). For example we have seen (Example 2) that x" +y -1=20

represents a l-dimensional manifold in R% . The same equation represents a

2-dimensional manifold in B3 (a cylinder). The two equatioms :2 + yz -1=
0, z=0 together represent a circle in 33 , the intersection of a cylinder
and a plane perpendicular to the axis of the cylinder. We make this idea pre-

cise in the following theorem.

Theorem 4.20: £ : R" + R* . Suppose
1) £ecl® , Dopenc’ ,0¢ ),
(11) rk f'(p) =k <n , ¥pe D.
Then f-liﬂ) = {p : £(p) = 0} is an (n-k)-dimensional manifold in ..
Less formally the system of equations

fi(xl,...,xni =0 , 1=1,...,k

af
represents an (n-k)~dimensional manifold in F® 4if the matrix LEELJ has rank
3

k.

Proof: If k = n then by Theorem 4.16 f 1s locally (1-1) on D so if

f{pu) = 0 there is a neighbourhood U of p_ = £(p) $0 4f peU,p¥fp, .«

Thus fqltﬁ) is a set of isolated points in E® - a 0-dimensional manifold.

If 0<k<n and c= {Tl....,Yﬁ} € f-ltﬂ] we may assume, without

O(E. s000;:L)
loss of generality, ?{:1 k} (c) # 0 . By the Implicit Function Theorem,

i
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the system of equations

fi{xl,....xk,xk+1,...,xn) =0 - A T,

may be solved uniquely in the form x, = ﬂi (xk+1,...,xh) s 10 1. ok’ (with
s P Ei(Yk+1""’Yn)} in an open neighbourhood U of {Th+1""’YnJ . Thus for
some neighbhourhood V of ¢ the set f-l(ﬂ} nV is the range of the function

P RK LR

F(xb+1.-..,:n} - (ﬂl(xk+1""'xhj"'"Bk{:k+1’"”:n)'xk+1""'zn]

-8 } k
F'= | 1 0 , Tk P' = n-k .
1!
. |} o=k
0 1

F 18 (1-1) on \} if U 1s sufficiently small, by Theorem 4.16. Thus

FL) tam (adhi~dinssnionil sentiald ta 2 0

Remark: The dimension of the range of f (i.e. the number of equations
£,=0) is immaterial here. If rk £'(p) = k on an open set D > £1(0)
then f-lfﬂ} is an (n-k)-dimensional manifold no matter how many equations
there are. You are no doubt familiar with the corresponding statement for
linear functions: 4if L : B° + B (linear), Lx = Ax , where rk A = k then
Lﬁli{ﬂ}J is a vector space of dimension n-k i.e. the solution set of the
system Ax = 0 has dimension n-k . The number n-k is called the nullity

of the matrix A .
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Corollary 4.20.1y £ : RA+R ., If f 4ia Cl on its domain, an open subset

of R, then the graph of f 1s a l-dimensional manifold (smooth curve) in R2 .
Proof: {(x,y) : vy = £(x)} = Fnl{ﬂ) , where F(x,y) = f(x)=-y .
P'(x,y) = [£f'(x),-1] , rk F' =1 ., O

Corollary 4.20.2: £ : Ez *Re I T In Cl on its domain, an open subset

of H2 , then the graph of f is a 2-dimensional manifold (smooth purface) in

R .

Proof: {(x,y,2) : z = f(x,y)} = F-l{ﬂ} where F(x,y,z) = f(x,y)=-z .

F'(x,y,2) = [fx,f?,-ll s TEPal ; 0.

Examples.

(1) f(x,y,z) = x?+y2-=z

£f'(x,v,2z) = [2x,2y,2z] =0
fwmw(0 1is a 2=-dimensional manifold 0

(smooth surface) in R3 if

{0.9,“} is mttﬂd-

2

@) £ (£,5,) , £,(x,y,2) = xtyP4e-1

fz (X,Y, z) = Axt+By+Cz £ N =0

2x Iy 2=z
f'(x,y,2z) =
A B c

¥
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f=0 is a l-dimensional manifold in R3 if rk f' = 2 on an open set

2 2 2

D> f_I{D) . Thus if A,B,C are not all zero (i.e. A" +B" +C" >0 ), we

already know that x,y,z are not all zero {xz+y2+zzsl) , 8o rk f' <€ 2 <=>
(4,B,C) = A(x,y,2) , A # 0 . Substituting into £, = 0 we find x2+y2+z2 =0
if rk f' < 2 contradicting xz+yz+22 = 1. Thus rk f' = 2 at each point in
f-l{ﬂ} s0 rk f' = 2 on a neighbourhood of each point in fﬁl{ﬁ} . Note that
we have assumed f'l(ﬂj # ¢ here which is obvious geometrically in this case
but may not be at all clear in general problems.
a(x) b(x) c(x
Question: Let A(x) = . Does rk A(x ) = 2 => rk A(x) = 2
d(x) e(x £(x =

near x_ if the entries in A are continuous? Does rk a(xbj = 1 =>rk A(x)=1

near :l.'.l .

Theorem 4.21: Let D c E" s Open. BSuppose
1) £:D+F", fecid) ,
(11) k f'(p) =k , ¥ pe D .

Then ¥ ¢ ¢ D 3 a neighbourhood U, of ¢ such that f{U&) is a k-dimen-

sional segment.

This is analogous to the statement that the dimension of the range of
any linear function L(x) = Ax is the rank of A . The proof of this theorem
is notationally quite complicated so we will consider a few examples and special
cases first. Actually all the essential ideas of the proof are contained in the

special cases so you may skip the proof if you wish.
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Examples:
(W) £ R R, £(x,y) = (xhy, (x+) D)

1 1

rk £'(x,y) = rk{ ] =1 ¥ (x,5)

2(xty) 2(xty)

f(ﬁ’zj is the l-dimensional segment {(t,tz} : t € R} , a parabola. We

have used t = xty to parametrize the curve.

@) £: R +R, £(x,y,2) = (x-y,y-2,x(x=2y)=2(z=2y)) .
. 1 = 0
rk £'(x,y,2) = k| © 1 -1 =2

2(x-y) 2(z-x) 2(y-z)

f{Rs} is the 2-dimensional segment {(u,v,uz-vz} : (u,v) € Rz} (1.e.
the hyperboloid w = uz-vz} in R3 . We have used (u,v) = (x-y,y-z)

to parametrize the surface.

Proposition: Let f : R + R* o K& cl) , Dopen. If rk £'(p) =1
¥peD and u= fl(x,y) » v = f5(x,y) then in a neighb ourhood of any point
(xﬂ.yo} € D either

smov) or veW@ , éWecC

i{.e. £(D) 48 composed of smooth l-dimensional segments.

of of

Proof: If —-g-i- (:n.yu} ¥ 0 then T‘i

{:o,yo} 80 flm} is open ( Theorem 4.17 ). By the IFT, near (:ﬂ,yn

# 0 in an open neighbhourhood U of

the equation
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u= flfx,'y}

may be solved uniquely for x 4in the form

x=0(uy) , 8¢cC

R il fz'(a{uly] r]r} "a

We show that the function on the right is independent of Y 3

' 3
Bt g
dy 9x dy ay ax oy | Tox oy
a'fl of of Efl of B{EI,fz} afl

2
- R gy - 0

since rk f' = 1. Thus v = W(u) 4.e, we have a local parametrization of

f{lIu) in the form

£(U) = {(u,¥(u)) : ue flwo}}
where Uﬂ is an open neighb ourhood of {:n,yD) i 0

Proposition: Let f : R3 > 1?3

¥pelD and

, € GI{D} s D open. If rk £f'(p) = 2

= flfxr?:z]’ y ¥ fz(xl'?rz} p W m f3(!-?-=]
then in some neighbhourhood U of each point (:G,ya.zu) € D either

w=0¢(uv) ,or u=1yP(v,w) , or v=n(wu), ¢,0,n ¢ C1 .

i.e. £(U) 1is a 2-dimensional segment 1in R3 .
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3£, £,)

Proof: If _ET;T;T* {xh,yn,zoj # 0 we may solve

u= fltx,y,z) sy V= fz{:,y.z]

uniquely for (x,y) in the form

1
x= ﬁl(u,v,z} s ¥ = 0,(u,v,2) , ﬂl,ﬂz € C

and B0 w = f (B (u,v z},ﬁ (u,v,2),2z) » This function is independent of =

I:\f:il EIEI Hfa 3E2 Hfa

_B?T Oy 3z oz

ey AELE)  AELE) it Pl i Aty st oA
"'E ""E{z.ri_ a(x.ﬂl_ Wyt Tme Ry az
3 {Bf B{fl.f ) " Bf B{f £ } 4 Bfa E{fl,f2}1 : B{fl,fz)

“ox 9(y,z) 3? a(z.x} Bz a(x,y) | a(x,y)

e 8y ) | 2(E,E)) _
-—m W.—-— 0 eince rk £' =2 ,

Therefore w = ¢(u,v) i.e. f{Uo) = {(u,v,¢(u,v)) : (u,v) € (fl.fz}{ﬂol} for

some open neighb ourhood U of {:o.ya.zu} " 0

Proof of Theorem 4,21 (Optional): If k=n then f is locally (1-1)

(Theorem 4.16) so the theorem reduces to the definition of a k-dimensional seg-

of
ment, If k=0 then Eii =0 ¥41i,] so f 4is constant on a convex neighbhour-
J
hood U of ¢ 4i.e. f(U) = {f(c)} a O-dimensional segment. When 0 <k <n
consider
{l]' 'I.Ij_ - fitxl,’--.xn} » i= 1,-l-,n
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We are given rk f'(p) = k 80 if c e D and
B(fl,. . .ka

i 9%y, v eenzy)

(P) #0 , at p=c¢,

then (2) holds also in an open neighb ourhood U of o (f ¢ C]‘J 80
V= (fl,...,fk} (U) 1is open (Corollary 4.17.1). Condition (2) implies (by the
IFT) that the first k equations in (1) may be solved for {::1,....xk) in

the form

(3) = 8, (uy,. sorl X reenyX) o, L= 1.0,k .
Substituting (3) into the remaining fn-k) equations in (1):

{#} ui - fi('al,...,ek,xk_'_l.”..ln} M i= Hl.i’li.n .

These are functions of {ul....,un} only e.g.

du, k afi H(fl.-.-.........,ft} s T N
Exk“'l j-l 3_{11...»|:k+1:---,xk) E 1,-:..&} J 3:k+'
kt+l B L s erngnisiveneesti) R )
=] (i L TC R "}} ! s -

Jhl j xll"'"l j.-...’k"‘]. xlln.-,ﬁ

a(f ) (L senayf)

pevsyf F
:i k / e ::} =0 (since rk £' = k)
piil,!.lll pesay

where {xl....,xj,....xﬂ_lj denotes the k- tuple obtained by omitting x

k|
from {xl""’xbl-l) + Thus (4) may be written in the form

(5) Uy (ugpeeasty) =0, 4= ktl,euipn , ¢, € cLev)
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where V_ = [fl""'fk](uo} is open. The Jacobian matrix of the (n-k)

equations (5) is of the form

1 0 I
. 1 s
= ™
g W
1
——— —
n~k k

which has rank (n~k) . Therefore (by Theorem 4.20) f(Uu} is a k-dimensional

[Notice that the pen never left the hand!!]

Application (The Lagrange Multiplier Rule):

Definition: f : R + R , domain Dc F* . f has a relative maximum (minimum)
with respect to the set 5 at P, € SnD 1if, for some neighb ourhood U of

Po

£(p) < £(p,) (f(p) > £(p))) V¥peUns .

Theorem 4.22 (Lagrange Multiplier Rule): Let f : F® + R and E" {31.-..,3k} H

B+ Hk (k <n) . If £ and g are Gl functions near P, and

(1) f has a relative extremum at P, with respect to the set

S=g7h(0) = {p:g () =0,1=1..,k

(11) rk g'(p,) = k

then there exist real numbers 11""'lk such that
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k 9g, .
af
)+ ! A, =L ()=0,1=1,...,n .
?;1- o 4=1 j ox, "o

The equations 31{1:} =0 ,41=1,...,k are called constraints. The

numbers A 4 are Lagrange multipliers.

Examples.

(1) Find the distance d from the point (0,0) to the line xty = 1 , i.e.

minimize x° + y2 subject to the constraint xty-1 =0 ,

A minimum exists since lim{:tz-i-yz) =w , (|(x,y)] + =) and

2492 >0 . At the mintmm LMR => J A »

20¥A = 0 , 2yFA =0 , xty-l=0 .

Solving: (x,y,A) = (% ’ ':'j s =1)

(2) Find the maximum and minimum of f£(x,y) = 212—31'2-2:: in the set

{(x,y) : x* + 32 2

I1f these occur in {(x,y) : x* + y2 < 1} then (Theorem 4.14)

e (xnlf) . {%lﬂ} .

But
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fn fxy 4 1]
f f 0 =6
yx ¥y
so0 f has a minimax (saddle) at (%',D] . The maximum and minimum occur in the

set

2

{(x,9) t x> + y* = 1 = 0}

LMR => bx - 2+ 2)x =0
-6y +2ly = 0

x2+y2-—1l-l}

Solutions are (x,v,A) = (1,0,-1) , (-1,0,-3) or {-5]—' v f‘% 2 i 3) e

1 24 16
£,0) =0, £(-1,0) = 4, £z, % [52) = -5
e Max £ = § » Hinf--!'.s..ﬁ_ i

Notice that the minimum is achieved at two points.

The Lagrange multipliers are of no interest per se and if they can
be eliminated from the equations so much the better. You will observe that
either of the examples above could have been done by solving the constraints to
reduce the dimension of the problem and applying the standard methods e.g. in
Example (1) y = 1-x and x°4y> = x° 4 (1-x)° = 2x°-2x+1 which has a minimm
1

5 at x -% + This procedure leads to miéldrnalculatiuna in general but we

will use it in one of the proofs of the rule,
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Proof 1 of Theorem 4,22, Let f have a relative extremum at P, with

respect to the set 8§ = {p ; 8(p) = 0} . Consider the function F : " + R

F(p) = (£f(p),g(p)) = (£(p)»8; (P)seensg, (P))

[~ af of
F'(p) = [}f:;fjg] - -;El b wws g ;El
g' (p) 1 *n
Egk EEE
I_-E-x-I » (RN » a:n_'P
If rk F'{pDJ = k+l then tk F'(p) = k+1 for each p in a sufficiently

small open neighbourhood U of P, + Then for each such U, F(U) 4s a

neighbourhood of F{po) = {f{pa.s(pu)} = (f(puJ.ﬂ) ( 4,17 ).
R* 4
___,JEU}

vl {

F { 2

- (£(p_),0)

- v y P CR

Rk';i\\“\._h_ E ,}

Hence every neighbourhood U of P, contains points Py i=1,2 such that
F{PiJ = {f(pi} 0) 1i.e. g(p ) = 0 and f{pl} > £(p) , £(p,) < f(p ) contra-
dicting our assumption (i) that £ has an extremum with respect to S at P, *

Thus rk F'{pﬂ} = ktl leads to a contradiction so rk F'(po} < k+tl and in fact
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rk ?'(pDJ = k since rk g'(pn} = k by our assumption (ii). The rows of

F'(pu} are therefore linearly dependent i.e., 3 li o L wmiBisiask s ®

ag g 3 3
lu{'g-;'_- puEay ai:f} + 1{'ﬁ gumaEy ""_;) + TR +}lk(a_gk' AR RN -a%)
1 n Po 1 n-o 1 n Po

- {U....,D) . J'ti not all zero.

ln # 0 since lo = 0 => rk 5'{pu} < k , contrary to (ii) so we may assume

ln = 1 (divide by lﬂ} to obtain

og 9
Ef_""':\ _1+ |||+;l» "Eh-ﬂ at P '1-1,ill|n "
Bxi 1 Exi k Bxi o

These n equations together with the k constraint equations

Ei(l}o) =0 » 1= 1,l‘il-k »

serve to determine the (n+k) numbers which are the coordinates of P, and

ll."..kk L D

Proof 2 of Theorem 4.22: This proof works in gemeral but we prove just the
case of one constraint. Suppose £,g @ F® + R are Gl functions and

f(xl,...,:h} has an extremum with respect to the constraint
(1) g{xl,...,xn) =

at the point c = {Ti,...,vn} . If rk g'(c) = 1 then we may assume

%fu-(n} # 0 so the equation (1) may be solved for %y in a neighbourhood
1

of {Tz,....Th? in the form x, = ¢{12.....:h} with ¢ € Cl and Tl -

¢{T2,....¢n} . Therefore f(¢{x2,....xn},xz,...,xhi has an interior relative
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extremum at ¢ = {Tz*""Tﬁ) so, by the Chain Rule

-g:—{cj+a (}%—{E}-n , 1=2,...,m
i

s i
1.2+,

af af {.. -EL EE._} = {

o, ox | 0%, | oxg at ¢, i=2,..,0 .

This formula holds trivially for 1 = 1 . Hence

_""":}‘"la (c}-ﬂji-ll"'!nl

1 g

where ) = —'——" (c) ! { Y » 0
%, c

Exercises:
4,76: Let f£(x,y) = (xty,2xtay) = (u,v) .

(1) Show that rk f'(x,y) = 2 <=> a ¢ 2

(11) Find the image of the square K= {(x,y) : 0<x<1, 0<y<1}

in the three cases a=1 , a=2 , a=13,

(11i) If a point moves around 9K in the counterclockwise sense find

what its image does in the cases a =1, a = 3 . What is the

sign of Jf in each case!?

4.77: Let f£f(x,y) = (x,xy) = (u,v) .
Draw some curves u = constant, v = constant in the (x,y) plane and
some curves X = constant, y = constant in the (u,v) plane? Is this
map (1-1) ? Into what region of the (u,v) plane does f map the
rectangle {(x,y) : 1<x<2,0<y<2} ? What points in the (x,y)

plane map into the rectangle {(u,v) : 1 <u<2,0<vc<2} 7
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4.78: 1f £(x,y) = (cos(xty),sin(xty)) = (u,v) , show from f£'(x,y) that

(u,v) 1lies on a curve in the (u,v) plane. What is its equation?

4.79: In each of the following show that (u,v,w) 1lies on a surface in R

and find an equation for the surface.

{1} u-ﬂ;-.v-z—:z w-m

, Xz

(11) u=xtytz, v =2xy + yz +a&x, w-:3+y3+z3-3::jrz

(i11) u = x+ytz, v-x2+jr2+zz, w-13+y3+23-3x§r:.
[Solutions: (1) wHl = uv , (1) w = u(u®=3v) , (141) w= '151'(3?““2].

4.80: Show that {(u cos v,u sin v,u) : 0 €<u<1l, 0<v<2r} is a 2-dimen-

sional segment in Ra . Draw a picture of it.

4,81: Show that a set S cannot be both an r dimensional segment and an s
dimensional segment if r ¥ 8 . [Suppose 5 = ¢(U) = (V) where ¢,V
are Cl functions on U,V (resp.), open sets in ol 5 R® y TS B
Show that 1f ¢, are (1-1) and rk ¢' =r , rk Y' = s there is a
contradiction. Use the Implicit Function Theorem. ]

1

4,82 1f ¢1 are C functions on an open set DcR® (L= 1,.00,k) then

th‘ set Gf pnintl (lll""xn'?].."'-?k} in Hn‘-k E.ti’fﬁns
?1 - ¢i(11l'l'!xn] ¥ im= ipuv-;k

is an n-dimensional segment in Rn+k « [i.e. the graph of a cl function

from R* + Rk is an n-dimensional manifold if its domain is open.]
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4.83: Let V = :‘:z-lvgc,rzhr.2 s b= x2+-y2-1 s V= xty+z . Find the maximum and
minimum of V subject to the constraints ¢ =0, ¥ =0 .
This means: "Find the length

(squared) of the major and minor

¢=0
semiaxes of the ellipse C which
is the intersection of the cylin- =0
der ¢ = 0 and the plane Y =0 .,
[Solution: max V = ?{:L . '-'I-"-:-I‘-- i -r"z') =3
vZ V2
mn Ve VE-—=,F=,0 =1.]
V2 V2

4.84: Pind the minimum value of V = x4y+z> when
(1) xtytz = 3a [Solution: 3&2 at (a,a,a).]
(11)  xytyztzx = 3a®  [Solution: 3a’ at (a,a,a),(-a,-a,-a).]
(114) xyz-aa [Solution: 3nz at (a,a,a),(-a,-a,a),(-a,a,-a),

(nl-a!-a} . 1

4.85: Find the maximum and minimum values of :z-l-yz-BHSy when {xi-y)z =

b(x-y) .

4,86: Find the maximum and minimum values of 2x°+y2+2x if || + |y] <1 .
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4,87: Do exercise 4,52 again using the Lagrange Multiplier Rule.

<

4.88: Prove that the stationary values of V = x2+y2+z » Bubject to the

constraints fx + my + nz =0 , nxz + byz + czz = 1 are given by the

quadratic
.-iq.-—mi_.'.—ﬂi..- 0
1-a¥  1-bV  1-cV i
s -G 2 2 d
4.89: (a) Show that (x; X, ... xh} < 5 if x +x+ .00+ x =1 .

(b) [Arithmetic-geometric mean inequality.] Show that

1l/n _ 1
{al 8y ves an} < = (al+az+.._+anj

if ai ot . e Bty

4.90: Given two smooth plane curves
f(x,y) =0 , gix,y) =20
show that when the distance between points (a,B) and (E,n) 1lying on
the respective curves has an extremum then
ot _ @O mEM
B-n fyiu.ﬁi %Ef.rﬁ

Use this to find the shortest distance between the ellipse

x2 4+ 2xy + 57> - 16y = 0 and the line x+y-8=0 .
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4,91t Let f be a real valued function of class Cl on R3 « Prove that

there are at least two points on the sphere ::.-2-¢-1.|r2+1:2 = R2 > 0 at which

the equations

Bf af
Toax™ *oy v
. .
L T A 0
of of

are satisfied.

4.92: [The Holder and Minkowski inequalities., ]

Let p>1,q>1 and %+%-1.

q
(a) Show that the minimum of f(x,y) = % + %— subject to the con-

gtraints x>0 , y> 0, xy=1,18 1.

P4
(b) a_::ﬂ,hiﬁ->ah£%+b? .

(c) nk_'-"_D ,hkiﬂ s k= 1, ..., =

E akhki'lf

n
a:]l'lp @) h:)”q (H6lder's Inequality)
k=1 k=1 k=1

1/p

bl

n
, B= (] ‘h:)”q and consider a = i
k=1
b
k
b ""-n—.]
{d} If %Fhkiﬂlk—-ljil'l-n an.d. pil then
n o a
¢ lawm MR 2 By/p o § [ yiP |
1:2’1 K kzl |2 ol

(Minkowski's Inequality).
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[Hint: |a+b|P = Ia+‘b||a+‘b|p'!fq 3 ja1ia+b|‘-‘”"l * |b1|a+hi"“‘ i u >

Use Holder's Inequality.]

References for Chapter IV

R.G. Bartle: Chapter V.

R.C. Buck: Chapter V.
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