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VII SOME SPECIAL FUNCTIONS

§7.1. Logarithm and Exponential.

We have seen that
D(:L“H'l/a +1) =2"

if ae@ a#-1 forall z inthe domainof z*t!'/a+1 with
the possible exception of z = 0. The Fundamental Theorem of

Calculus allows us to say that, if a >0, z >0,

D/ t~Vdt =27,

For definiteness, choose a =1 and define

L(..":)zf1 %dt x>0

NOTES:
(i) L'(z)=21, forall >0
(i) L is continuous and increasing on (0,00)
(i) L(1) =0, L(z) <0, if 0 <z <1 and L(x) >0 if

z>1.
A"( A?

\

.,

.
B

X x /1

The most important property of this function is the following:
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THEOREM 7.1.1. If a,b are positive, then

L(ab) = L(a) + L(b).

ProoF: Consider f(z)= L(az), z > 0.
By the Chain Rule f'(z) = La = 1 = L'(z). Therefore
f(z) = L(z) + ¢ so that, setting z =1,

Lia)= f(1)=L(1)+c=¢, since L(1)=0, giving
f(z) = L(z) + L(a)
L(az) = L(z) + L(a).

COROLLARY 7.1.2. If a>0 and a€ (), then

L(a®) = aL(a).

PROOF:

Step 1. L(a")=nL(a), n=12,..., by induction from

Theorem 7.1.1. Also, from Theorem 7.1.1,

0= L(1) = L(aa™ ') = L(a) + L(a™'), so that

L(a™') = —=L(a).

Therefore L(a™") = L((a‘l)")smzp 'nL(a™') = —nL(a) giving
STEP 2. L(a™) =nL(a), n=0,%1,%2,....

Now, if " =a
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(i.e. b=a'/") then
nL(b) = L(b") = L(a),

from Step 2 so that
Step 3. L(a'/")=1L(a) n=1,23,....
Finally

L(a™™) = L((a'/™)™) = mL(a'/"), by Step 2

m = 0,41, 42

m
- ;L(a), by Step 3, T el

Therefore L(a®) = aL(a).

COROLLARY 7.1.3. Therangeof L is IR = (—o00,00),

zangoL(a:) = 00, zlir& L(z) = —oo0.

PRrROOF:

z>2" = L(z)> L(2"), since L is increasing
=nL(2) and L(2)>0

= limy—col{2) = 0.
Similarly

0<ae <2 3 Liz) < L(Z7") = —nl(2)

= Iz'mI_.g+L(.r) = —00.

The Intermediate Value Theorem for continuous functions implies

that the range of L isall of IR. O
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Since L is increasing or (0,00) with range (—o00,00),L
has an inverse function E increasing on (—o00,00) with range

(0,00)

E(L(z)) =z, 0<z<oco.

L(E(z)) =2, —oo<z < oo.

COROLLARY 7.1.4. If a,b€ IR, then

E(a)E(b) = E(a +b).

Proor: From Theorem 7.1.1,
L(E(a)E(b)) = L(E(a)) + L(E(b)) =a+ b= L(E(a+ b))

and therefore E(a)E(b) = E(a+b) since L is one-to-one.

COROLLARY 7.1.5. If a€ IR, a € ), then

E(a)® = E(aa).
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Proor: From Corollary 7.1.2,

L(E(a)*) = aL(E(a)) = aa = L(E(aa)).

If e= E(1), then Corollary 7.1.5 shows
e® = EB(a), ac )
We thus define e* for all z € IR.
DEFINITION 7.1.6.
e* = E(z), ze€lR.

This motivates calling L(z) the natural logarithm of z and

writing
L(z) =log z = fn z = log, .

The number e = E(1) ~ 2.718 is called the natural base for loga-

rithms; the notations
E(z) = " = exp(z)

are often used and exp is called the ezponential function. More
generally, Corollary 7.1.5 allows us to define b* for any b > 0

and any z € IR.

(eﬂ.)ﬂ — eaa o G Q-
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Thus we define
(ea):.':eza a,z € IR

and with b= e® or, equivalently, a=log b we obtain the

definition

DEFINITION 7.1.7.
b =e*8 % >0 zelR.
The inverse of the function thus defined is the logarithm to base b:
V' =y<=log,y=z 0<b#1.

Clearly
y = b = er]og b
implies
z=logpy and zlog b=logy

(‘log’ is the natural logarithm).

Thus

_log y
log,,y-—log—b, 0<b7é].

ProrosITION 7.1.8. b>0,p,q € IR

= (i) Wb?=brte
Gi) ()7 = b9,
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ProorF: Exercise 7.2.2.
THEOREM 7.1.9. De* = €*.

Proor: Since Dlog z = % >0, if z > 0, the exponential

function, as the inverse of the natural logarithm, has from Proposi-

tion 5.5.6 a derivative at every point in its domain

1d
y=e" =>log y=m=>§d—g=1 (Chain Rule)

s — = 1.
dz Y

COROLLARY 7.1.10. Db* =b"log b, b>0.

Proor: Exercise 7.2.3.
The function 2% = e%'°8 # is now defined for all a € IR

and z > 0.

COROLLARY 7.1.11. Dz% = az® L.

PrRoOOF: Exercise 7.23.

ProrosiTiON 7.1.12.

1 1
1 _ﬂ< < _n+1.
( +n) __e__(1+n)

PRrROOF: By definition e is the number such that 1 = log e,

e
1

1=/ — dt.
1t
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Now log(l1+1)= 11+% Ldi

sad, sErEigl, ¥ 1SS HS,

e

=

Slog(l‘l'l)ﬁl-% o
n

P,
1 { 1+% ~

n

S| =

1

- +
2=

1
wSl Sy
= ey < log(1 + n)_
1
= 1< (n+1)log(1+ -1;) and nlog(l+ %) <1
1
= 1< log[(1 + 71—1)"“] and log[(1+ ;)"] £

1 1
= e<(1+=)""" and (1+ ;)" <e.
n

a
COROLLARY 7.1.13.
. 1
lim (1+ =)" =e.
n—oo 1
PRrROOF: Proposition 7.1.12
= L+ 3ol £Q+ ™ =+ )"
—Q+ira+i-nsed.
g 1.,
lim (14 =)" =e.
n—oo mn
O

NOTE: We saw in Examples 2.3.4 that [lim,—o(1 + %)“ exists
and defined e to be its limit. Corollary 7.1.13 shows that this is
consistent with defining e by 1=Ilog e. Infact it is the case that

forall z €IR

e® = limp—oo(l + E)“ (Exercise 7.12).
n
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THEOREM 7.1.14. limy—.oz®e* =0, if aclR.
COROLLARY 7.1.15. lim,_.ozPe* =00, if B €R.
COROLLARY 7.1.16. lim;_ooz 7log 2 =0, if v>0.

COROLLARY 7.1.17. lim,_o42°logz =0, if &§>0.

PROOF: Consider f(z)=z%te™*

f(z) =(a+ 1)z% % — g2t~

=z% *[(a+1)-2]<0, if z>a+l.
.. f(z) is decreasingif z>a+1

O0< f(z)<M=f(a+1) if z>a+1 (case a+12>0)
0< f(z)<M=f(0) if z>0 (case a+1<0)

0<az*te ™ <M, for z sufficiently large

M
0<z% "< —, for z sufficiently large
x

lim z%e¢™* = 0.
I—+00

Corollary 7.1.15 follows from z%e* = —'—.

Corollary 7.1.16 is clear if we take = e'/7 so that
™ 7log v =e 'ty — 0, as t— oo (i.e. z — oo0). Similarly

Corollary 7.1.17 follows from the substitution z =e~'/*. O

SUMMARY:

(i) log z= [ 1dt, z>0.
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(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)

(ix)

Dlogz=1, z>0.

log(ab) =log a+log b, a >0,
log(a®) =zlog a

ez =z log(e*)==z

De® = e*

bE — ezlog b

eleb — path

(ea)b = eab.

b > 0.

EXAMPLE 7.1.18: Sketch the graph of f where

flz)=2ze™", —0o<z< 00,

f(:r:){ <0,z2<0 limpe_g f(z) = —0

>0,z>0 limz—es f(2) =10

[1,00)

f concave down on (—o0,2]

(2, 00).

, ., o [ >0 <1 ..f increasingon (—oo,1]
fz)=eF—ze ™ =(1—z)e™" .
< 0, x>1 ..f decreasing on
<0, if <2
f'(z) = —2e *+ze™* = (:1:—2)6"{ 1 ‘
>0, if 2>2 f concave up on
4
; =xe X
(
]
! :
1 p R




EXAMPLE 7.1.19: Let f(z) = log(zy/1 —=z). Find the domain of
f andfind f'(z).

f(z) is defined if z/1—2 >0 ie. >0 and z<1.
Therefore the domainof f is (0,1). To simplify the differentation,

notice

1
f(z) = log :1:+§ log(l—2z), 0<z<l1

@)=+ 7 (D= oy

O

The process of logarithmic differentation often simplifies the cal-

culation of derivatives. It uses the formula

f(=)

Dlog|f(x)| = %5

when f'(z) exists and f(z) #0. When f(z) >0, log|f(z)| =
log f(z) and, when f(z) <0, log|f(z)| =log(— f(z)) so that
the formula follows from the Chain Rule in both cases. If

f(z)=(z—a))™...(x —an)* /(z —b)P...(x — b)P™ then

log |f(z)| = ai log |z—ai |+ - -+ay log |t—as|—p1 log |z —by| - - -—Fim log |z—bm|

giving
f’(x) al [5°9 ﬂl ﬁﬂl
= it - e, ey, ! b'.
f(.'t) Tr—a +I—a,, .'B—bl -T—bm, :Br,\éa,”'
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EXAMPLE 7.1.20:

. (z +2)*(z —3)
(@) = G — 9z + 10)

A 2 1 3 Lt g 1
= f(f)—f(x)[$+2+m_3 P41 Z2=D x+10]'

O
EXAMPLE 7.1.21:
log 5
./ e *dz = —e—zujos 5= _glog 5 4 g0
0
1 4
= —¢'8(3) 4 0 = — FHl=¢.
O
EXAMPLE 7.1.22:
D2* = D(e'°8 2)* = De*'°8 2 = (log 2)e*'°8 2 = (log 2)2°.
Alternatively,
y=2" = log y=xlog 2
l1dy = log 2
y
dy
—> ¥ = (log 2)y
O
EXAMPLE 7.1.23:
log |z|y 1
Dlogyo |=] = D(log 10) " zlog 10°
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Alternatively,

y=log,lz|=>10"=¢2

= ylog 10 = log ||

dy 1
= R log 10 = =
dy _ 1

dz — zlog 10°
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4.

7.2.

7.3.

7.4.

7.5.

7.6.

Vals

Problems

Find f'(z):

(a) f(z)=3* (b) f(z)=2% (c) f(z)=Ilog(a®+3),
(d) f(z)=eo8 ",

[Answer: (b) f'(z) = 2*(1 +log )]

Solve for =

(a) log z =0, (b) log z =2,

(¢) (2—log z)log = =0,

(d) limp—o mi%)_—iou =3, (e) e+l =3,

Sketch the curve y = ze~*  with special attention to mono-

tonicity, concavity and asymptotic behaviour,

Sketch the curve y = 2%,z > 0, paying careful attention to

the behaviour of the curve near z = 0.

Find the derivatives of each of the following
(a) e, (b) 3, (o) £,
(d) log(z2e®), (e) [ e'dt.

Find the inverse functions:
(8) flz)=log(1+a%), (b) f()=1+¢".
Find
e o T 1‘.2
(a) f; éf-, (b) [} '—i— dr, (c) [ ::(Tglz)T dz,

@) %% e7dz, (&) [iog 2y €V7/VE da.

Simplify your answers.
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7.8

7.9.

7.10.

ANk

7.12.

7.13.

7.14.

7.15.

7.16.

C1T.

A particle moves along a straight line with acceleration at time
tsec. givenby a(t)=— rzgyz cm/(sec)’. Find the distance
travelled by the particle between ¢t =0 and ¢t =05 given

that the initial velocity is 3 cm/sec.

Find
(a) logy;32, (b) logy(zz), (c) logi32, (d) logs,2,

(e) log,, 64.

(a) Show limj_.q w =1,
(Hint. Consider f'(1), if f(z)=logz).
(b) Use (a) to show limy_o(1 4 h)/" =e.

(c¢) To the accuracy permitted by your calculator, compute

(14 k)", when h=+£10"1,4£10"2,4107*,+107°.

Prove that
(a) (1+h)V/*h>e if -1<h<0,
(b) (1+h)'/* <e, if h>0.

Show lim,—eo(l+ £)" =€*, forall z.
If z>1, prove log(z + vz2—1)= —log(z — Va? —1).
Solve for =z : ; % = Sf; i}.

Prove Napier’s Inequality:
0<a<b= 3% <log(%) < =2,

Prove lim;_—c (nl? + —n—_lﬁ 44 51;;) = log 2.

Use logarithic differentation to find g% -

(a) y=(®+222+22)3, (b) y=(Z22),
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_nilEG _ _(z4+2)*(=+3)°
(©) v=+/%5 (@) v = GoneraEr

7.18. Sketch the curves

(a) y=1—°f£,z>0, (b) y==zlogz, z > 0.
7.19. Show e<a < b= ab > b°.

7.20. Show that
(a) log(l—e~*) is strictly increasing,

(b) =E=-—log(l—e™*) isstrictly decreasing,if z > 0. These

&= =1

are the Einstein functions of radiation theory.

7.21. Show that f satisfies f'(z) = f(z) forall z € IR <
f(z) = ce*. [Hint: Multiply f'(z)—f(z)=0 by e™* and

deduce that ¢~ f(z) is constant.]

722. If b>0,p,q € IR, show
(a) bPb? =bP+e. (b) (bP)7 = bP9.

7.23. Let b>0,a € IR. Prove
(a) Db* = b*log b, (b)) Dz%*=az*t, 2>0.

2

7.24. Sketch the graphs of (a) e*’, (b) e *, (c) ze™*,
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§7.2 Trigonometric Functions.

The discussion of the trigonometric functions that follows does
not conform to the standard of rigour which we have set ourselves.
Such a discussion is well within our reach and a brief outline is given
in the next section. However we prefer to concentrate initially on
a careful description of the functions which adheres more closely to
their geometric significance.

Consider the circle z?2+4y* =1
centered at 0(0,0) and radius 1.

The radian measure of the angle ZPOA
is ¢, the length of the arc AP &)

described counterclockwise from A.

Equivalently the radian measure
of LPOA is 2 (area of the sector POA)
=2(%)=t. Define cosine and sine:

cost=2, sint=y, OLt<2%x

where (z,y) are the coordinates of P. Notice that

. ™ R
cos =1, =&in =10, cos;=0, sin -5=1,
- 3r . 3r
cos m=-—1, sinw=0, cos ?=0, sin. —- = —1.

The functions may now be extended to all real ¢ by the periodicity

conditions

cos(t + 27) = cos t, sin(t+ 27) = sin ¢
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which imply

cos(t + 2nrw) =cos t, sin(t+42n7)=sint, n=0,%1,%2,....
Since the equation of the circleis z? +y*> =1, we have
(1) cos’t 4sin*t =1, forall t.

Since (cos t,—sin t) = (cos(2r—t),sin(2r—t)) = (cos(—t),sin(—t)),

by periodicity, so that
cos t = cos(—t), sin t = —sin(—t);

cosine is an even function and sine is odd.

Observe that d(A4, P), thedistancefrom A to P satisfies

d(A, P)? = (cos t —1)? 4+ sin®t = cos?t — 2cos t + 1 +sin’ ¢

= 2(1 — cos t)
7)(@51", Sint)
Therefore, if P = (cos t,sin t), @ = (cos s,sin s) Q (&;{ s, S:'m§>
d(P,Q)? = 2[1 — cos(t — s)]. £ s
0 (1))

On the other hand

d(P,Q)? = (cos t — cos 3)? + (sin t — sin s)?
= cos’t — 2cos tcos s+ cos’ s

+sin’t — 2sin tsin s4sin’s

= 2[1 — (cos tcos s+ sin tsin s)].
Thus it follows that

(2) cos(t — s) = cos tcos s+ sin tsin s.
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The familiar trigonometric formulas all follow from (1), (2). Equation

(2) implies

m T N r
cos(g—s)=cos 5 cos s + sin 3 Sin s =sin s,

. T T
sm(E —35)= COSIE - (5 —8)] = cos s.
Therefore

sin(t — s) = cos[g —(t=3)]
= cos(-g- — t) cos(—s) + sin(g — t)sin(—s)

= sin tcos s — cos tsin s§;
(3) sin(t — s) = sin tcos s — cos tsin s

Replacing s by —s in (2),(3) gives

(4) cos(t + s) = cos tcos s —sin tsin s

(5) sin(f + s) =sin tcos s+ cos tsin s
With s=1t in (4), (5) we obtain

(6) cos 2t =cos’t —sin’t =1 — 2sin’t = 2cos’t — 1

(7) sin 2t = 2sin tcos t.
Formula (6) also gives the important half-angle formulas

i
(8) sinztzg—(l—cos 2t), ooszt=§(1+cos 2t).
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From (3) and (5) we find

sin(t 4+ s) + sin(t — s) = 2sin tcos s

sin(t 4+ s) —sin(t — s) = 2cos tsin s

or equivalently, with a=t+s,b=%t—s

(9) sin a -+ sin b=2sin(a;b)oos(a;b)
(10) TR b=zcos("‘2”’)sin(";”).

Similarly, from (2) and (4)
—b

(11) cos a+ cos b=2m(a;—b)ms(a2 )
b

a+b, . a-—
+ )sin(2 ).

(12) cos a —cos b= —2sin(

The other standard trigonometric functions are

s t cos i
tan = ——, cot t= NN
cos i sin
1 1
scc 1= : cosect= —.
cos sin i

From similarity of triangles we obtain the trigonometric functions as

ratios.

&£
=

1 LS
8 gt l
A a ———rr
cost=2, sin t=-, tant=—.
¢ c a



Some standard ratios are

E—s'nw— : ﬁ
cos4—1 4_\/§, %
1
T 1r_1
cos E_Smg_i’
(i
[A
sinz—cosz—é 2
= 6 2
%
1

. R e R (55 '
To show cos T=sin $=-& first observe that

T ¢ .
cos — =cos(— — —) =sin — and so
4 2 4
T . o T ™
1 = cos® — + sin® o 2 cos? e and

=cos — =sin — .

Sl
SV

Y

N

We must choose the positive square root since sine and cosine are

both positive on (0, §).

To demonstrate the other four ratios we first see that

STET
I
= IE]

A g alesm
= 3 implies



Also 3 =2% implies
sin 1;- = sin(2 %) = 2sin % cos % from (7)
= 2sin — sin E, and therefore
6 3

1 =32an %, since  sin g?é 0, giving

s sin —— cos =

2 6 — 8
Finally

T
1=cos’t+sin’t, t= %, 3 gives

V3
7

Reasonable graphs of the trigonometric functions may be drawn di-
rectly from their description on the unit circle and the few explicit

values we have found.
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ar - ©

e o e —

o
8]

3

—_—
ir %

r
v

(13)

If P

T

Now

cos’t +sin’t=1=

cos’t<1, sin’t<l=

|cos t| <1, |[sint|<1

is in the first quadrant, we have the following geometric
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inequality
area (AOAP) < area (sector OAP) < area (AOAQ).
Therefore
1

. 3 1 .
ssint<at<stant, f 0<i<3F.

Since the three functions involved are odd,

T%

the inequalities are reversed if & <t <0.

Thus we get the two important inequalities

(14) |sin t| < [t], 0< [t <§

$ 1 T
1 1 0<|t —,
(15) <sint cos t’ H<2

Formula (12) implies

t t—
|cos t —cos a| = | — 2sin( -‘};a)sin( oa)l
. gd+a i—a
=9 i
2fsin( %) |sin( LS9
t—a

o] |

= |t —a|, from (13),(14) =

(16) lim cos t = cos a.

t—a

Thus the cosine function is continuous on its domain. Since sin t =
cos(F —t), it follows that the sine function is also continuous on its

domain.

(17) ‘lim sin t = sin a.

—a
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Also, from (15), (16) (with a = 0)

_ sint
(18) Jim == =1.

Finally, from (12)

[cos(t + h) — cos t]_ . 2%4+h. . h . dtdh sin(%)
. = —2sin( 5 )51n(2)/h——51n( 5 ) E

and so from (17), (18) limp—g[cos(t + h) — cos t]/h = —sin t

(19) Dcos t = —sin ¢
20 Dsin t =cos t, since sin t = cos T 4
‘)
” in t
(21) Dtan t =sec’t, since tan t= o
cos i
: t
(22) Dcos t = —cosec’t, since cot t = —
sin t
J 1
(23) Dsec t =sec ttan ¢, since sec t=
cos t
1
(24) D cosect = — cosec tcot ¢, since cosect = S
|

The cosine function is decreasing on [0, 7] and therefore, when re-
stricted to this interval it has an inverse function, the Arccosine func-
tion with domain [—1,1] and range [0,7] From Proposition 5.5.6

this function is differentiable on (—1,1) and

1—=2

S _‘Bg—
(25) D Arccos & = —-11-—2— “l<z <1, :K
i
|
VR

since -

d
y = Arccos z = cos y = & = —(sin y)d—y =1
:c

=>d_y_ -1 =1
dr  siny /1—z?
177
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Similarly the sine function is 4 Y

increasing on [3F, 7] and its ' UncsinX

restriction to this interval has

Px
an inverse function, Arcsine, where

derivative on (—1,1) exists and

(26) D Arcsinz = - -l <l

\/1—.'1:2, .4\

The tangent function is increasing

on (5%, 7) and its inverse, the

Arctangent function satisfies

(27) D Arctan o — I-—_:?,

§7.3. Trigonometric Functions, A Rigorous Approach.
This approach does not rely on concepts such as length of a
curve which we have not yet considered. Also the pictures are used

for motivation only and are not intrinsic to any proof. This section is

based on Chapter 15 of ‘Calculus’ by M. Spivak.

DEFINITION 7.3.1. The number =«

1
1r=2/ V1 —u? du.
-1

DEFINITION 7.3.2. The Arcosine function

1
Arcosz =z 1—x2+2] V1—u?du, -1<z<1.
z
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NOTE. The continuity of +1—2%, —1 < 2z <1, implies the ex-

istence of the integrals in these definitions. The motivation for the ¢
4

e Jix*)
definitions is v Fex,
(i) = is defined to be the area "

of the circular disc of radius 1.

(ii) The area of the sector
(x< )
OAP, with z > 0, )is

%:%x\/I—w2+f: V1 —u? du.

We call t the radian

measure of ZPOA and

define Arcos z = t.

The following are simple consequences of the definitions.

PRroPOSITION 7.3.3.. Arcos(—=1) = m, Arcos 0 = 5, Arcos1 =

0.

PROPOSITION 7.3.4..

D Arcost = ——, -1<z <],
V1 — 22
-z
D? Arcosz = ————, -l<z<l.
(1—22)F

A
We may now sketch the graph #
of the Arcosine function using 1T
its values at —1,0,1, the
%
fact that it is decreasing on \
[-1,1], concave up on [—1,0] s
1

and concave down on [0, 1].
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DEFINITION 7.3.5.
(a) On [0,7] cosine is defined to be the inverse function of

Arcosine

t = Arcos ¢ <= cos t = z,
0<t<n.

(b) On [0,7] the sine function is defined by

sin t =v/1—cos2t=1+/1-22, 0<t<m.

ald
s >
%

?w

m t

oW}
§

PROPOSITION 7.3.6. cos?t+sin’t=1 0<t<n~w
PROPOSITION 7.3.7.
D cos t = — sin t,

Dsmit=cosil, <i<nm

PROOF: From Proposition 5.5.6, the cosine function has a derivative.

Therefore z=cost, 0<t<m

= Arcossi=t

-1
= ﬁ C (fi—:: =1 (Proposition 7.3.4, Chain Rule)
d
B SR i



Also

y=sin t = /1 —cos?
Y. TSN
dt 21 —cos?t

(—2cos t)(—sin t) = cos t.

O

Now the domains of cosine and sine may be extended to all of

IR in two steps. First we extend them to [—=x,n] by

37

[IX"

cos(—z) = cos x sin(—z) = —sin 2
cosine 1s even sine is odd

The functions are then extended to IR by the periodicity

cos(z + 2n7) = cos x

sin(z 4+ 2n7) = sin ¢ n=0Y1%2....

It is fairly easy to see that Propositions 7.3.6, 7.3.7. extend to
all t€IR also.

The formula cos(t—s) = cos tcos s+sin tsin s was deduced
from the geometry of the circle and was shown to imply all of the
other trigonometric formulas including those fundamental to finding

differentiation formulas in the approach developed in the preceding
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section. Here we already have the differentiation formulas and now

show how they imply the trigonometric identities.

LEMMA 7.3.8.. Suppose f is a twice differentiable function on IR

which satisfies

f(0)=f(0)=0 and f"4+f=0 on IR.

Then f(t)=0 forall telR

PrOOF: Let ¢ = (f")%+ f°. Then

g =2ff"+2ff =2f(f"+f)=0 on IR

= g = constant = g(0)=0= f=0.

PROPOSITION 7.3.9. For all t,s € IR

cos(t — s) = cos tcos s+ sin tsin s.

Proor: Consider

f(t)=cos(t —s)—a cos t—bsint, a,bs constants
f'(t) = —sin(t —s)+a sin t — b cos ¢

f'"(t) = —cos(t — s) +a cos t+ b sin t.

Therefore f"(t) + f(t) =0 for all a,b,s. Now choose a,b so
that 0 = f(0) = f'(0) and we find f(t) =0 forall ¢ from

182



Lemma 7.3.8.

0= f(0) = cos(—s) —a => a = cos(—s) = cos s

0= f'(0) = —sin(—s) — b= b= —sin(—s) =sin s

= 0 = f(t) = cos(t — s) —cos s cos t —sin s sin ¢, all

t € IR. Since s is arbitrary, this completes the proof.

]
In §7.2 we needed to know that lim,—g 1‘—';—‘ =1 to drive the
formulas D sin t = cos ¢, D cos t = —sin t. We therefore

could not use I'Hospital’s Rule as a proof of this limit. In the present
approach we may use 1’'Hospital’s Rule since we did not need the result

in our proof of Proposition 7.3.7. Therefore

. sint . cost , e
}1_{% — }3_1‘1‘1) T = 1, by I’Hospital’s Rule.

§7.4. Hyperbolic Functions.

The three basic functions are the hyperbolic cosine, hyperbolic

sine and hyperbolic tangent.
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cosh z = 1(e® +e77)

cosh(—z) = cosh «

an even function

sinh z = 3(e* — e™*)

sinh(—z) = —sinh z

an odd function

__ sinh =
tanh z= cosh z

_ ef—e"%

T eT4e—T
tanh(—z) = — tanh «

an odd function.




Other hyperbolic functions are

1
the = ha= chz =
O E=tamh o’ sinh 2’ cosh z.
We have the following differentation formulas:
D cosh z=sinh z, D sinh z= cosh z, D tanh z= sech’z

D coth z= —esch?z, D sech z= —sech 2 tanh z, D csch 2= —csch z coth z.

In the same way that the trigonometric functions are associ-
ated with the circles, the hyperbolic functions are associated with the

hyperbola.
cosh? z — sinh?z = 1.

This can be seen directly from the definition or from D(cosh®z —
sinh?z) = 2cosh z sinh z — 2sinh 2 cosh = = 0. Which implies

cosh? z — sinh? z = constant = cosh?0 — sinh?0 =1. Thus

A?- .’Xq:-?q;-/

X =0
z=cosht, y=sinht=z?—-y’=1 P[“f; S-;'u(f)
74
A, g
0O A(7,0) i

We will see later that

the sector QAP has area % |t]. (m L. 5")
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The formulas

sinh(z 4 y) = sinh z cosh y & cosh z sinh y

cosh(z % y) = cosh z cosh y £ sinh 2 sinh y

may be proved from the definition by first proving the expression for
one, sinh(z+y) for example, then replacing y by —y toobtain
sinh(z —y). These formulas may then be differentiated with respect

to z to obtain the formulas for cosh(z + y),cosh(z — y).
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Problems

7.25. Show 1+ tan?z =sec?z, 1+ cot?z = csc?z.

7.26. Show (a) tan(a + ) = 2 ottan 8

l1—tan a tan g°

(b) tan 26 = 2%

7.27. Show (a) limy—o <= ’_l =0,
(b) limz—o &f—‘ = ;—1
7.28. Sketch the curve y =cos 2z +2cos ¢, 0< 2z <27
7.29. Express as multiples of = :
(a) Arcos(Zs),  (b) Arcsin( ), (c) Arcos(1),

(d) Arctan /3, (e) Arctan(— J—%-), (f) Arctan(—1).

7.30. Write down the value of

(a) sin(Arctan 5), (b) tan(Arcsin %), (¢) log(e?).

7.31. ShOW a) fllz dz = = %s (b) fo 1+.r
! dy .
7.32. Find 2%:
(a) y = %ﬁ’ (b) y = Arecsin /7,

(¢)y = Arcsin V1 — 22, (d)y = Arcsinz + V1 — 22,
(e) y = Arctan(z +v/1+22), (f)y = sin(Arctan z)

(g) y = el 7, (h) y = ein(=Y),

(1) y = sin(log z).
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7.33.

7.34.

Show Arctan (‘/li_—;f) = Arcsinz, -l1<a<L

Il

If Arctan(y)+log /2?2 +y* =0, show that % =ty

z—y

7.35 Prove Arctan z+ Arctany = Arctan(:ZL) if | Arctan z+

7.36.

7.37.

7.38.

7.39.

-y

Arctan y| < F

Prove Arcsinz + Arcsiny = Arcsin(z /1 —y* +y V1 —2?)

for certain =z,y.

By restricting the domain of the hyperbolic function if necessary

define the inverse functions cosh™!,sinh™! tanh™ and show

(a) D cosh™ a = T (b) D sinh™ 2 = \/1f|-=:2 :

(c) D tanh™ 2 = L5, and state the values of z for which

each formula is valid.

Show
(a) cosh™ z = log(z + V2% — 1),
(b) sinh™' z = log(z + V2% + 1)

(c) tanh™' z = log ,/3E£.

If = and Arcosz are given by the Definitions 7.3.1 - 7.3.2,
show
(a) Arcos(—1)=m, Arcos0= 3, Arcosl=0.

(b) DArcosx:Vi*-_l;;-, -l<z<1.
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7.40. Show that the ]\

largest value of the

angle @ in the /{f
1

diagram is

arctan (2"7‘:7). J, i K

7.41. Prove the Cosine Law:
If a,b,c are the sides of
a triangle and 6 is the e
angle between a,b, then

¢z =a? +b? — 2ab cos 6. G

7.42. Show
(a) sin t cos s = 3[sin(t + s) + sin(t — s)].
HINT: Use (3), (5), of § 7.2.
(b) cos t cos s = 3[cos(t + s) + cos(t — s)]. Find a similar

formula for sin ¢ sin s.

7.43. On a clock, the minute and hour hands have length a em and
bem respectively. Find the rate at which the distance between
the tips of the hands is
(a) decreasing at 3:00,

(b) increasing at 8:00.
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VIII TECHNIQUES OF INTEGRATION

§8.1. The Fundamental Theorem of Calculus.
We prove a slightly stronger form of this theorem than Theo-
rem 6.4.4.

THEOREM 8.1.1.. Suppose (i) f:f exists and
(ii) Fliz)= f(z), a<z<h
Then

/a " f = F(b)  F(a).

Proor: Let P = {zg,21,...,2,} be a partition of [a,b] i.e.

G Gy Ty oy
-ﬂﬂ—fﬁﬂ=é?FwH—waﬂ]
4 ;F'(ck)(:ck ~24.1), forsome e € {zioises) (Why?)
=§¥@Mﬂ—ﬂﬂﬁlwm)

Therefore L(P, f) < F(b) — F(a) < U(P, f) for each partition P
of [a,b], so that

b
[ £=F®-F),

since f: f exists from (i).
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NOTES:

(i)

(ii)
(iii)

(iv)

f: I f: f(z)dz, f: f(t)dt, f: f(u)du all mean the same
thing.

F is called an antiderivative of f.

If F is an antiderivative of f, then G 1is also an an-
tiderivative of f <= F(z) = G(z)+¢, ¢ constant, a<z <
b.

In Theorem 6.4.4. it is assumed that f is continuouson [a,b]
which implies (i) and that F(z) = [, f satisfies (ii). Thus
Theorem 8.1.1 = Theorem 6.4.4.

All of the techniques developed in this chapter are methods of
using the fundamental theorem.

The notation [ f(z)dz = F(z) means ‘F is an antideriva-
tive of f’. Of course F is only determined to within a

constant. The following are some useful antiderivatives:

$a+1
]:c dx=a+1+c, a # —1.
/m_ldw =log|z| + ¢ =log klz| (c=log k)
/e’dm:e”+c
fcos:zd:z::sinx+c
fsinzdm:—cos:r+c
/;d:c= Arcsinz +¢c= — Arcosz + k

V1 —z2

1
/ dr = Arctanz +c¢
1+ z2

/secz:cda:ztan T+ c
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/ cosec’z dz = —cot = + c.

This list may be greatly extended by
the Change of Variable or

Substitution Formula of the next section.

EXAMPLE 8.1.2: The area determined

by an arch of the sine curve is

Ol

-/ sin z de = —cos z |J= —cos m+cos 0 =—(-1)+1=2.
0

EXAMPLE 8.1.3:

V3

1

/ 5 dx = arctan mlafj = arctan /3 — arctan 0 = — .
0 )| + L 3

8.2 The Change of Variable or Substitution Formula.

This is really a combination of the Fundamental Theorem of

Calculus and the Chain Rule.

THEOREM 8.2.1.. Suppose ¢' is continuouson [a,b] and f is

continuous on ¢([a,b]). Then
(i) f: flg(z))g'(z)dx = fgg((:)) f(u)du, or equivalently
(i) [ f(g(x))g'(z)dz = [ f(u)du, where u= g().

PROOF: Let F be an antiderivative of f, ie. F'(u) = f(u)
for each u € g([a,b]). Consider also H(z) = F(g(z)). Then
H'(z) = F'(g(x))¢'(z) = f(9(x))g'(z) sothat H 1is an antideriva-
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tive of (fog)g'. Therefore

b
/ f(o(2))d'(2)dz = H(z)[t = F(g(z))[E = F(g(b)) — Flg(a))

g(b) o(b)
/g flu)du = F@)l*®, = F(g(b)) - Flg(a))

(a)

which gives us (i). Similarly

[ Fa(@g'(@)iz = B(a) + = Pla(e) + ¢

]f(u)du = F(u)+c= F(g(z)) +¢, since u=g(z)

gives the form (ii) of this theorem.

NOTES:
(i) In practice the choice of the function g may not be obvious
and there may be many different choices of ¢ which do work.
(ii) The notation ‘dz’, ‘du’ is very convenient here. When we

make the substitution
u=g(z)
we take
du = ¢'(z)dz

and also change the integration interval: u = g(a),g(b) when

T =a,b respectively.

193



ExXAMPLE 8.2.2:

3
/ 10(z? 4 5)*"zdx u=2z>+5
1
du = 2zdz
14
=/ 5u?" du =1, u=0
6

_ O 984 _ O .98 .28 _ =
=554 s —28(14 6°) =3, u=14

Of course you could also expand (z%+5)?" multiply by 10z

carry out the resulting 28 integrations.

EXAMPLE 8.2.3:
/ tan z dr = log|sec z| + ¢

since

sin % =08
tan z dz = dx .
cos T du = —sin z dz
du
U

= —log|u|+ ¢ = —log|cos z|+ ¢

= log |sec |+ c.

EXAMPLE 8.2.4:

/‘(logw)zdx u=log z, du=1dz
- T

2 =171u=0
1
=/u2du
0

& =e;" w=1
ul
3

1
b=3-
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ExAMPLE 8.2.5:

t
]e‘ildt u=ce'+1, du = e'dt

=/ldu
u

= log |u| + ¢ = log(e' + 1) + ¢ = log[k(e" + 1)].

ExXAMPLE 8.2.6:

/ e‘zmda: =

fe"du =z, du=2zdz

o= b=

EXAMPLE 8.2.7:

z dz
_— u=3z+5 du=3dz
VB D z=3%u-5) jdu=dz

=% f “\;;du:% /(u%—su-%)du
= %(gug -5.2u%)+c

2.1 3 1
=§[§(3$+5)= —5(3z45)?] +¢
it

1 10
= 9(3m+5)2(z—?)+c.
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Alternative.

% v=+3z+5

v =3z+5 2vdv=3dx
=2 [(v?—5)dv 3-8 ==z
=5(3v" —5v)+c 3? = 5)dv = £

= 2[1(3z +5)% — 5(3z + 5)%] + ¢
=23z +5)i(z — ) +ec.

It may be helpful to break the integral up and use different

techniques on different portions

EXAMPLE 8.2.8:

8z — 1T 2z dz dz
,[3:2+1d$_4_/ :c2+1-—7/ 2?2+ 1

= 4log(z® + 1) — Tarctan z + c.

§8.3. Special Substitutions

/f(cos z)sin rdr= —/f(u)du, where u =cos z
/f(sin z)cos z.dz = /f(u)du, where u =sin z.

These substitutions together with the identity cos®z + sin’z = 1

may be used to evaluate integrals of the form
fcosm z sin" z dz

if one of m,n is an odd integer.
If n isodd, use u = cos z.

If m isodd, use u=sin z.
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EXAMPLE 8.3.1:

1 . 1 J
/cosl z sin® zdz = ]cos! z(1 — cos® z)sin z dz

£ @ -
=—f(u5—u5)du, where u = cos z,du =sin z dz

=—(gu§ —15—61115')-{-0
1
= 5cos? I(l_lé cos® & — 6)+c.

EXAMPLE 8.3.2:

[cos3 2t dt = /(1 — sin” 2t) cos 2t dt
= % /(1 —u?)du where u =sin 2t du= 2cos 2tdt

1 u?
=glu—g)te

1 . 1.
= sn 2t — Esm3 2t + c.

When m,n are both even integers, then the trigonometric identities
2 1 . 2 1
cos“z = (1 +cos 2z), sin"z= 3(1 — cos 2z)

may be used (repeatedly if necessary) to reduce the problem to a

situation where m is odd.

EXAMPLE 8.3.3:

/si112 zdz = %/(1 — cos 2z)dx

sin 2z + c.

T —

W | =

1
2
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EXAMPLE 8.3.4:

/ cos' z dz = /(cos2 z)*dz

/(1 + cos 2z)*dz
f(l + 2cos 2z + cos® 2z)dz
1
f[l +2cos 2z + 5(1 + cos 4z)|dz

3 1
f(; + 2cos 2z + 5 o08 4z )dz

= M N i

3 . 1
= Z(§x+sm 2m+§ sin 4z) + c.

Trigonometric Substitution. When the integrand contains expres-

sions of the form
a® = uz; a® +u2; u? — a?

and no more obvious techniques is available, then it is worth trying

the substitution
u=asnf; u=atan ; u=a secl

respectively. Then

] 2 2

a® —u? =a?cos?0; a®+u®=a’sec?d; u®—a®=a"tan’é.
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EXAMPLE 8.3.5:

Let u =a sin §, du=a cos 6 df
a? —u? =a%cos’d, +a®—u?=a cos 0*

du 0
I == 2>

a cos 6 df
“acos @

=g
=[dd=6+c =arcsin(%)+ec.

*Why was ‘ —a cosf’ not chosen here?

EXAMPLE 8.3.6:

ch_i-'u_,a>0 Let u=a tan 8, du = a sec® 6 df
a? + u?
a? + u? = a®(1 4 tan? §) = a? sec? §
. a sec? 6 df
) Ta?sec?f
=1 [df =104c=7 arctan(i) +ec

EXAMPLE 8.3.7:
u
[ ———,a>0. Let uw=a sec §, du=a sec 6 tan 6§
W, g
u? — a? = a®*(sec? § — 1) = a? tan® 0

Vu? — a®? = a|tan 6] = tatan 6

+'if tan 820
=:l:fsec9d9 C—7if tan 8 <0

a sec 6 tan 8 df
a tan @

=2 f

We don’t have an antiderivative for ‘sec’ yet (see Problem 8.3).

Try [ sec 6 df = c—::—g. (This is the ‘m odd’ situation just
discussed. )
cos 6 cos 6 dd .
=/-cos—28d9=/m v = sin fdv = cos 6 df

_/ dv
- 1—v2°
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We’re still in trouble, but we will be able to handle this shortly when
we discuss antidifferentation of rational functions by the method of
partial fractions.

2

The forms a? —u?,a? +u?,u? —a®? of this discussion may not

always be entirely obvious.

EXAMPLE 8.3.8:

dx dz
/ 5+ 2z + 2 =4 44 (z+1)2

Let =+ 1=2tan @
dz= 2sec? § db

2 2
See 0 & 4+ (z +1)%=4sec? 6

= f 4 sec?
T
30+c=3 arctan(-’—}l-) +c.

I
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Problems

8.1 Find the following antiderivatives:

(a) [sin® z cos z dz, (b) [e*'z da,
o dt
(c)f v s \/J_»'d$, (d) f (1 -|-t2)a.rcta.n +!

ds
(e) f \/ﬁ, (f) f tanh u du.

ANs: (a) % sin®z+e, (¢) —2cos VT4
(e) % Vs + 3 +c.
8.2 Find the antiderivatives:
(a) [ &% () [ VI—22 do

() fd+u¥)Tdu (d) [ Tz do
@ sty [ AExde

ANs: (a) arctan(e®)+¢, (c¢) 1 Gy + 6
(e) % arctan(5t+ 3)+c.

8.3 Verify the formula:

] sec 8df = log |sec 6 + tan 6| + c.

8.4 Find the antiderivative [ sin 6 cos § df in 3 ways
(a) by using the substitution u = cos 6,
(b) by using u =sin 6
(¢) by using the identity sin 2t = 2sin ¢ cos t.

Reconcile the answers you obtain.
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§8.4. Integration by Parts.

Just as the Chain Rule combines with the Fundamental Theo-
rem of Calculus to give us The Substitution Formula in Theorem 8.2.1,
the Product Formula leads to another important technique, the Inte-

gration by Parts Formula.

THEOREM 8.4.1.. Suppose f',¢g' are continuous on [a,b]l. Then
(@) J, f(2)g'(@)dz = f(z)g(@)lt~ [ 9()'(z)dz, orequivalently
(i) [ f(z)g'(z)dz = f(z)g(z) — [ g(=)f'(z)dz.

PROOF: f F = fg, then F' = fg' +gf and [ F'(z)de =
F(b) — F(a) = F(z)|® implies

b
[ U@d@) + 9@)f @iz = f@a@)l.

NOTEs:
(i) A convenient shorthand for the Integration by Parts Formula is
obtained by taking
u= f(z) v=g(z)

du= f'(z)dz dv= ¢'(z)dz

and then:

/udv=uv—-/vdu.

(ii) In any given problem there are infinitely many choices of the

pair u,v only a few or none of which may work.
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EXAMPLE 8.4.2:

[ log z dz Let u=logz v=c¢
T 1
u dv
=zlogz—[z -—de=z logz—z+ec
T 1 T &
v u v }

EXAMPLE 8.4.3:

j:c e'dx =:.:e’—/e”d:r=:re’—e”+c.
T : | § IR |
u v

v du

EXAMPLE 8.4.4:

) T

v v du

/:%: sin :cda:zgr:(—cos ‘I)—/(-—COS ) dTa:

U dv
= —z cos ¢ +sin =+ c.

EXAMPLE 8.4.5:

Jarctan z do=z arctan z — [ 57 de= 2 arctan z —log V1+2z%+c

u= arctan z dv= dzx
= 1 e
du= T B dz v=1I.

EXAMPLE 8.4.6:

I=/e’sin z dr = € sin x—/e’cos z de
= e*sin = — (e” cos m+/e’sinxd:r:)
= e"(sin z —cos z)— I +ec.

203



Therefore I =1 e*(sin = — cos z) +c.

Alternatively:

I=/e’sin z dr = —e® cos :c+/e’cos xz dz

= —e®*cos z +e*sin x—]e’sin z dz

=e*(sin r—cos z)— T +c

sothat I = 2 e*(sin z — cos z) + c.

1
2

EXAMPLE 8.4.7:
by = ]m"ezdm =gz e — n-/:z"_le”da: =z"e* —nl,_;.

The formula
In=2"* —nl,;, Ly=¢e*+c

is called a Reduction Formula and may be used to calculate I,, for

n=1,2,.... For example to find I; = [a%'e*dz, we find

I, = z'e® — 41,
= zle® — 4(z%e” - 3I)
= z'e® — 4z%e® + 12(2%e* — 2I1)
= z'e® — 4z%e® + 122%€* — 24(ze” — I)
= z%e® — 4z%e® + 12z%¢® — 24z€” + 24€* +c.
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EXAMPLE 8.4.8: Consider

T = /sin“:s dz= /sin“"lzz: sin z dz
_ « u—1 s n—2 2 d
=—sin" "z cos z+(n—1) [ sin" "z cos® z dz

= —sin""'z cos ¢+ (n— 1)/’sin"—2 z(1 — sin’® z)dz
=—sin""'z cos 4+ (n—1)Ih—2 — (n—1)I, =
nl, = —sin® 'z cos z 4 (n—1)I,—2 =

-1 1 n—1

I,=— sin" "z cos ¢+ — 1,2,
n n

L =—cosz+e, Ip=z+c¢

another example of a reduction formula. Note that we have another
technique which is applicable to integrals of the form [ sin"z dz :

if n is odd use the substitution u = cos ¢ sin’z =1—u? if

2

n is even use sin’z = 3(1 — cos 2z).



Problems

8.5 Find [log(z + 3)dz by taking
(a) u=log(z+3), v=z [HINT: Fz=1- =1,

(b) u=log(z+3), v=2z+3.

86 If I,= fcos" z dz, show I, =% cos" !z sin :::+";1 I._2,

h=1,2,...

8.7 Prove
(a) [ z cos zdz ==z sin z +cos z +c,
(b) [ Arcsin dz = z Arcsinz + V1 —2a? +¢,
(c) [ Arctanz dz =z Arctanz —log V1 + 2% +c.



£8.5. Rational Functions.

ﬁ:; where p and ¢

A function r is rational if r(z) =
are polynomials. Here we consider antidifferentation of such functions.
Without less of generality it may be assumed that the degree of p
is less than the degree of ¢; this can always be achieved by division.

For example

2249z —1
z? + 1|z +92° +3
o
z* +92° + 3 923 —z243
2 41 92 49z
—22-9243
—~g% -]
—9z+4 .
9 -9z + 4
=z“4+9z -1+ W

We develop the Method of Partial Fractions for such functions

through several examples.

EXAMPLE 8.5.1: To evaluate [ ;%5 dz, we first factor the

S5z+4 = S5r+4
z2-3z42 = (z-1)(z-2)°

denominator so that We may write

5T +4 _ A B
(z-1)(z-2) z-1 z-2

a partial fraction decomposition, if 5z + 4 = A(z — 2) + B(z — 1)
for all z. One method of determining A, B is based on the fact
that two polynomials in z are equal if and only if the coefficients

of like powers of z are equal. Here we require

5=A+B (coef. of z')
4=—-24—-B (coef. of z°).
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Thus A = -9,B = 14. Alternatively two polynomials of degree 1
such as we have here are equal for all z if and only if they agree at
two distinct values of z. Two convenient values are z =1,z = 2

which give directly —9 = A,14 = B as before. Now

o + 4 -9 14
f m2—3x+2dx_/(a:—1+m—2)dm

=log |e(z — 1)"%(z — 2)M|.

Observe that any polynomial p(z) of degree 1 or less may be ex-

pressed in the form p(z) = A(z —2)+ B(z —1) and so in this way

we may evaluate [ p 2 (3? 77 dz. The set of all such polynomials

p(z) is a vector space of dimension 2 and we have used the fact that

the polynomials z — 1,2 —2 are a basis for this space.

EXAMPLE 8.5.2: Consider [ 3_1_";;5(’;__32 dr. Here we may write

2?-%43 A B C
(z—-1)%(z—2) z-1 (z-1)%  =z-2

provided 22?2 —3z+4+3 = A(z —1)(z —2) + B(z — 2) + C(z — 1)~
Therefore

(z=1)=>2=-B

(z=2)=5=0C = A=-3,B=-2,C+5

(coef. 2?)=2=A+C

)5
so that [ (ff:)_?’;_?é) dz = log lgz_f;:‘ | + 2% +¢. We have used
the fact that the functions (z —1)(z —2),(z — 2),(z — 1)* form a
basis for the vector space of polynomials of degrees 3 or less. Also

2

instead of equating the coefficients of z* we could have equated
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the coefficients of z! or z° or considered one more value of =z

besides z =1,2.

EXAMPLE 8.5.3:

z—1
.1:2+:z:|:1:3+3
3:3+3_x_1+m+3 z34a?
224z 2?2 +z —z%43
—z’—z
z+3
= 1+A+ i
=7 o z+1
if 2z43=A(z+1)+ Baz.
(m=—1)=>2=—B
(z=0)=2>3=4
3 +3 3 2
/$2+xd$—/($—1+;—m)d$
—lx2 z + log | 2 |+ ¢
2 %l mrip

EXAMPLE 8.5.4:

1 A o Bz +C
(z—1)(z2+2z+2) (z—-1) 22+22+2

& 1=A(z"+2z+2)+ (Bz + C)(z —1), for all

Therefore
(z=1)=1=54
(coef. z2)= 0= A+ B =>A=%, B:—g, C=—=

(coef. 20)=1=24-C



z+3
](‘”‘1)(34*‘2‘”""’) /(rr~1 74240 &

- /( 1 2x + 2 2
5 r—1 22242zx42 2242242

1 1
= log|$—1|—ﬁ log(z? + 2z + 2)

2
- & arctan(z + 1) + c.

In this example we have used the fact that the polynomials
22 4+ 2z + 2,z(x — 1),z — 1 are a basis for the three dimensional
vector space of polynomials of degree 2 or less. We would not have a
basis if we omitted any of the A,B,C terms. Notice also that we

have written

z+3 1 % + 2 1
et et JenEE R a8 e
fm2+2x+2 ’ 2/m2+2m+2 F fm?+2x+2dt

The first integral on the right is of the form 1 [ 4% =log|u| + ¢
and has been chosen to take care of the ‘z term’ in the numerator.
The other integral on the right is the difference of the previous two

and is of the form 2 [ m = 2 arctan(%) + k, where

v=z+la=1

EXAMPLE 8.5.5:
/ sec 8 df = log |sec 0 + tan 6| + c.

We have given the verification of this formula as Problem 8.3; this is
easily done by differntation of the right-hand side. However, ‘discov-

ery’ of the formula is a little more subtle as we saw in Example 8.3.7.
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Now we can make more progress

1 cos 6 cos @
/sec 6 deé / s 0 fcos”) dé f T dé

du 1 ( 1 1 d u =sin 6, du = cos 8 df
1—u2 2 1-—u+1+u o 1—u?=1-sin%6

(partial fractions)

1+u B 1+sin 6 L] (1+ sin 6)?
mlog iy te=le g te=l8 YV oo ¢

= log |sec 6 + tan 6| + c.

We can now describe the Method of Partial Fractions

STeP 1. HE (=) = ?(3 is rational we begin by writing it in the

form

s(z)

(z .
r(z) =t(z)+ —=, t,s,¢q polynomials and
(@) =t + 2

where s is a polynomial whose degree is less than that of the de-

nominator ¢. This may be achieved by division.

STEP 2. Factor the denominator ¢ in the form

gz)=(z—a)...(z2 +az +p)™...
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and expand % in terms of partial fractions

s(z) _ A i
(@)~ -0 T @
R P L bl b ey L ey e

Now [ r(z)dz = [ t(z)dz+ [ ﬁ%dm. Antidifferentation of #(z)

is easy; so also are the terms [ GooF dz = A;log |z —a| + ¢, if

k=1, % (@-a)'*+c, if k>1 Finally [ ozt dz
is written in the form 1P [ 4+ Ry [ ‘(‘xj%;f)"r,
u=z’4+az+Bv=z+ &

The first of these integrals is a logarithm (k= 1) or a power
of u(k>1). Inthe second, use

dv [ Asec?8df v=X\tan 6, dv= ) sec’f df
(A2 +v2)k A2k gec2k g A% +v? = \?sec?d

= AL=GE / cos?¥=2 9 4.

This may be handled by a method of §8.3 (m,n both even). How-

ever, the reduction formula of Problem 8.6 is very useful here.

(S
—
(V]



Problems

8.8 Show
(a) [ o de=log| 3,
(b) [ #EtL5 do = § logle(z +1)(z - 2)°),
(c) [ 5—:;%{—‘;—2&::51-}-% log | (zx—fli | + ¢,
@ J it d= = losle SR~ DH,

8.9 Show

(@) [ ey de = 7y +log| Ehr |
= {-[log |z — 3|

—3 log|z? 4+ 2z + 2| — 4 Arctan(z + 1)] + ¢,
(©) [ o5y dz = § log(2? +22+5)— § Arctan(ZH) +c,

2i :t
(d) / _;414-4 de= g[log ;=-§i+§

+ Arctan(z + 1) + Arctan(z —1)] +¢.

1
(b) f(:=+2x+2)(z—3) dz



§8.6. Another Substitution.

The half-angle substitution is

1
=1 — f.
an29
Then
1—-48 . 2t 2dt
cosﬂ——1+t2, sm9—1+t2, d9_1+t2’
so that

_ 1-¢% 2 2dt
ff(cos f,sin 9)d9=/ f(1+t2’1+t2) 14+

Thus this substitution transforms the antidifferentation of a rational
function of sines and cosines to the antidiffernetation of a rational
function of ¢ - the subject of the last section. A word of caution
however: this is more or less a technique of last resort and you should

check that there may be a simpler way of tackling the question.

To establish these statements observe that, if ¢ = tan(%),

2 2 2

=

sec?($) T + tan?(%) T 1422

6
1+ cos 0=2cosz(§)=
2 =
and so cos 9=T¥75_1=m'-" Next

6 6 0 6
i = 2sin(— —)=2tan(— 20
sin 6 2sm(2)cos(2) tan(g) cos (2)

B 2tan(~2€) _ %
B sec2(8) 1+’
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and

dt = % secz(-g—)dﬂ = %[1 + tanz(—g-)]dﬁ, which implies

2dt

b=1re

EXAMPLE 8.6.1:

i :

dz - b
3+cos z t=tan ;
1 2dt 241t d 3=t

_ — =dzr, i =cos T
3+.__!.:+:= 1412 14t Y 14t

=/ Hz-‘;tt? = [ 2-7-112
1

= arctan(V'E) +e

= 715 arctan(712- tan 1 z)+c.

EXAMPLE 8.6.2:

/ dz —]i—/dt—t+c—tan(lm)+c
14+cosz 1+-H:—:— = ) 2 )
Alternatively

dz dz 1 il 1
—_— = ——— == —)dz = tan(= .
/ 1+ cos z ,[ 2cos?(Z) 2 / i (2) ! -m(2 i
EXAMPLE 8.6.3:

sin x
'[ m d.’.l.’: = —10g[3 + cos .’II] +C,

by the substitution u = 3 + cos . This is quite straight forward.

On the other hand, the method of this section makes this a fairly
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tedious exercise.

2t

sin = TasT
[ ————— dz= f 5,3 . 24t t=tan %z
+ 3+ 1+t

1=t2
P Cos T

L t 2 o
=4f O+ (a+209) dt T—&T— s &
2dt __
1+t2 dz
- du
= [ iS5t u=t?, du =2t dt

= JG= — wx)du
(method of partial fractions)
=log| 35| +¢
2

= log[%;] +c
= gLt ¥y o

24tan? 3 =z

5&(:2 Y T

- log[1+se«:2 ; z] ire
= —logfcos® 1 2+ 1] + ¢

= —log[3(1+cos z)+ 1] +c

= —log[3 + cos z] + k.



Problems

8.10. Evaluate
(a) [T sin(Z)dz, (b) f & ds, (©) fi i de,

(@ J; g dz, (e) f(,% sin z cos’z dz, (f) fo% sin 3z cos z dz

T
[sin @ cos b=7]

8.11. Find the antiderivatives
(2) [ 2%dz, (b) [ & da, (¢) [ sin® zdz,
(d) [ Va-2%dz, () [ e de, ()] &= d ,_T_}

8.12. Evaluate
(a) fo% sin? z cos’ z dz, (b) f_,f (1 4 tan® z)sec? z dz, (c) fa'}(z + 1) cos z dz,

() [ cos(3z —1)dz, () f, sec*z da, () fiF poosdo.

8.13. Ewvaluate

(a) fl (z+1); dz, fo (z+1) dz, (c) fu m-,dx
S r*fsfd © fy o de, (O fy

8.14. Use the substitution ¢ = tan % # to evaluate

de
(a.) j m, (b)/SEC Gdg.

Reconcile your answer in (b) with that in Example 8.5.5.

8.15. Find (a) [ g dz, (b) [ =y de
HINT: You should only have to do one of these.

8.16. Find (a) [ izanz gz (b) [ e t%da.

1+tan z
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8.17. Show [, iy = "“fjé’g £,

8.18. Show [ 7 sin?20 cos #df = £.

8.19. Find a reduction formula for [(log z)"dz and use the formula

to compute [;(log z)*dz.

8.20. Find [ 8.

8.21. Find
(a) ff z sin z cos z dz, (b) ful & dz,
T t_z?
(C) fut :7?-_7- dSC, (d) j;) 71=__? dz.

8.22. Show [

= L Arctan(§), if a,b>0.

dz
a?sin? z4+b?cos? z

8.23. Find a reduction formula for [ (aT-:nT)? du.

8.24. Show [ csc 6 df = —log|csc 6 + cot 6] +c.

8.25. Show [ 7;%:? = log |z + V22 £ d?| +c.

8.26. Show f:(:r —a)™(b—z)"dx = tﬁ}%ﬁ,— (b — a)mtntl,

8.27. Let I= [e**cos bz dz, J= [e**sin bzdz. Find I,J.
HINT: Integrate each by parts once. Solve the resulting equa-

tions for I, J.

8.28. Find (a) [log(l+2%)dz, (b) [ arcsin(3) dz.
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8.29. Show

(a) [T, cos mz sin nz dz= 0, m,n=0,1,2,...

(b) [”, cos mz cos nz de=0 and

(¢) f_"“ sin mz sin nz dz= 0, if mn=0,1,2,..., m#n
2r, m=0

d " cos?mzdz = ‘

(d) ‘L" ‘ {'n', m=12,...

(e) J7 . sin® mz de= T, mi=1,2;..

8.30. A function f is even if f(—z) = f(z) for all =z. For
example z2,cos  are even. An odd function is one for which
f(=z) = —f(z) forall z. The functions =, sin z are odd.
Suppose [ f exists. Show
(@) L. f=2[if i [ iseven.

(b) [%. f=0 if f isodd,
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IX. APPLICATIONS OF INTEGRATION

§9.1 Areas and Volumes.

We define area and volume for certain sets subject to reasonable

requirements on the sets involved and on the concepts of area and

volume. We will consider area
for sets S in the plane
which lie in some strip

{(z,y) :a <z < b}.

We set,

gK

5[“)”’-}

I
I
L}
|
i
i
0
I
!
I
~

+.
) PR -

S e

Sz =hﬁ3,y) €S}, if a<z<b

Stu) = {(2,9) €

S:u<z< v},

if  [u,v]

is an interval, and impose the following requirements:

(i) f u<v<w, then

ﬁ s~

area S[y,u) = area S[y,,) + area S[y u)-

(1) f a<z<b, then

length S, = {(z).

(i) f m<{lz)<M when u<z<wv, then

m(v —u) < area S[y,) < M(v—u).

We then write

b
area S = / £(z)dz,

q ]

-

i



if the integral exists.
The motivation for this is that, if P = {z¢,21,...,2,} isa

partition of [a,b], then

area.S':Z area Sz, .z

n=1
Mn
from (i). From (iii), we find that if M < {(z) < My, when zp_; <

z <z, then
mi(zr — Tk-1) < area S(z,_, .z < My (zg — Tg—1).

Therefore
L(P,¢) < area S ZU(P()

and since f: ¢ is the unique number satisfying

L(P,6) < [P e<U(P,l) we define area § = [, L.

PROPOSITION 9.1.1.. Suppose f and g are continuouson [a,b]
and f(z) < g(z),a <x <b. Thentheset S ={(z,y):a<z<

b, f(z) <y < g(z)} has area

b
A= j () = )i,

In this case

b(z) = g(z) = f(=),

¢ is continuous on [a,b] so that

f: { exists and the area is

given by the formula as stated.
Another way to approach this problem is to suppose £ is con-

tinuous on [a,b] and let A(z)= area S|, and
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AA = A(z + Az) — A(z),

S[t,z-{-Az]v if Az >0,

— area Sz4Az,2, i Az <O0. H
From (iii) X KHFAX

l(z.)Az < AA < l(z*)Az where {(z.),€(z*) are the minimum

and maximum respectively of £ on the interval [a,z + Az], if

Az > 0. A similar inequality is satisfied if Az < 0. Since
Jim l(z.) =), lim ((z")={z),

we have by the Squeeze Principle

so that A'(z)={(z), a<z <), and

b b
A=A(b) — Aa) = ] A'(z)dz = / ((z)dz
This argument is summarized formally as

dA = E(;r)d:t

A= dA / {(z)dx.

EXAMPLE 9.1.2: The area of the region bounded by the curves

r=-l,y=2,y=2° is
f1]|$2—3|d1
f x —x)dm+f0(z:—z ydz

3:3_%32)'0_ (1 2 _ 1 3)|0

H

1
3
ItH+G-3)=5+s=1
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EXAMPLE 9.1.3: The area of the circle

22 +y? <a® is

2fja Va? — z? dz= 2a® ffﬁz cos? 6 df z=asin @ dr=a cosfdf
= a? ffﬁg(l + cos 26)d6 Va2 —z? =a cos 8
=a2(9+%sin29)|t/:/2 —a<<z<a— —-F<0<7F
= Ta’.

EXAMPLE 9.1.4: As motivation for a later
example (9.1.8) we find

the formula for the area

of a triangle. Choose the
origin O at the vertex
with the y-axis parallel to the &7
base. Here {(z) is

proportional to =z : {(z) = k.

(
i
Hence (0] X A

h 1
Area = ] kaxdz = = k:c2|g =
2
0

since b= {(h) = kh.

We now consider the volume of solids by the Method of Sections.

Suppose the solid S lies between two planes perpendicular to
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a certain axis and through the points a,b(a < b) on that axis. We
denote by S, the intersection of S with the plane perpendicular
to the axis and through the point z, and by S}, . the portion of
S which lies between the perpendicular planes through u,v. We

will impose the requirements:

(i) f u<v<w, then
volume Sj, ) = volume Siu,v) + volume Spy -
(i1)) f a<z<b, then
Area S, = A(z).
(i) f m< A(z) €M when u<z<w, then
m(v —u) < volume Sf,,,) < M(v —u).
We then write
b
volume § = ]. A(z)dz,

if the integral exists.
The motivation for this, as in the case of areas, is that, if P =

{zo,...,Za} Iis a partition of [a,d], then

volume § = z volume Sz, _, r,]-

k=1

Also, if my < A(z) < My when z4_; <z <z, then

mi(zk — zk—-1) < volume Spz, _, 2,] < Mi(zr — zr-1)
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which implies
L(P,A) < volume S < U(P, A)

for all partitions P of [a,b], giving volume S = fﬂb A.
Another approach is to suppose A is continuous on [a,b]

and let

V(z) = volume Spg 1)

AV =V(z + Az) — V(z)
volume V|, ;4 aq), f Oz >0

— volume Vi;4 Az, if Oz <0.

*

As in the case of areas, there exist z,,z* between z and z+ Az

such that, from (iii),
A(z, ) Az < AV < A(2*)Ax

which implies  lim_ &Y = A(z), or V'(z) = A(z). Thus
V =V(b) - V(a) = [ V'(z)de = [} A(z)de.

This argument is formally summarized as

dV = A(z)de
£=b b o
V= / dV = / A(z)dz.

PRroOPOSITION 9.1.5. (SOLIDS OF REVOLUTION).
Let f be continuous on [a,b]. Suppose the solid
S is generated by revolving the area bounded by the curves

y= f(z), y=0,2=a,z=>0

(o]
1
(S



about the z-axis.

Then, since A(z) = = f(z)?,

we have the volume

V=nr j- i f(z)*dz.

EXAMPLE 9.1.6: The volume of a sphere of radius a

EXAMPLE 9.1.7: The volume of a right
circular cone of base

radius @ and height h is

i e N 1
=73z 3 lo
1 a? 3
—-§'ﬂ'h—2h
=%7razh

EXAMPLE 9.1.8: The preceding example is a special case of the for-

mula for the volume of a general cone.
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Let B be the area of Ab‘)

a region in the plane and O

a point at a distance h = Z-\
from the plane. The lines OP / !

generate a cone of base area B and height h if P is confined lx

to the region in the plane. If A(z) is the area of the planar section
at a depth z below the vertex, then A(z) = ka? where k is
constant. It is easy to see this for rectangular regions and so it follows

for general regions which may be tiled with rectangles. Then

V= / A(z)dz = / kzldr = = kh® = = Bh
0 0 3 3

since B = A(h) = kh?.

A}
The Method of Sections u

may not be always the

most convenient method

for computing volumes. /

For example, if we generate a x 1
a solid by rotating the , 829

region {(z,y):a<z<b 0<y< f(a)} x about the y-axis, then

the areas of sections perpendicular to this axis may be quite compli-

cated. It may be more convenient to use the Method of Cylindrical

Shells. Suppose f is continuous on [a,b] andlet V(z) be

the volume of that
portion of the solid

which is a distance

z or less from the




y axis. Let

AV =V(z + Az) — V(z);
7((z + Az)? — 2?]f(z.) < AV < x(z + Az)? — 2*)f(z*)
where f(z,), f(z*) are extremaof f between z and z+ Axz.
Dividing by Az, we find

AV
i —_—=2
A2y Ag = 2m2AE)

so that V'(z) =2rzf(z) and,if V =V(b)-V(a),

b
V= 2:] z f(z)dz.

A formal summary of the Method of Shells is as follows:

7.

dV =2nzf(z)dz P ydxl
V= [=tdv C:; ,"
fx:n dV E’ I i&) dV
= 2r [ 2 f(z)dz. @v by o7
dx X)
EXAMPLE 9.1.9: Again we find the volume
of a right circular cone,
this time by the
Method of Shells. 25

“ h
V=27r/ 2(— — 2+ h)dz
B a

h1 , 1 s
=2w[—;§a +h§a]
=%'rra2h.

EXAMPLE 9.1.10: A torus is generated
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by rotating a disc of
radius a about

an axis in the plane

of the disc at a distance

b>a from the center

of the disc. The volume V of the torus is given by
V = 2n%a®b.

We prove this by the Method of Sections and by the Method of Shells.
$ y'

It is convenient here l
(o

to generate the torus

a

by rotating the disc {ég
»Z
&

I\
\H*‘r >l
A

22 4+ y? < a® about the - 0
¥y = {- L ld‘-f"

line z = —b.

Method 1 (Sections) @

dV =[r(b+ Va? —y?)* —n(b— Va? —y?)}dy Whe
= n[b? + 2b /a? —y2 + (a® —y?) — b* +2b Va? —y? —(a? — y*)|dy ,:»&— a*y*

-

NS

— Jat-¢ %
= wdb \/a? — y? . '6-*4;
Thus =d4rb [* \fa® —y? dy = 4xb- § a® = 2n%a®D.
JI’,
Method 2 (Shells) ar
=Jal-x"
dV =2n(b+ z)2y/a? —z? dz /J
=4n(b+ z) Va? —2? dz. 2\ © a X
929 =atx?

1dx|



V=dr[ (b+2)Va®—zdr
= 4mb va? —z? dz, since / zv/a? —z2dz =0 (Why?)

-—a

= 4nb- % a® = 2r%a?b.

§9.2. Arc Length and Surface Area.

If z(t),y(t) are differentiable
functions a <t <b, then

the equations

z=2z(t), y=yt), a<t<bh
describe a smooth curve in IR?. Here ¢ is called a parameter and
we call this a parametric representation of the curve. You can think

—

of t astimeand (z(t),y(t)) as the coordinates of a moving point

at time ¢, a <t <b. Our basic
& (x(t+aE), ;KHA €))

‘reasonable requirement’ on

arc length here is that the ratio

length of the arc PQ
length of the chord PQ A:’D 1’ ?) (X(('l, ;’(f/)

where P = (z(t),y(t)), Q= (a(t+ At),y(t + At)).

Let s(t) denote the length of the arc from

() y(€/)

//W\/
(m(a),y(a)) to (x(t)$ y(t))- k

(@), yles)
Then our requirement is

As= s(t + At) — s(t)
limagao ——2 = 1. Az=z(t+ At) — z(t)

(B2)+(Ay)?
Ay=y(t + At) —y(t).



Hence

As
lim =3 =1,
R (T
: : A _ d d i
Thus, since Alir-ffo S5 +(F4)2 = /()2 + ()2, it follows
that
ds ﬁ—

_ Az Ay,
dt Al:ﬂo At Ali—.o[\/( 24 _41 %At)+(ﬁt)]

=1y &y (Y

Hence the length s of the curve is given by

s-——s(b)—.s(a):/a > it —f \/( "J)Zdz

The formula for the length s of the curve 2z = z(t),y =

y(t),a<t<b, is

b
s= [ VEO SR a.

This has an interesting dynamic interpretation. If the vector r(t) =
(z(t),y(t)) is regarded as the position vector of a moving point at

time ¢, then w(t) = r'(t) = (2'(t),y'(t)) is the velocity of the

point at time t. Thus its magnitude [|v(t)| = /2'(t)? +y'(t)* is
the speed of the point at time ¢ and the distance travelled between

times t=a and t=05b 1is

s-/|v| /| .



We may also regard the arc length formula as an extension to

general curves of Pythagoras’ Theorem. Our basic requirement is

hs e BT FEIP = (G274 (BYy

or, formally, ds = |/(%%)? +( £)2 dt.

EXAMPLE 9.2.1: The curve z = a cos {,
y=asint, 0<t<2r isthe

circle of radius a

centered at (0,0).

Its length is

2r

s= [ IO Eyar d
0
27

2% V(—a sin t)2 4 (a cos t)? dt
0

2w
=] a dt = 2rwa.
0

PROPOSITION 9.2.2. If f is differentiable on [a, ],

the length of its graph is
S= [0 T+ ) dt.
This graph has parametric representation

z=t, y=f(t), at<Lh

Thus

s=/ﬂb\/( )2+( )?dt / 1+ f'(t)? dt.
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EXAMPLE 9.2.3:
The length of the curve

y=2%,0<z<1, is

Px
g= f; /1 +(%)2 de = fol V1+ 42? dz
= [ 1 sec®6 df g= 3 tan 0
do= % sec? 0df
=1 [ sec fd(tan 6) V1+ 4z2=sec 6
0<z<1«——0<tan <2
= § sec ftan 6§ — 3 [y tan®@sec 6 df a= arctan 2
=1 sec Otan 6| — 1 [["sec® 6 db + } [ sec 6 d6.
Thus
s= i[sec ftan 6 +log |sec 6 + tan 6|]§ tan a=2 S5
1
= %[2\/5 + log(\/g +2)] sec a= /5 3
1
= ¥5 1 1 1og(/5 4 2).
To address the problem of finding the area of a surface of revo-
lution, first note (Problem 9.1) that the area of a trapezoid is
L=Ary =
: 4
s(bl = bz)h, '
— T, —

where by,b; are the lengths of the two parallel sides and h is the
distance between them.
From this we find that
a portion of a conical

surface has area

%(27!"-"1 4 27‘!’?‘2)8 = 1!'(1”1 + rq )e

F

where r;,7, are the radii of the bottom and top and £ is the

‘slant height’.



The basic requirement which we impose on the area of the sur- A

face generated when the smooth curve z = z(t),y = y(t),a <t <b 3

L2
is rotated about an axis in the same plane is that / %

Area generated by the arc PQ 1
Area generated by the chord PQ = °°

limAt—'O

Let S(t) denote the area generated by the arc from (z(a),y(a))
to (z(t),y(t)). Let r(t) be the distance of (z(t),y(t)) from

the axis of rotation.

Then, since the chord PQ generates a portion of a conical

surface, we have

: |AS|
lim =1,
A0 wlr(t) + r(t + At)] V/(Az)? + (Ay)?

where

AS = S(t + At) — 5(1),
Az = z(t + At) — z(t),

Ay = y(t + At) — y(1).

It follows that

ds dz dy
— e €, — N2 Pty
= \/( ) T i)

and hence the surface area S is

t=b b
S = S(b) — S(a) = f % dt = 2r / r(t) V' (1)2 + y'(t)? dt.

t=a a

A quick formal



derivation of this is is‘ K— 2

df: f
dS = 2nrds

d d
= 2%y \/(d—:: = -|-(d—3:)2 dt

2T jd.f

Thus /

St j r(t) VE O + (07 dt
as before.

PROPOSITION 9.2.4. The area generated by rotation of the curve

y= f(z),a <z <b, about

43#
! 1
(a) the z-axis is 2« f:‘f(m)‘ /T+ f'(2)? dz, *‘IM
(b) the y-axisis is 27 f:p:[\/l + f'(z)* dzx : l‘i’lﬂ)' ':
. P x
a &

EXAMPLE 9.2.5: If we rotate the semicircle z = a cos t,
y=asint, 0<t<m aboutthe z-axis we generate a sphere of

radius a. Here

’Ys
r(t)=a sint so

. (c@t) % sint )
2«/ r(t) Va'(t)? + y'(t)? dt /\\
0 C i

m
=27r/ asint-adt
0

S

I

= —27xa’ cos t|] = 4ma®.

EXAMPLE 9.2.6: The surface area of the torus
generated by rotating a circle of radius a

about an axis in the plane of the circle
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p

it ‘ _
at a distance b > a from its / \\fﬂ 4"‘() S {-)
centre is 4m?ab. Here, let »
.—6- !J x

r=acost, y=asint,

r(t)=b+acost, 0<t<2m.

Then

2w
S= 211'f r(t)\ /' ()2 + y'()? dt
0
2p

=2 (b+a cos t)-adt
0

2w
= 4x’ab, since f cos t dt = 0.
0

§9.3. Optional Applications of Integration.

This section contains several further applications of integration.
The motivation given for the representation of each of the concepts
as an integral is quite brief and formal.
Work. If a constant force F moves its point of application through
a distance s in its own direction, then the work done is defined to

be

v 5 4
W = Fs. x L

If force is measured in dynes and distance in centimeters, then work is
measured in dyne-centimeters and a dyne-centimeter is called an erg.
If force is measured in newtons and distance in meters the force is in
newton-meters and a newton-meter is called a joule (1 joule = 107
ergs).
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If the force is not constant but depends continuously on its po-
sition z, then the work done by the force in moving from z =a

to z =10 is defined to be

W= fa i F(z)dz.

The motivation for this definition is that the work in moving from
z to z+4 Az isapproximately AW =~ F(z)Az so that we have
dW = F(z)dz.

EXAMPLE 9.3.1: Hooke's Law asserts that the force needed to stretch
aspring an amount z is kz where k isa constant of the spring,
i.e. the restoring force in such a stretched spring is —kz. Suppose
2 joules are needed to extend a certain spring by 10 cm and we wish
to determine the amount of work needed to stretch it from a 15 em

extension to a 25 cm extension. Here

&

25
W= f kz dz = = 2*|}} = k200 joules.
15

| o

To determine k&, the spring constant, we are given
10 1
2= / kz?dz = Zka?|}° = k50
0 2
so that k= 1/25 and therefore

W= % joules = 8 joules.

EXAMPLE 9.3.2: The force (weight) acting on a body of mass m

237



at a distance r from the centre of the earth is

yMm
=

where # is a universal constant and M is the mass of the Earth.
It is assumed that r exceeds the radius of the Earth. The work

W necessary to lift the body from r=a to r=»5b is

b
o YMm 1
W—/a 7 dr—'yl\lm(a b).
If the distances involved are small, it may be assumed that the weight

of the body is constant.

EXAMPLE 9.3.3: A reservoir has the shape of a right circular cone
with its vertex downwards. If the radius #

at the top is 4m and the

depth is 10m find the work necessary
to pump the full reservoir

of water to a height

2m above the top.

Here

dW = pgrz?dy(12 — y)

2
= pgr(z y)*(12 — y)dy,

L]

where p = 1,000 kg/m® is the density of water and g = 9.81 m/sec

is the acceleration due to gravity and dW is the work done in lifting
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a thin ‘slice’ at a height y above the vertex. Thus

10 )
W = f pgm(z ¥)* (12— y)dy
0

4 10 5 " 3

4 1
= o= mg(4y’ - ; v’

25

= 2 rpg(4(10)° - 2(10)*)
25 4
4 5

= — 108 (E~ =
55 TP9 10°(4 - 3)
8 . .

=% 10°(9.81)7 joules.

Average Value. The average value z of n numbers zy,...,Zn

is defined to be

) 1 1 n
I—E(.‘Bl‘l-"*‘l'n)—gtz;xl
For a function f : [a,b] — IR such that f: f exists, the average

value f of f on [a,b] is defined to be

b
f:b_iz / fiz)dz.

If f isa continuous function on [a,b], then the Mean Value The-
orem for integrals (Theorem 6.4.2) asserts that there exists a point

c € [a,b] such that
f= £

EXAMPLE 9.3.4: The average value of the function z? on [0,4]

e 1 (424,148 _ 16
lS-;fn"‘:d""—‘i3—3'



The idea of average value may be extended to weighted averages
If my,...,m, are positive numbers then the weighted average of

Zy,...,2n with respect to these weights is

& = (myey + -+ maza)/(my + oo+ ma)

L (Zm:l‘:)/(z m;). AF

=1 i=1
wmi
This concept is important in mechanics. cyt---——-- S { (xé 1 Y t')
Suppose there are masses |
1
miy,...,my, located :
X
of (xlyyl)v .. a(mmyn)

respectively. Then, if

n

2= (o ma)/(m)s 7= (3 ma)/(3mi)

=1 =1 =1

(z,y) is called the centre of mass of the system. Here m;x; is
the moment of the i-th mass about the y-axis and m;y; isits

m
moment about the z-axis. If M = ) m;,
o

Mz = Zn:m.-a:,-, My = zn:m,-'t,-
=] =1

shows that the moments of the whole system about the =z and y

m
axes are the same as those of a single mass M = ) m; located at

y=1
(Z,9).

EXAMPLE 9.3.5: The centre of mass
of asystem m; =2,my; =25

located at (1,0),(2,0)
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&
respectively is (Z,7) where

re
2 L‘
o
R
1
V\
v
>

7% = 2(1) + 5(2) (moment about y-axis)
7§ = 2(0) + 5(0) (moment about z-axis).
Therefore (z,7) = (32,0).

EXAMPLE 9.3.6: (THIN ROD).

If p(z)>0,a<z<bh,

and f:p exists, we

may interpret p(z) to be the
density (mass/unit length) of a thin
rod § at {(z,0) : a £ z < b} whose total mass is M =
[, dm Qef flb p(z)dz. The centre of mass of the rodis (Z,y) defined

by

5 fS zdm def f: zp(z)dzx
Jgdm f: p(z)dz

_ [egidm ge [} Op(z)da
‘y — — b —_
Isdm — [7 p(a)dz

and MZ = f: gp(z)dr, My = 0 are the moments about the y
and  axes respectively.
In the special case of a uniform rod (p = constant)
[Pede  L#-a®) 1

¥ = fbd = b—a =§(b+a)) ﬁ=0
a b i

and the midpoint of the line segment, (3(b+ a@),0) is called its

centroid.
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Suppose C :z = z(t),y = y(t),a <t < b is a smooth curve
and p(z,y) 20 issuch that
I pdsderf p(z(t),y(t)) /a'(t)2 + y'(t)? dt exists. We may interpret

p(z,y) to be the density (mass/unit length) at the point (z,y) ofa

smooth wire in the shape C whose massis M = [, dm def S pds.

-
~C

The centre of mass of the wire is (Z,y) defined by

( dua =45

(e 8)

JgEdm ger 2 2(t)p(2(t), y(t) VIO + v () dt

A

Jodm' = [P p(a(t), y(t) VP + ¥ (D)2 dt

7 Jo gdm qet [P y()p(2(), () V2" (1) + y'(2)? dt
S8 I2 p(2(t), y(1)) V' (®)? + y'(t)? dt

and Mz %' [ zdm, M, = [, jdm.

For a uniform wire (p = constant)

 [Pa(t) TP+ Y () dt f"y(t) Vo' OF + y (1) dt

T = —

[P Ay dt [P O+ (@) dt

<)

and the point (&,7) is called the centroid of the curve C. Notice
that the value of the constant density p is irrelevant since it factors

out of the integrals and cancels.

EXAMPLE 9.3.7: For the semicircle
C:z=acost, y=asint, 0<t<w
ds = \/2'(t)? + y'(t)? dt = a dt
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and its centroid is (Z,7y) given by

T 4 24
i__fc:cds_fnacost-adt_i_o /"Fr
o

— Jods Jo adt PRy —a a =
_ Joyds Jy asint-adt  —a® cos t[f 24 _2a
s fcds - Ta - 70 " ma
EXAMPLE 9.3.8: ¢ dm

y:-’fﬂ
The centroid of the /\/\

curve y= f(z),a<z<b

is (Z,y) , when a & [+

vz It F@Pdz [} f(z) I+ @) de
f: V1+ fi(z)? dz ' f: V1+ fi(z)? dz

For mass distributed over a plane area S of the type con-

T =

2

sidered in § 9.1 we will mainly consider the case of constant density

(mass/unit area) p and define the centroid of S.

Here we may disect J 4
Ty : 7 -
the region into ‘thin 4 (x,;) S
rods’ of mass Z
dm = pdA = pl(z)dz
1 t { d P’x
with centre of mass located X Xtax

at midpoint of each rod (#,§). Note that =2 and § should

also be expressed as a function of 2. Then

_ [s Edm r f:mE(a:)d:r
Jsdm f: Uz)dz

5 Jsgdm _ [ i@)(z)da
[sdm f: {(z)dx .
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We may take p=1 ifit is constant.

EXAMPLE 9.3.9: y=Ja%x"
The centroid of the ?
ﬂ-l
half disc —p
S={(z,y): 0<y<Va®-2? -0<z<a}
is (z,7) = (0, 3%). Disecting the region into ‘rods’ perpendicular
to the z-axis, we find
_ JsEdm ffg zva? — z? dx 0 5
Wi — - - =
Jgdm [, Va* —2? dz sma’
g= fsgdm:ffa %(az—x2)d$ - %azx—%m"’ i
Jsdm [, Va¥ = da 3 ™
et
3 wa? 3r
4
Of course we should ;i
have avoided the X=- at'}m
calculation of # and
appealed to symmetry 4

to conclude z =0.

We could also find § from disections parallel to the z-axis

o dsiim _2[Pu/@ gty 3@ PP
fs dm zfoa V= —y2dy %,n,ag

We could even use the result of Example 9.3.7

and disect the region

244



into semicirular ‘wires’ ? g

of mass
dm = rzdx /‘%
centroid (%,§) = (0,2%) so that —a X Xdx &
F20, §= Js ydm _ f:? redz _ 1% a®
Js dm Jy mxdz 3 ma?
.
T 3

§9.4. Pappus’ Theorems.

The First Theorem of Pappus states that if a surface S is
generated by rotating a plane curve C through an angle a about
an axis in the plane of the curve, then the area of the surface is given

by the formula

(Area of S) = (Length of the path of the centroid of C)x (Length of C).

y
To see this, observe that the T C
area A is %R‘_’( - -—AAds

e

A=fa:ca’s=a/:cds
C &

= af/ ds = aZs,
c

where § is the length of C, since z = [ zds/ [, ds.

The Second Theorem of Pappus asserts that if a solid K is

generated by rotating a plane area S about an axis in the plane,
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then the volume of K is given by the formula

(Volume of K) = (Length of the path of the centroid of §)x (Area of S).

74
By applying the method of
shells, we find that the _/
<C

volume is

V= /: azl(z)dz = a ./ab zl(z)dz

b
= ai/ l(z)dz = aTA

where A is the area of S,
since T = f: zl(z)dz/ f: l(z)dz.

For example, the surface area and volume of the torus generated
by rotating a circular disc of radius a about an axis in the plane of

the disc at a distance b > a from its centre are

S = (27b)(27a)

(see Example 9.2.6)

< A

V = (2rb)(wa?)

(see Example 9.1.10).

The result of Example 9.3.7 for the location of the centroid of a
semicircular curve may be deduced from the formula for the surface 4y

area of the sphere it may be used to generate by means of Pappus’

First Theorem: / \
14
dma® = (2ry)(ma) = 27%ay
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gives

= __ 2a
¥="5"

Pappus’ Second Theorem may be used similarly (Problem 9.31)

to locate the centroid of a semicircular area.

§9.5. Areas by Polar Coordinates.

In some situations, it is more convenient to use polar coordi-

nates (r,0) instead of the usual rectangular or cartesian coordinates

(z,y): these are related by

r=r cos @
y=r sin

r=0.

The polar coordinates of a point are
not unique since
x=r cos(f +2mn) y=r sin(f+ 2mm)
m=0,£1,%2,... so that the
coordinates (r,8 + 2mm)
specify the same point.

Moreover, since

r cos(@+7) = —r cos 6

r sin(@ 4+ w) = —r sin 6,

the polar coordinates
(r,0+m), (-r,0)

also represent the same point, if
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we allow negative values of .

In rectangular coordinates, the curves = = ¢, y = k are
straight lines parallel to the coordinate axes. In polar coordinates,
the equations r = ¢, § = k represent circles centered on 0 and

straight 1 -lines (rays) through 0, respectively.
g 2 g

‘A ’llasi
? - I’ (ﬁ‘}ﬂ)
1 - -~ ~ 7
o ..___._|_._..¥_'.-_é " 2P
a 1 r 7’ LY
i f’ & ‘;
'l I ’;,a 'l
( H 2 . b
1= : DW= £ =%
! [ !
1 . +
| » s ﬁ’
I . s e R
i S
|

In practice it is convenient to allow negative values of r when
using polar coordinates.

The equation of the straight line 2 = ¢ in polar coordinates
is r=csecf, since r cos @ =c. Similarly y==% is
r = k cosec 6.

The equation R? ¢
€
T

r cos(@ —a)=p
(n,8)

represents a straight P
o

line L at a distance |p|

- +
S

from 0 where the line
through 0 perpendicular to L makes an angle a with the

z-axis. This can be seen from

r(cos a cos 8+ sin a sin 8) =p
(cos a)z + (sin a)y = p.
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This is the same line as

ar+by=c

| = =g -
aZ+4bh? ? p Vai4b? -’

The distance between the points

a

where cos @ = ==y sin a@ =

(r1,61),(r2,62) is given by
the Cosine Law (Problem 7.41)
d?* =r? +r? —2ryry cos(f, —6,).

(2,,91)

(771-) 9")
d
-6,
0

EXAMPLE 9.5.1: To find an equation for the circle centered at (a,0),

radius a > 0, in polar coordinates, note that this curve has

cartesian equation ;‘Ln

- QaCr &

=
(z—a)?+y?=d?, or m
2 2 __ i S
z* +y 2ax =0 0 (a’ 0)
Thus r% —2ar cos § =0

r(r —2a cos ) = 0;

Since r = 0 represents only the point 0, the curve is given

by r = 2a cos 6. The upper half of the circle is given by

2a cos 6, 0 < 6 < 7, and the lower half by r = 2a cos 8,

r

i

2

<

§ < 7, in which case r is negative. Thus the complete circle is

given by

r=2acos §, 0<6< .

It is also given by

r=2a cos 8, -—

in which case r >0 forall 6.
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If f iscontinuouson [a,f], f=20 and f—a <2,

the area of the region
{(Taa)OSTSf(B)a 0'595)3}
is

A=1 [P f(g)2d8.

then

This formula comes from

an estimate of the form

3 f(6.)°A0 < AA L § f(6*)2A0

which implies

44 = L f(o)”

The argument may be formally summarized as
dA = 3 r?df, r = f(9).

More generally, the area of the region
{(r,0): g(6) <r < f(6), a<b<p}

18

A=1 [P17(8)? — 9(6)?)db.

EXAMPLE 9.5.2: The area of one of the crescent A=
shaped regions determined /

by two circles of radius Q

a each passing through
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the centre of the other is

1 w/3
A== / (4a® cos® @ — a*)d
2 —m/3

/3
=d’ f (4 cos® 6 —1)df
0

w/3
a2f [2(1 + cos 26) —1]dé
0

w/3
= azf (142 cos 26)dé
0

= a*(8 + sin 29)];/3

27, V3

EXAMPLE 9.5.3: The curve r = a(1l + cos ),
the heart-shaped

curve on the right, is

called a cardioid. The

area which it encloses is

R

A= / a*(1 + cos 6)%d6

(1 + 2 cos 8+ cos® 6)d8

mlg w|9 Bl =

/ 142 cos 9+%(1+ cos 26)|d6
al

2
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Problems

9.1 Show that the area of a trapezoid is -;—(b; +by)h, where by,b;
are the lengths of the parallel sides and h is the distance

between them.

9.2. Show that the area enclosed by the ellipse %:— - %; =1 18

wab.

9.3. Show that the area of the region 7

=9
—

LA T

Xf;/:a

i

{(z,y) :p<z < 4q, 2* +y* < a®} 7

a*[aresin (2) — arcsin (g—)] +gvat—q —pa?l-p*.
a

AN

18

9.4. The area bounded by the curve y=z% y=4 is 333 . Show
this is 2 ways: by slicing the region into strips  (a) perpendic-

ular to the z-axis and (b) parallel to the z-axis.

9.5. The point P = (cosh t,sinh ¢) lies on the branch of the
hyperbola z? —y?* =1 for T
which z>0. If 0=(0,0), W PGkt sl t)
Q@ =(1,0), show that the area

of the curvilinear triangle

0 K7, e) P

formed by the line segments
OP,0Q and the arc PQ of

the hyperbola is J%l .

x=y=/

(]
[%]]
(0%



9.6.

9.7.

9.8.

9.9.

9.10.

The area bounded by the curves z = y*> and z = 4 is

divided into two equal parts by the line z =a. Find a.

A solid has a circular

base of radius 2. Each cross /ﬂ

section perpendicular to a ‘ j

fixed diameter of the base is an equilateral

triangle. Show that 4# ’

its volume is %

A wedge is cut from the 5" !

/
= m—

base of a right circular
cylinder of radius a by a

plane through a diameter of

B

the base and inclined at an
angle a to the base. Show that the volume of the wedge is

3
2—:‘;—ta,11 Q.

The axes of 2 solid
right circular cylinders,

each of radius a

intersect at right angles.

Show that the volume of

their intersection is % ad.

A cylindrical hole of length
h is drilled through
a sphere with the

axis of the cylinder
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9.11.

9.12,

9.13.

9.14.

9.15.

9.16.

9.17.

being a diameter of the sphere.

Show that the volume of the remaining solid is X A®.

Show that the length of the curve y = log z, V3 <z < V8
is 1+ log \/g :

The position of a particle at time ¢ is given by = =a cos t+

at sin t, y = a sin t — at cos t. Show that the distance

travelled between t=0 and t=7% is % :

Show that the volume of the solid generated by rotating one

1r2

arch of the curve y = sin z about the z-axis is 7.

Sketch the curve z2/% 4 ¢4*/3 = a?/* (a > 0). This curve is
called an astroid. Show that its length is 6a. HINT: Try to
find a parametric representation for it. If z!/* = X, y'/? =Y,

what is a good parametric representation for X,Y?

Show that the centroid of the region bounded by the z-axis

and the curve y=c?—a? islocated at the point (0,2 ¢?).

A spring has natural length 1 meter; a force of 100 Newtons
compresses it to 0.9 m. How many joules of work are required
to compress it to half its natural length? What is the length of

the spring when 20 joules of work have been expended?

A tank has the shape of a paraboloid of revolution. The radius
of the top is 4 m and its depth is 10 m. If the tank is full of water,
find the work necessary to overcome gravity in pumpting all of
the water out at the top. HINT: The paraboloid is generated

by rotating a parabola y = kz? about the y-axis. First
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9.18.

9.19.

9.20.

9.22.

9.23.

. Determine the

determine k&, then ‘slice’ the water into discs.

Show that the centroid of the region in the first quadrant which

is bounded by the coordinate axes and the curve f; + g—; =]

d4a 4b

is located at (3%, 3-)-

Show that the
centroid of the shaded
region in the diagram _

28a
ya=), ‘The Ll a

v

is (—

win

curves are semicircles. No integration is needed here.

Show that the centroid of
a triangle is located at a
height % h above the base,

where h is the height

of the triangle.

N3

height of the centroid
of a solid cone

above its base.

Find the volume of the following horn-shaped solid: its cross-
section by any plane perpendicular to the z-axis, 0 <z <4,

is a circular disc where diameter in the (z,y)-plane is the line

segment joining the points (z,/x/2), (z,/x).

A hemispherical bowl has radius a em. If water is pouring

into the bowl at a rate of k cm?®/sec find the rate at which
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9.24.

9.25.

9.26.

9.27.

9.28.

9.29.

9.30.

the level of water, in the bowl is rising when its depthis h cm,

0<h<a.

What is the area of

the shaded region determined

by the three circles?

A heavy buoy in the

shape of a right circular

cone of weight w floatsin =0 ee\==-=-------—-<
a lake to a depth h /

|

(vertex down). The buoy is i
raised by a winch until it is just i
clear of the water. Show that the work done in overcoming

gravity is % wh.

Show that the area enclosed by one loop of the lemniscale r? =

5 2
a? cos 20 is 5 .

Show that the area of one leaf of the rose r = a cos 368 is

na? /12 .

Show that the area inside the cardioid r =a(l+ cos #) and

outside the circle r=a is a?(8+7)/4.

Consider the curve r = %+ cos #. Show that the area enclosed

by the large loop is 7§ + bsé and by the small loop is

Show that centroid of the plane region enclosed by the curves
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r=f(6),0=a, 6=8(f20,0<a<pf <2m), isgiven by

1 B
/ r? sin 6d6

8
A:E:-—] r® cos 8df Ay =
3 Ja

L=

where A =1 ff r2df, r = f(6).

9.31. Use Pappus’ Second Theorem to
show that the centroid of a
semicircular disc of radius 0

is located at a distance Ga /3w
W

‘;—: above its base.

9.32. Show that the equation

2

r? — 2rp cos(f — a) + p* = a?

represents a circle with centre (p,a) and radius a in polar

coordinates.

9.33. Find a formula for the length of the curve whose equation in

polar coordinates is r = f(f), a <8 < .

9.34. If the region {(r,8):0 <r < f(8), a < 8 < B} is rotated

about the line # =0, find a formula for the volume generated.

9.35. A circle of 4
radius a rolls along
the =z-axis. A point
P on the circle traces

a cycloid. Let @ denote P

the angle through which
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9.36.

the wheel has rotated.
(a) If P is at the origin
initially, show

z = a(f — sin 0)

y=a(l— cos 6). L= A0 =

(b) Show that the length of one arch of the cycloid is 8a.

The folium of
Descartes has equation
z® + y® = 3azy

(a) By considering t =%,

show that the folium

may be represented parametrically

_ _3at _ 3at?
by T=130Y= 146 -

(b) Use (a) to show that the line z+y = —a isan <
asymptote by showing z+4+y — —a as t— —1.

(c) Since the curve is unchanged if we swap z and y, it
is symmetric about the line y = z. Use this information,
the geometric meaning of ¢ and (a), (b) to verify as

much as you can about the nature of the curve.
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X. APPROXIMATION

§10.1. Taylor’s Theorem.
Let f beafunctionsuchthat f(a),f'(a),...,f(™(a) exist.

Then the Taylor Polynomial p, of f at a 1is

")( )

pal®) = @)+ f(@)e—a) + 10D (2= 4 4 LD @ —a).

Notice that
p®(a) = fP(a), k=0,...,n;

thus the functions f,p, agree in their values and the values of their

derivatives up through the n-th derivative at the point a.

po(z) = f(a)
ro(z) = f(z) — po(z)

pi(z) = f(a) + L2 (2 — a)
r(z) = f(z) - pi(a).

pa(z) = f(a) + L& (z — a) + L2 (2 - a)?
ra(e) = f(z) — pa(2).

For ‘nice’ functions p,(z) should be close to f(z) especially when

z isnear a. The ‘error’ in approximating f(z) by pa(z) is
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ra(z) = f(z)—pn(z). Taylor’s Theorem is concerned with estimating

the remainder r,(z).

THEOREM 10.1.1. (TAYLOR’S THEOREM).
(a) ¥ f"+)  exists on [a,z], = > a (or [z,a], z < a),

then

— f(n+1)(c) n+1
ra(@) = 1) (z —a) (Lagrange form)
for some c¢ € (a,z) (or c € (z,a)).
(b) If f"*Y s continuous on [a,z], z>a (or [z,a], z<
a), then

1

Fal2) = n!

/r FOD (@) (@ — t)"dt  (Integral form).

Here

ro(z) = f(z) — pa(z) and

") (g
ey =3 L8 (o ¥,

k=0 k!

We have already encountered both forms (a) and (b) of Taylor’s
Theorem in the case n=0. If f' existson [a,z] (or [z,d]),

then the Mean Value Theorem asserts that

f(z) = f(a) + f'(c)(z — a),

which is the statement ro(z) = # (z — a).
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If f' iscontinuous on [a,z] (or [z,a]), then the Funda-

mental Theorem of Calculus states that

fie) = fa)+ ] o

or equivalently ro(z) = 3 [ f'(t)(z —t)%dt.

Two other forms of the remainder are

ra(z) = w (z —a)(z —c)" (Cauchy form)

(n+41) c
ra(z) = f ( ) (z —a)™(z — )™ (Schlomilch form)

In each case ¢ 1is some numbers between a and =z and, in the
Schlémilch form, m > 1. The Cauchy and Lagrange forms of the
remainder r, arethecases m=1 and m=n+1 respectively
of the Schlémilch form.

We postpone proving Taylor’s Theorem until after we have dis-

cussed some of its implications.

EXAMPLE 10.1.2: If f is a polynomial of degree n then
f"(z) =0 forall z so that Taylor's Theorem may be used to

express f(z) in powersof (z —a):

*)(q
s =3 L@ @ ay.
k=0
For example, if f(z) = (14 z)", then f(0)=1, f*(0) = n(n -
1)...(n=k+1), k=1,...,n and f%*(0)=0, k >n, so that

n(n —1)

T 2?4+ ..+ 42" (Binomial Theorem).

1+42)"=14+nz+

261



EXAMPLE 10.1.3: If f(z) = z'/2, thenfor z >0,
f'(z) = 1 z—1/2 f@(z) = - 1 732 () = 3 z~5/2
2 ’ 4 J 8 '

Let z =098, a=100, n =2; then the Lagrange form gives
12
1! 2

- %)100‘3/2(98 —100)? 4 r,(98)

981/2 — 100'/2 +

1
2!

— 10+ %(0.1)(—2) - %(0.001)(—2)2 +12(98)

1001/2(98 — 100)

+

= 9.8995 + r5(98)

where 15(98) = & 3 ¢7%/2(-2)® = -1 ¢=%/? for some c €
(98,100). The fact that 7r,(98) < 0 implies 98'/2 < 9.8995. A
better estimate follows from 98 < ¢ < 100 so that 81 < ¢ <
100 and hence 9 < ¢'/2 < 10, 107° < ¢™%/2 < 97%, — o <

—5/2 1
™2 < — 7.10%

1
2
—0.000009 < r,(98) < —0.000005

and therefore

9.899491 < 98'/% < 9.899495.

EXAMPLE 10.1.4: If f(z)=¢%, then f¥)(z)=¢*,
k=0,1,2,.... Thus aith & =1,

g X x? i

e” = +'ﬁ+'§i’+"'+§+rn(z)

262



where

$n+1

rn(m) = e° m,

for some ¢ between 0 and z. If z >0, then since

1 <et<ie*
14248 o 2 14T e P
TR m+1) € 1 n! (m+ 1)

If z<0, then r,(z) <0 if n isevenand ry(z) >0 if n

is odd. For example,

1 1 i 1 ——
e=el=1+ﬁ+§+§i+a+r4=2-’083+7‘4
6‘:
r4=y for some ¢ € (0,1).

Thus L <ry< & <2 (since e<3),
0.0083 < r4 < 0.025

so that 2.7083 + 0.0083 < e < 2.7083 + 0.025, 2.716 < e < 2.73.

As an important application of Taylor’s Theorem we show that

b 3 ) n+
e 1s irrational. Since r,(1) = €€ (%i-—llj"' and 0<ec<1, we have

n

| 1 3
i e B b e ) E 3.
mr <e ;k!<(n+1)!, <ef<e<
Multiplying by nl!,
°. n! 3 3
b — — < a>
nl T M Syl n23



Now the sum is an integer for every n. If e were arational number

then nle is an integer for n sufficiently large and thus

1

i and %. But these two

nle — Z": ™ is an integer between
numb::soa.re in the open interval (0,1) and this contradiction shows
that e 1is not rational.

As another application of Taylor’s Theorem for the function e?,

) 1 2
consider [; e"*'dt. Now

2 3 4 25
=14 +—+3,+4,+r4( z), ra(z)=e" o
for some ¢ between 0 and z. Setting z = —t?,
G
et 21— = == = = Frg(~12),

T DURPSET S TR T +/‘r(_iz)dt
o UETTENITEN 7 et ™

1
=O.74748---+/ rq(—t%)dt.
0
Now ry(—t%) =e° i ') , for some ce€ (—t%,0). Thus
- ’5—, < ry(—t?) <0 and hence

1

1|
- ’11—5' << / 7'4(—t2)dt <0

1
—0.00076 < / ra(—t2)dt < 0
0

which gives
% 2
0.7467 </ e~V dt < 0.7475.
0
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EXAMPLE 10.1.5: The Taylor polynomial of degree n about a =0

for the function (1+z)* is

cx(a—l)mz_*_”._l_a(a—l)...(a—n+1) o
2! n!

P,,(:r)=1+%:r+

If a=mn, Taylor’s Theorem gives the Binomial Theorem as a special
case (see Example 10.1.2).

Proor I oF THEOREM 10.1.1(a): Let C be such that r,(z) =

C(z — a)™*. Thus

£(e) - (@) - Lo - a) - LMD o _ a2
..... —.f(rz'(a) (z — a)n - C(z — a)n+1 =
Consider the function
f'(a)

o(t) = 1) - fla) - s - L5t - oy

Now ¢fa) = ¢'(a) = ¢P(a) = -+ = ¢™(a) = 0 and also
¢(z) = 0. Now Rolle’s Theorem applied to ¢ implies ¢'(c;) =0
for some ¢; betweén a and =z since ¢(a) =¢(x)=0. Next
Rolle’s Theorem applied to ¢', since ¢'(a) = ¢'(¢;) = 0, im-
plies ¢®(c;) =0 for some c¢; between a and z. We may
apply Rolle’s Theorem successively to ©,¢,...,9™ so that fi-
nally (™t(c) = 0 for some ¢ between a and z. But

P t(¢) = f(*+)(t) — (n 4+ 1)!C. Thus

0= (e) = f+(e) — (n+ 1)IC
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(n+l)(c

= T - Therefore

so that C

(n+1)
- f(n . 1(;) (z = a)*tl.

rn(z)

Proor II oF THEOREM 10.1.1(a): Let C be defined as in the

first proof and consider

#() = @)~ (0) - LD (o ) - L (o oy

(n=1) (m)
—~“-i—qy(r—ﬂ*“—fTf”(x—ﬂ“—cw—4rﬂ.

Now 1(a) = ¥(z) = 0 and therefore '(c) = 0 for some ¢

between a and =z, by Rolle’s Theorem. Now

(2)
) =~FO+1r0- 52 @ 1)

(2) (3)
5 [f("—l)(t) (:!: i t)n—z _ f(n)(t) (.’B g u t)n—l]

(n—2)! (n— 1)

(n) (n+1)
s

+(n+1)C(z—t)"

=20 o s oo
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so that ¥'(¢) =0 implies C = %f—) as before.

This proof may be modified to obtain the Schlmilch form of the

remainder by defining C by r,(z)=C(z—a)™.

Proor oF THEOREM 10.1.1(b): The integral form of the remainder
is obtained from the Fundamental Theorem of Calculus and succes-

sive integrations by parts as follows. First, from the Fundamental

Theorem,
f@) = 1@+ [ 1

so that f(z) = f(a) + ro(z) where
@) =g [ F@it=-5 [ roie-y
= - RO -0lZE+ 5 [ 1P -

= @G -0+ [ 100 -

Therefore
f(@) = f(a) + f' (@)@ — a) + 71 (2)
and
n@=1 | D) - it = - / " FO(t)d(z — 1)

= - 300 -7+ 5 [ 1O -0
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Thus

f(z) = f(a) + (@)@ — @) + 5 fD @)z — a)? + ra(a)
where

n(@) =g [ 190 -t

This may also be written in the form

@) =—g; [ 1@z 1y

as before. Proceeding in this way we find

£(2) = £(@) + T f'(@)(z = a) 4 -+ = F O )&~ )" +rulz),
where
(@) = [ £ - ora

O

In practise, we do not need to know f("*1) precisely to apply
Taylor’s Theorem. Much information about the remainder may be

obtained if we know the sign of f("*!) or some other bound on

f(n-H).

COROLLARY 10.1.6. Suppose |f("t1)(t)| < M, 4, forall t€ [a,z]

when z>a (orall t€[z,a] when z <a). Then

f(z) = f(a) + TF (@)@ = a) + -+ 2 f @)@ = a)" + ra(z),
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where

M, .
rn(x)| < (nTT)t |z — a|™*?.

Instead of requiring that f(z) and p,(z) agree up through
the k-th derivative at z =a, we might have asked that
f(z) and pi(z)
take the same
values at distinct

points ay,...,a,

or that f(z) and p,(z)

agree together with some of their
derivatives at some distinct points. The same approach may be used

to obtain estimates on

'f’n(x) = f(.’l:) e Pn(x)

in this procedure, which is called polynomial interpolation. A good
discussion of polynomial interpolation may be found in the book ‘Cal-

culus with Analytic Geometry’ by Flanders and Price.

In fact, we will obtain some of these results in special cases when

we derive error estimates for approximations to integrals.

§10.2. Numerical Approximation of Integrals.

First recall that P = {zg,zy,...,2,} 1is a partition of the

closed interval [a,b] if a=zo<z; < - <zp=0b. If f isa
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bounded real-valued function on [a,b], then
n
L(P, f) =) mu(zi — ok-1),
k=1

UP,f) =) Mz — zx_1)
k=1

Aoy

| |

el N S—

are the lower and upper sums of

R

f with respect to the partition P.

Any expression of the form

S(F.F) = Z flex)(@k — Tk-2), ¢k € [Tr-1,2k]
k=1

k=1,...,n

is a Riemannian Sum of f with respect to the partition P and
L(P,f) < S(P,f) S U(P, f)

for all such sums. Recall also the definition of the integral: ° f: g ]
exists’ means that there is a unique number a such that L(P, f) <
a <U(P,f) for all partitions P of [a,b] and then wesay a =
f: f. Equivalently a = fabf means that, for each ¢ > 0 there is
a partition P. of [a,b] suchthat PDP. = [S(P,f)—a|<e
for all Riemann sums S(P, f) corresponding to P.

Apart from a few examples where we found the integral directly
from the Riemann sums, our main technique until now for calculating
integrals has been by antidifferentiation using the Fundamental The-
orem. In cases where it is difficult or impossible to find an antideriva-
tive for f in elementary terms, we still would like to approximate
f: f efficiently. However Riemann sums are not in general a good

way to do this.
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EXAMPLE 10.2.1: Consider

1
1 1 .
2 31
dr = — = — = 0.3.
/Dx =gz lo 3

and both are disappointingly

far from the right answers.

—1 4

However, if we consider the average of the two numbers (the total

area of the trapezoidal regions in the diagram), then we find

b | o=

LL(P £) + U(P, )] =

which is not too bad at all.

[0.125 + 0.625] = %(0.75) = 0.375,

O

We are now in a position to formulate the Trapezoidal Rule for

the approximation of f: ¥

Sl(Psf)=h[f0 +f1+"°+fn—1]
S2(P, f) =hlfi+ fa+ -+ fal.

These are Riemann sums but not necessarily upper or lower sums.

Define the Trapezoidal Approximation T, by T, = 3(S1 + S52)
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so that

Tn=g[f0+2f1 +2fa 4+ 2fn_1+ fu]

EXAMPLE 10.2.2:

1
/ z2dz = 0.3.
0

T, = 10 +2(})* +12] = 0.375 -
Ti = 507+ 2(3)” +2(3)* +2(3)° + 1°] = 0.34375

We need to be able to give an estimate on the error

Ey={ :' f =T, in the Trapezoidal Approximation.

THEOREM 10.2.3 (ERROR ESTIMATE FOR THE TRAPEZOIDAL RULE).
Suppose (a) |f"(z)| < Ma, a<az <b,
(b)) h=1%2,

(C) Eﬂ:f:f_Tn-

Maonh® _ Ma(b—a)®
Then |B,| <585~ = ——o—.

In Example 10.2.2, the theorem predicts

2.1 1 :
<—=—=0.041
1B2| < 124 24 iRl
2.1 1 .
E —= — =) 1 3
|E4|_12.16 96 0.010416, since M, =2

The actual values of the errors are in fact

E, = 0.0416

E; = 0.010416
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exactly as predicted. However we cannot in general expect this type

of accuracy for the error estimate from Theorem 10.2.3.

EXAMPLE 10.2.4: How large should we take n in the Trapezoidal
Rule to approximate f; 1 dz =log(2) so that the error is less than

1075? Here f(z)=1, f"(z)= 3% so that

If'(z)| € ==M, if 2<z<3.

N

We require

My(b—a)® _ 13-27° 1

-5
12n2 12n?2  48n? =20

or n?> J5(10)° which holds if n > 46.

LEMMA 10.2.5.. Suppose (a) F"(z) exists, a < z < b, and
(b) F(a) = F(b) =0. Then, for each z € [a,b] there is a point
c € (a,b) such that

Flz)= E;C—) (z—a)(z—0b) (c=c(x)).

PROOF: The result is trivial if 2z = a or = = b so we assume

z € (a,b). Choose C so that
F(z)=C(z —a)(z —b)

and consider

o(t) = F(t) — C(t — a)(t — b).
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Now ¢(a) = ¢(z) = ¢(b) }%

Xo

so ¢'(z1) =¢'(22) =0 a

I

for some =z; € (a,z) and =z, € (2,b), by Rolle’s Theorem.

This in turn implies, by Rolle’s Theorem,

¢"(c) =0, forsome c€ (z1,z2).

Thus
0=¢"(c) = F"(c)-2!C

so that

F"(C)
2!

C=

LEMMA 10.2.6. Suppose (a) |f"(z)| < M,;, 0<z <h,
(b) t(z)= Az + B satisfies f(0)=1(0), f(h)=t(h).
Then

h 13
| f [f(2) — t(a))da] < 220

PROOF: Let F(z)= f(z)— t(z);
F(0)=F(h)=0. If ze€[0,h],
then the preceding lemma

shows that, for some ¢ € (0, k),
F"(C)

2!
f"(e)
= % z(z — h)

Fiz)= z(z — h)
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and therefore
M.
|F(z)] < 2—!2;.:(;1—.1-), 0<z<h

or equivalently

Mz

- 57 #h—2) SF(z) < 5F M?

z(h — z).

Now [fa(h—az)dz=(% h—5)b =h¥(4—1) =%, sothat

3

= Mzz i'éﬁ < j:' F(z)dz < —5—2’!1 . i‘s—— and therefore

]lf!g h?

[ 1)~ sl <

O

If we apply the result of Lemma 10.2.6 to each of the n par-

tition intervals in Theorem 10.2.3, we find

b
Mynh®  My(b— a)?
= == < =
Bal =1 [ f(e)dz - Tl < 225 o

a

Simpson’s Rule replaces the straight line approximation of the
Trapezoidal Rule by a parabolic approximation. A parabola y =
Az? + Bz + C is uniquely determined by 3 points on the curve.
We now take h = -2 and partition [a,b] into 2n subintervals

of length h



e A
1 L

4 A 4 ’

4= X, yl.— e *:?k-z XM-! %4 == Koy

On each interval [z2p—2,22k],
we define s(z) = A2? + Bz +C
so that
s(z;) = f(zi), ©=2k—2,2k-1,2k.

To discuss the approximation,

we locate the origin at zgj—; 1< A i< A 20
so that 7644 Xmﬁ, Y24
Tok—2 = —h, Tak-1 =0, o = h.
Then 1 X
£ 0 A
S=]131)d:c— (Az® + Bz 4 C)dzx

=A%+B—+Cm[h 9A%+2Ch

f(0)=s(0)=C

f(f?;:; z :Ef:)hijhAgh+‘—Bf}:_-E-c } = f(=h)+ f(h) = 24h*+2C.

Therefore C = f(0), A= 54 [f(—=h)+ f(R)] — 3= f(0) and
= 2 [f(=h)+ SRk = 3 F(O)h+2f(0)h

_ g [f(=h) + 4£(0) + F(h)].
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x ‘5

e

: ' x:=a + (&%
i ' " 2
[ H \

1{:3 ‘ﬁ_i (=0, ly---) 2
|

| | | 7 = £ox)

1
l
!
f
f
il 1_
=X X X Xone Xy Xou= 0

Dividing the interval [a,b] into 2n subintervals of length h =

b—a
2n

we define the Simpson approximation

h
Sn = 3 [fo+4fi+2fa+4fs+2fs+ -+ +2f2ua—2 + 4fon-1 + fan).

THEOREM 10.2.7 (ERROR ESTIMATE FOR SIMPSON’S RULE).

Suppose (a) |f®(z)|< My, a<z<b

(b) h=12
(c) En=[ f—Sn
Then

Mynh®  My(b— a)®
90  2,880n*

|En| <

LEMMA 10.2.8. Suppose
! !

i
(a) FW(z) exists, a<z<b and a Ve L=

(b) F(a)= F(c)= F'(c)=F(b) =0 forsome c&€ (a,b).
Then, for each z € [a,b], thereis a point p € (a,b) such

that

(4)
)= T )z — e 1) (0= p(a)).

PROOF: The statement is true for all p € (a,b) if z=a,b or c
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If z#a,bec, choose C so that
F(z) = C(z — a)(z — ¢)*(z — b)
and consider
(t) = F(t) — C(t — a)(t — c)*(t — b).

Now ¢(a) = ¢(c) = ¢'(c) = ¢(b) = p(z) =0, so several successive

applictions of Rolle’s Theorem show
0=¢W(p) = FM(p) —4lC

for some p € (a,b) and therefore

FM(p)
C = T“ ‘

Thus
(4)
)= 0 (o - a)(e - (e - ),

as asserted.

LEMMA 10.2.9. Suppose
(a) |f%(z)|<My, —-h<z<h, and X
(b) s(z)= Az’ + Bz + C satisfies

f(=h) = s(=h), f(0)=s(0), f(h)=s(h).

Then

| 5
l]_ﬁ[f(z) — s(z)]dz| < ﬁ?oh .
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PRrRoOOF: First observe that

h?)

h h Hph=
[ @)= s@)ds = | t@=-s@+{r0-s0) T s,
—h —h

since ffh z(z? —h?)ds = 0 as the integrand is an odd function. Let
7 , , z(z? — h?)
() = (@) = s(a) + {£'0) - (0} T2, —h<w<h
Then F®(z) exists, —h<z<h and

F(—h) = F(0) = F'(0) = F(h)

since D[z(z?—h?)];=0 = —h®. If z € [~h,h], then Lemma 10.2.8

implies that, for some p € (=h,h),

F(z) = F(j!(P) .7:2( 2 hz)
(4)
= f 4!(13) 3}‘2(1‘2 . h2)

and therefore, for all z € [—h, h],

[F(2)] < 22t 22(h? - 2%

or equivalently

M,

o "

2(h* —2®) < F(z) < A;if z?(h® — z?).

Now

1‘3’12 .7:5 h 4’15

3 "Bl =T15

h
/ 2?(h? — 2*)dz = |
-
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so that

M, 4h® ) M, 4h°
. e
4 15 —f_ Fz)dz < 2r - 35

h5 / (F(e)—s(a)lde < 204 o,

M4

and therefore |f [f(z) = s(z)]dz| < — 50 R®.

O

We may now apply the result of Lemma 10.2.9 to successive pairs
of adjacent intervals in Simpson’s Rule. Since there are n pairs of

such intervals,

I\L;nh

|/ f(2)dz = Sa| <

EXAMPLE 10.2.10 We will plan the computation of log 2 = ff L dz
to five decimal places using both the Trapezoidal and Simpson’s rules.
This degree of accuracy using upper or lower sums requires a partition
of [1,2] intoapproximately 10° intervals (see Problem 10.15). An
approximation scheme will have the required degree of accuracy if the
error E, satisfies |E,|<5x 107% Here

fA(z) = $2_3 , fO(z) = ;_f , fW(z) = 24

5

1 a1
f) =1, fi(z)=
so that, on [1,2], we may take

M; =2, M;=24.
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In the Trapezoidal Rule, we have the required degree of accuracy if

My(b—a)® 1

5x107¢ > 1on2 = R > 183.
In Simpson’s Rule, we will need
a8
5x107% > Mi(b —a) . or ' =T

2,880n*  120nt’

Thus we need 184 values of f for the Trapezoidal Rule and 15

values for Simpson’s Rule.

EXAMPLE 10.2.11 Estimate the accuracy of the trapezoidal and Simp-

son approximations to f: sin(z?)dz if 5 function values are used.

Since 0<z<2 and

f(z) = sin(z?) .

f'(z) = 2z cos(z?) o oS
f@(z) =2 cos(z?) — 42? sin(z?)

f®(z) = =122 sin(z?) — 82° cos(a?)

f®(z) = —12 sin(a?) — 4822 cos(2?) + 16z* sin(z?).

We may take M; = 18, My = 460. Therefore

2 93
|f sin(z?)dz — T,| < =2 el 0.75
0

12.16 4

and

2
1 2 — & e = Es -.
|f0 sin(z®)dz — S,| < 588021 — 7 0.3194

f

15

- 3



§10.3. Newton’s Method
We conclude this chapter with a discussion of Newton’s method

for the approximation of roots of equations in the form f(z) = 0.

The idea behind the method ‘? P

is quite simple: make an initial

guess g at the root; find where the

tangent at (zq, f(z9)) to y= f(z)

intersects the z-axis to find z,,

the next approximation. Next consider the tangent to y = f(z) at
(z1,f(z1)) to find 2, and continue iteratively like this. To find

the general scheme,

Y= f(zn) = f'(zn)(z — 2a)

is the equation of the tangent lineto y = f(z) at (za,f(zn)). It

intersects the z-axis (y =0) at (2,41,0) where

f(za)
n = Tn— 3 =M, 12'
Ty =3 Fila) n=10,1

Thus the choice of z¢ determines the sequence {z,} as long as

each term z, isinthe domain of f,f' and f'(z,)#0.

ProrosiTiON 10.3.1. Suppose

(a) lim z,==z, and
n—oo

(b) f' exists and is bounded near z,.

Then f(z,)=0.
PRrRooF: This follows from

f(a) = (zn — Zn41) f'(z0)
282



which implies

f(z2) = lim_f(z) =0.

O

There is no guarantee that the sequence of iterates is convergent.

For example, if

#=2/2

fz)=2'3, fl(z)=

Q| =

Tpntl — Tp — ;:((Z_:)') = _2In

S

—————

implies z, = (—-2)"z¢ and /
{za} is divergent if zq # 0. x’, ﬂl/

Here the accuracy of
our approximation

deteriorates with <

each successive step.

On the other hand the procedure works very well
in some cases. For example, 4y
if we wish to approximate
V5, the positive root of
22 —5=0, we apply

Newton’s method to

=
f(:c)=m2—§: /




Now, the Intermediate Value Theorem for continuous functions tells

us that 2 < /5 < 3. With an initial point zo =2, we find

zo = 2.236111111

z3 = 2.236067978.

Thus we can achieve the accuracy of the calculator in 3 iterations.
We have seen that, if the Newton iterations converge, they con-
verge to a root of f(z) =0. We now need
(a) conditions which guarantee {z,} is convergent

(b) an estimate on the error =z, — z,.

ProrosITION 10.3.2. Suppose
(@) |f'(@)z2m>0, |f'(z)ISM, a<z<b

(b) Tk S (a,b) and mk-i-l =2 — _{L’-’_l-)_

P ETS)
(c) f(zs)=0.
Then
Try1 — x| < :)% |2k — zof?
PROOF:
|Zk41 — 24| = |22 — }.,((Z';)) —z,|
= | = f(ax) — f(ar)(en — 24)]
= lf'(mk)l k k . k
If;(m )llf(x ) f(mk)_f'(mk)(mt_‘rk)ls
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since f(z,) =0

oo 0
|f'(ze)] * 2!

(zo —zx)?| for some ¢

between z; and =z, (Taylor’s Theorem)

LG

= 3 an)] T
M

S o =zl

COROLLARY 10.3.3. Under the conditions of the preceding proposi-

tion, if g,...,Zp—; € (a,b) then

M \27-1
In-x*IS(m) |20 — 2.

where zg,...,z, are the Newton iterates.

ProoF: This follows from

n

¥

3k+l_$*|5‘27n‘|$k—$*|2, k=0,1,2,...

and induction. The assertion is true for n = 1.

n=%F,

Now, if it holds for



so that

M
|zkt1 — 24| € — |2k — 24|
2m

M M | o%_ k
Som UGm)  lmo—al"T
- (ﬂ 2k+1_1|:1:0 B I¢|2k+1

it also holds for n =k + 1. The assertion of the corollary holds for

all n.

O

Corollary 10.3.3 shows that if 2y is chosen sufficiently close

to z., specifically

M
2—m |1I-'0—1L'..| <%

then, by the Squeeze Principle, lim z, = z, and moreover it gives
n—od
an estimate on the difference =z, — x,. The choice of initial point

zo sufficiently close to z. may be achieved by some consideration

such as the Intermediate Value Theorem for continuous functions.

EXAMPLE 10.3.4 In approximating /5 we considered f(z) =

z? — 5. Here
fl@)=2z, fz)=2

Now f(2)=-1<0<4= f(3) sothat =z, =5 € (2,3);

If'(z)| >4=m and |f'(z)|=2=M
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if z€[2,3]. If wechoose g =2, then

M 2 2 ¥

Thus Corollary 10.3.3 implies
M " n n
jon = VBl = lan — 2| < ()" e — " < 277D,

In particular |z3 — /5| < 277; we have found that the actual value

of |23 —+/5| is much smaller than this. For n =5 we have
lzs — V5] < 273 < 5 x 1071°;

the theory predicts that 5 iterations gives 4-place accuracy which
we actually achieved in 3 iterations. To achieve 20-place accuracy

we require
|zn — V5| < 5 x 10721

which will hold if 27 < 5x 107%', N = 2" —1 or equivalently
2N >0.2x 102", Now 2°% = (0.29...)x 102! so we require 2" —
1= N > 68 which is achieved for n=7. Thus 7 iterations give

at least 20-place accuracy.



10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

Problems

Show that sin(a + k) differs from sin a+ h cos @ by not
more than 1 hZ.
HINT:  f(z) = f(a) + f'(a)(z — a) + r1(2), 2 =a+h, f(z)=

sin z.

Find a bound of the form C=z*® for each of the following ap-
proximations if z > 0
(a) (142)/?2x~1412-122

(b) Q1+2)/Px14laz-122

Express the polynomial 1-2z+ 2% —3z° in powersof z—1

by using Taylor’s Theorem.

On one set of coordinate axes, sketch the graphs of sin # and
its Taylor polynomials z, z — g—? , T — %.3- - g—,ﬁ , paying careful

attention to the points where the curves intersect the z-axis.

For each of the functions, find the 5-th degree Taylor polyno-
mial about = =a and give the Lagrange form of the remain-
der

(a) sinz, a=7Ff

(b) =%, a=-1.

(a) Show that the functions sin z, cos z have Taylor poly-

nomials

3 5 2n—1

= P e o s e T
Sm-i(z) =z =g+ g 4o+ (=1) (2n —1)!

= ot 2n
Conlz)=2=Fpb g d ok (1P
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10.7.

10.8.

10.9.

10.10.

10.11.

(b) Show that for all z € IR

|$|2n+l x2n+2
S N — — & —
ey Can(2) S ooy

|sin & — San—1(z)| <
Prove that ,,11_1.20(1 —lylolp g (-1 =1log 2.
HINT: Apply Taylor’s Theorem to log(l+ z) about z =0.
Show lim r,(1) = 0.

n—+oo

Estimate the error in the approximation

__de~ [ 1-Z)da.
/0 (1+220)178 /U( e

Consider ff sin z dz.

(a) If [1,3] is partitioned into 10 subintervals of length
h = 0.2, show that the Trapezoidal (n = 10) and Simpson’s
(n = 5) approximations have errors less than 0.0067 and
0.000018 respectively.

(b) f h = 0.1, show that the errors are less than 0.0017
and 0.0000012 respectively.

(a) Show fol mrde=§

(b) Give the Trapezoidal estimation for the integral in (a) with
h = 0.25.
(c) Give the Simpson’s estimation for the integral in (a) with
h = 0.25.
(d) In each of (b), (¢), compare the actual error with the error

bounds given by the theorems.

Into how many equal intervals should the interval [1,4] be
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10.12.

10.13.

10.14.

10.15.

partitioned to guarantee an error less than 10> in the ap-
proximation of ff Zrdz  using Simpson’s rule? You should

keep the number as small as you can.

For what functions f does the Trapezoidal Rule (n = 1)

give the exact value? Simpson’s Rule (n =1)? Why?

n

Show that the closest integer to 2~ is divisible by n— 1.

[What was Taylor’s first name?]

Suppose f is twice differentiable on [0,1] and f(0) =
0, f(1) =1, f'(0) =0, f/(1) = 0. Show that [f"(z)| > 4

for some z € (0,1).

Let h=%=2 fi=fla+ L (b—a)) and

Ln = h[f0+fl +"'+fn—1]:
Ro=hlfi+fat+ -+ ful,

Sp = h[fl/? +f3/2 s ¥ 7 —‘3]

Ln,R,,S, are called the left endpoint, right endpoint and
midpoint approximations of f: f(z)dz respectively.

(a) If |f'(z)] < My, a<z<b, show that

b 2 2
Ml'n,h Ml(b—a)
— < = ”
| ./a Hz)dz = La| < 2 2n

This error estimate is also valid for the right endpoint approxi-

mation.

(b) If |f"(z)] < M,, a<z<b, show that

b 3 3
Mynh My(b— a)
|/a f(z)dz Sﬂl =7 24n2
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10.16.

10.17.

10.18.

Suppose

"(a (n)(q
pa@) = f@+ LD e —a) 4 4 LD oy

Show that

im 1@ =Pa(@) _ o

ima (z—a)n

[What was 1’Hospital’s first name?]

Suppose that n > 2 and
flla)=...... coo= f1(g) = 0, f™(a) £ 0.

(a) f n iseven and f("(a) > 0, then f has a local
minimum at a.
(b) If n is even and f™(a) < 0, then f has a local
maximum at a.
(¢)If n isodd, then f has neither a local maximum nor
minimum at a.
Consider #10.16. This problem has the dreaded second deriva-

tive test as a special case.]

We wish to determine the volume of water per minute which
flows past a line across the river. If we are provided with an
instrument which measures depth and an

instrument which measures

the current speed at any

depth, plan the solution of

the problem making reference to any assumptions made.
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10.19.

10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

Show that 2% + 2 —1 = 0 has exactly one real root and

approximate it to 4 decimals.

Plan the location of z3 and the number of Newton iterates
for the solution of z +log z =0 so that an error less than

10~ is achieved.

Suppose (a) |F®)(z)| < Mz, a <z <b.

(b) F(p)=F(q)=F(r)=0, pg,r €fablp<g<r
Show that, if a <z <b,

|F'(z)] < 3, = Iz - p)(z - g)(z — 7).
How large should N be in order that

|f e dz — Z (‘>n+1) S | < 0.00017

Find fol ’%5 dz correct to two places of decimals.

Suppose f is differentiable in (0,00) and lim;—. f(z)
exists. Show that lim,_.. f'(z) might not exist but that, if

it does exist, it must be 0.

Suppose lim;_.o f(z),lim; . f(z) both exist. Show that

lim; .o f'(z) also exists and that

lim f'(z)=0, lim f’(z)=0.
T—00 —00
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XL

INFINITE SERIES AND IMPROPER INTEGRALS

§11.1. Sequences.

(a)

(b)

(c)

(d)

(e)

(f)

(2)

We review some of the properties of sequences from Chapter II,
lim, .oca, = ¢ means: If & > 0 there exists N such

that
n>N=|a,—{| <e.

Wesay: ‘{ap} is convergentwithlimit €. A sequence which
is not convergent is said to be divergent.
The sequence {a,} is convergent if and only if it is a Cauchy

sequence: If ¢ >0 there exists N such that
m,n > N = |a, —anm| <.

A sequence is convergent if and only if every subsequence is
convergent. Notice that the limit was not mentioned — is it still
OK?

A convergent sequence is bounded but a bounded sequence need
not be convergent.

A bounded sequence has a convergent subsequence. This is the
Bolzano-Weierstrass Theorem.

A monotone (increasing or decreasing) sequence is convergent if
and only if it is bounded.

Suppose lim,—o ap, = ¢, lim,—oo by, =m. Then

(1) limp—oc(an + bp) =€+ m,

(1) - b oo Gady = O,

(iii) limp—oo §* = L if m#0.
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(h) Recall the important Squeeze Principle: If a, < cn < bp, n =

1,2,... and lim,a, =lim, ,o0b, =¢, then
Im e; =L
n—oo

(1) Recall the connection with the limits of more general functions
f: Suppose there are points z inthe domainof f arbitrar-
ily close to but distinct from a. Then lim,_, f(z)= £ >

each sequence {z,} in the domain of f such that

2o & nllngo =g

satisfies
lim f(z,)="_

(j) Some important special limits are:
(i) limpaow =0, if p>0
(i) lmpoec®=0, if || <1
(iii) limp—eoe/™ =1, if ¢>0
(iv) limp_en!/™ =1
(v) limpeo 252 =0 if p>0

(vi) limpooo 2% =0, if pelR
(vii)) lmpoo(l+ 2)" =¢*, if z€RR.
It would be a good idea to think your way through proofs of

some of these.



§11.2. Infinite Series.

Let {ap} be a sequence of real numbers. We will write

E ap = 8§

=]

if limp—oosn = 8, Wwhere 8, = Y ¢ ;6% = a1 +ag + -+ + Gp-
oo

We will say ‘the series Y, ax is convergent with sum s’. Thus
k=1

o0

convergence of the series Y, ax is equivalent to the convergence of
k=1

the sequence of partial sums {s,},

We will sometimes write
ay +az+az+---=s.

The fact that the first term in the series is a; is not important and,

for example,

o0 o <] oo
Zak=ao+zak=ao+al +02+Zak
k=0 k=1 k=3

with each of the infinite series being convergent if and only if one of

them is convergent.

EXAMPLE 11.2.1. We are accustomed to writing

1
= =0.333... .
3 0.3

1 _ NE T Lo
E‘—llmnqoo(ﬁ+ﬁ&'+ +10n) or T

This 1s the same as
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To see this, consider

v
2

3 3 3
T I T T
:E.(]__!_l_{,.‘....{. 1
10 10 1071
_Bl=3s .8 % ;.. 1 _
10 1— 35 n—=00 10 1— & 10" n—oo
3 10 1
10 09 3°

More generally

oo
: - . ka, if |z|] <1 (The Geometric Series)
k=0

and this series is divergent if |z| > 1. To see this, consider

i 1 — g+l
3,,=Zx"=1+:r+---+a:"= 5 2kl
l-g
k=0
Therefore lim, o $p = 725, if 2| <1, and s, is divergent if
|z >1 or #=-1. If =1, s, =n+1, an unbounded and
therefore divergent sequence.
EXAMPLE 11.2.2. Y (=1)F is divergent since the partial sums are
k=0

alternately 1 and 0.
EXAMPLE 11.2.3.

S !

k=1 k(k + 1)



s _z": - ‘—L+i+'—-+ 3 . -
n_k—l k(k+1) 1.2 23 3. (n—=1)n n(n+1)
1 1 1 1
G-H+G-D+G-DPro - D+G - )
1 il
b e (the sum telescopes)
n+1 n—e

a

oo
If 3 aj isconvergent, thenitssum s=lim,—c sp. There-
k=1
fore lim;—coSn—1 =8 and, since S, — Sp—1 = Gn,

lim (s, — Sp—1)=8—8=0

n—-0oo

= lm a; =0.

n—oo

We thus have the following necessary condition for convergence

of an infinite series

o0
PROPOSITION 11.2.4. If ) ap is convergent, then
k=1

hm g, = 0.
n—oo

The converse is not true i.e. limp—ooan, =0 #= ) ax is conver-

o0

gent. For example, # is divergent since
k=1
1
Sp=14+—+- =+/n

V2 \/_ \/_

so that {s,} is unbounded and therefore divergent.
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The Cauchy Criterion (Theorem 2.5.2) for convergence of a se-
quence translates to the Cauchy Criterion for convergence of an infi-

nite series.
w .
THEOREM 11.2.5 (CAucHY CRITERION). 3 aj is convergent if
k=1

and only if, for each € > 0, there exists N such that

n
m,n2N=>|Zak]<e.

k=m
Notice that the Cauchy criterion implies Proposition 11.2.4.

oo
EXAMPLE 11.2.6. Y 1 is divergent since
k=1

Thus, for ¢ = % , we can produceno N for the Cauchy Criterion.

THEOREM 11.2.6. Suppose

o0 oo
E ar =8, Z by =1.
k=1 k=1

Then
o0
> (e +b) =5+t
k=1

and



PRrROOF: This follows easily from the definition

n n
Spn = S Gny, tp= E by
k=1 k=1

n n
= 8p +iy = Z(ak +b), ¢€sp= Ecak
k=1 k=1

oo oo
-——>3+t=2ak+bk, cs=2cak
k=1 k=1

since lim,—oo(Sn +tn) =s+1t, lim,_.cs, = cs.
O

If the terms ax in the series are all of the same sign, then
{sn} is a monotone sequence and therefore convergent if and only if

it is bounded. We will now consider series of positive terms

THEOREM 11.2.7. (Tue CoMPARISON TEST). Suppose

D<ap <bp, E=3,2,...:

Then
o0 o0

(a) > ar divergent = ) by divergent,
k:—ol k=;°

(b) Y. bi convergent = ) ap convergent.
k=1 k=1

n
PROOF: The statements (a) and (b) are equivalent. If s, = ) ay, t, =
k=1

ibk, then {s,} unbounded = {t,} unbounded or equiv-
;i:e]ntly {t,} bounded = {s,} bounded and, since both se-
quences are monotone, the theorem follows.

O

Clearly the conclusion of the Comparison Test is valid if 0<

ar < br holds only for k large.
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oo

EXAMPLE 11.2.8. (log_lk)"- is convergent since
k=2

1 1 ; :
0<logk<§’ if logk>2 ie k>e’
Thus
1 1
D iy i 5 e
. (log k)k < 9%
implies
— 1
Z —~——— is convergent since
= (log k)
Lgo & is convergent (Example 11.2.1, z = }).

a

COROLLARY 11.2.9. (LimIT FORM OF THE COMPARISON TEST). Suppose

ar >0, b:>0,k=1,2,... and

im ==L, 0<k<on
k—co bk

Then
o0 . o0
(a) 3. bx isconvergent <=> ) ap is convergent,if L >0
k=1 k=1
o0 o0
(b) 3. by isconvergent => ) aj is convergent, if L =0.
k=1 k=1

PROOF: In case (a), 0 < —;- br < ar < 2Lbr for k sufficiently

large. Part (b) is left as an exercise.

O
o0
EXAMPLE 11.2.10. Y, 7 is convergent since (Example 11.2.3)
k=1
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o0
1 .
Y mErn  is convergent and

lim ——1/k2 = llm ——=
oo TJR(E+1) ko K2

O

COROLLARY 11.2.10 (RaTIO FORM OF THE COMPARISON TEST). Suppose

that ap >0, by >0 and

Akt1 bi41
ar — bk
o0 o0
hold for all large k and Y by convergent = ) ar conver-
k=1 k=1

gent.,

PROOF: If %L < B#1 poldsfor k> N, then 4t < & for
ak b by 41 b

k>N sothat {§*} is a decreasing sequence, for k2> N, and
k

. <M where M= <o

bk bN
which implies

0<ar < Mb

and
oo o0 oo
Zb" convergent = Z:M' by convergent = Zak convergent,
k=1 k=1 k=1

by the Comparison Test.
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The simplest choice of comparsion series is by = ek, ¢ > 0.
o0 o0

The geometric series 3. bx = Y. c* is convergent if 0 < c <1
k=0 k=0

and divergent if ¢ > 1. Here bﬁbki =c¢ so that

oo
a
Ml ge<l= E ar convergent
ak
k=1
a oo
k ’
t>1= E ay divergent.
ak

k=1

In the second statement, the roles of ax,b; have been interchanged.
If the condition u;;_l < e <1 isreplaced by “—;i'—‘- <1 it cannot
o0
be concluded that Y ai is convergent. Why?
k=1

It is convenient to formulate this comparison with the geometric

series in limit form.

COROLLARY 11.2.11 (LimiT ForM OF THE RATIO COMPARISON
TEST). Suppose a; >0 and limg_.co 2 =c¢, then

o0
(a) 0<ec<1= ) aj isconvergent
k=1

(= =]
(b) 1<c=> ) ai Isdivergent
k=1

(¢) 1==?, the test fails.

ProoF: This Corollary is a method of comparison with the geometric
o0

series 5. z* which is convergent if |z[ < 1 and divergent for
k=0

|z| > 1. In case (a) limg—oo "=+ = ¢ < 1. Thus, if we choose

z,c<z<1 and b = z*,

k41 bk+1
k by

o0 o =] oo
so that E:ck = Y by convergent = ) ar convergent.
k=1 k=1 k=)
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In case (b) Iim;,.._‘oo“—zii=c>1 andif ¢>z >1 then

o0 o0
Lt >z = -bibﬂ andsince Y z¥ = Y by isdivergent we also have
", - k=1 k=1

Y ax is convergent. Note that in this case we have interchanged the
::lles of ag,br in Corollary 11.2.10.

To see that the test failsif ¢ =1, consider the series io: k, § -
The first series is divergent and the second is convergent but l’;:)::h sa,t-k=1

isfy limgoo <5 =1.

w
ok 41

o0
EXAMPLE 11.2.12. The series E is diverget since (l_-i-_ﬁf/

[‘18 ’;I“i

2(14+ )2 T 2> 1. Similarly is convergent; in this case
e

3
the ratio of two successive terms &H)— =3 (1+3)° = 3 <
t—00

1.
28 a8 . . k41 k
EXAMPLE 11.2.13. If 2 >0, ) % isconvergent, since (’i_“)!/% =
k=0
o @]
5 — 0 < 1. It follows that LZ:I %’,i is convergent for all
z € IR. Since
m I k m I
Z k_ < Z T by the triangle inequality,
oo " '
and, since ), 1%',— is convergent, the Cauchy Criterion implies
k=0
e

Y. % is convergent.
k=0
To increase our stock of comparison series we prove The Integral

Test for series of positive decreasing terms.

LEMMA 11.2.14.. Suppose f is decreasing on [l,00). Then

f(2)+f(3)+---+f(n)5/lnf(-'r)da:Sf(1)+f(2)+---+f(n—-1)-
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PROOF: Let P ={1,2,...,n}. 4

Then
L(P,f)=f(2)+ f(3)+ -+ f(n)
UPf)=Ff)+ f(2)+--+ f(n-1)

and therefore the Lemma

follows from the definition of [[" f. f

PROPOSITION 11.2.15. (THE INTEGRAL TEST). Suppose f >0 is
oC

decreasingon [1,00). Then Y. f(k) isconvergent <= lim [ f(z)dz
k=1 n—oo

exists.

n
ProoF: If s, = ) f(k), then from the Lemma
k=1

Su_f(l)S];nfS-sn—l-

Since both {s,} and {[|" f} are increasing sequences, they con-
verge if and only if they are bounded and the inequality shows they

are either both bounded or neither of them is.

o0
PROPOSITION 11.2.15. The series Y, & is
k=1
(a) Convergent if p > 1,

(b) Divergent if p < 1.

PrROOF: If p<0, then £ >1, k=1,2,... so that > o s
k=1

oo
divergent by the Comparison Test, since ) 1 is divergent.
k=1
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If p>0, then f(z)= % is decreasingon (0,00) and

P

n 1 _l1=pin
/ ldxz{l—px Ity p#1
1

il log zlf, p=1

={ i (n'7P=1), p#l
log n, p=1.

Therefore lim;—oo fln ;1;,— dz = plTl , if p>1 and the limit does

not exist if p < 1 and the Proposition follows from the Integral

Test.

NOTATION. Before proceeding, we introduce the Landau O,0 no-
tation. Let f(z) and g¢g(z) be defined for = near a (we do

not exclude a = o0). We say

f(z)=0(g(=)), as z—a

if 5{7%))' is bounded for z sufficiently close to a;

f(z) =o(g(x)), as z—a
if

lim m—

= 0.
z—a g(z)

Thus, in the case of sequences,
ar = O(bg), k— o0
means |§%| <M and

ap = O(bk), k— oo
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means liMp—oo %f = (.

LEMMA 11.2.17. For any real number a;,

(1+2z)*=14az+0(z?), as z—0.

ProoF: From Taylor’s Theorem,

(1+2)*=14az+ri(z)

where rl(m)=°(;!_]) (14+¢)*"22?%, forsome ¢ between 0 and

z. Therefore ri(z)= 0(2?), as z — 0.
PROPOSITION 11.2.18 (RAABE’S TEST). (a) Suppose ap >0 and

k41
a

1
=1_%+O(E)’ as k — oo.
(o =]
Then Y ay is convergent if p>1, divergentif p<1.
k=1
(b) Suppose ay >0 and

ar41 _ . P 1 c
i =1 k+0(k2)’ as k — oo.

oo
Then Y aj is convergent if p> 1, divergent if p<1.
k=1

We will see that this test, roughly speaking, deals with the case
¢ = 1 where the Ratio Test fails and that it is the Comparison
Test in the ratio form using the series f: & as comparison series.
Observe that Part (a) of the Propositim:-::,ates that if ax >0 and

the difference between “—:‘t‘,“’—‘ and 1— % tends to zero a little

oo
faster than the sequence {}}, k — oo, then 37 ax is convergent
k=1
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if p>1, divergentif p <1 andthecase p=1 Iisleft in doubt.
Part (b) says that if the difference between “+- and 1-§ tends
to zero at least as fast as the sequence {7}, n — oo, then we have
the same conclusion and further, even if p =1, we can say § ak

k=1
is divergent.

o0
PROOF: To prove Part (a), recall that Y & is convergent if ¢ >
b1 _ K 1

_ lag_q_19 1
™ _(k+U4_U+k) =1-2+0(3)

by Lemma 11.2.16. Now,

ar41  bkyr _g-—p 1 .
o TF heproip)

_g-p», 1
o +o(k).

(=] o0
If p>1, choose q € (1,p) so that > by = ) 45 is con-
k=1 =1
oo
vergent and T < b—‘;‘:—‘ , for all large k, and hence ) ax is
k=1

convergent.

00 o0
If p<1l, choose g=1 sothat Y bp= ), § is diver-
k=1 k=1

o0
gent and “:‘% > —b%f‘- , for all large k and therefore 3 ap is
k=1
divergent.

To prove Part (b), first observe that we need only consider p =

1 since the other parts of this assertion are implied by Part (a). Now

k41 1 1 :
1, =1 k+0(k2)’ k — oo
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implies that, for some real number A,

Af4-1 1] A
SPE T,
(4) o S it

Now consider bg = k_-F'lA_-T so that

I e
Now, since
A?
1-— = <1 for all k£ implies
1—é<(1+—)— for all large &, so that
(C) 1‘%(”?_ 51—5(1—?:1 i+%

and therefore (A), (B), (C) = =& > %’1‘1 , for all large %k and
0 oo

S br divergent == ) a; divergent.

k=1

k=1

2 1.3.5..(2k=1)
EXAMPLE 11.2.19. The series Y, S5 —5p— is divergent by
k=1

Raabe’s Test, since

ap41  2k+1 145
ap  2k+2  1+4%

=133 )(1+ )“

= (14 51— L 0GR, koo
—1- 1£2+0(:) —_—

and %<1.

EXAMPLE 11.2.20. Consider the series

(a+1)a+2)...(a+ k)
Z b+1)(b+2)...(b+ k)’
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The Ratio Test Fails here (Critical case ¢ =1). However

ak+1_(a+k+1)_(1+%i)_(1 b+1)
T (+k+1)  Q+H) k
=(1+“+1)(1—b+—1+0(i2))
b—
=1- k (k_g)

so that the series is convergent if b—a > 1 and divergent if b—a <

1, by Raabe’s Test.

EXAMPLES 11.2.21. In the following examples, supply the missing

details.
o0

(1) 1?:'1 -&5 is divergent.
X in?

(2) > =5=" is convergent.
n=1

(3) kzl Fk-]»_l' is divergent.

(4) kzll Tiog % i divergent.
o0

5) > Hlogl_kF is divergent if p <1
k3 and convergent if p > 1
o0

(6) 2—:0 T#JJ' is convergent.
n; :

(N X 7
n=1
o0

®) X Fr
"o_o all e

(9) 21 I is convergent.
n=
o0

(10) > ﬂz—:f—l) is convergent.
k=1

(11) X g:— is convergent.
k;o

(12) Y % is divergent.
) T

(13) kgl Ty s divergent.
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o0
(14) 3 [A35-ED17 s convergent if p>2 and divergent if
k=1

p < 2. [Hint: Show that “"f‘— =1- % +0(3), k = oo
Compare with Example 11.2.19.]
oo
(15) g_:l GFDEN) = 7 -

oo
(16) > sin(gz) is convergent.
k=1

§11.3 Absolute and Conditional Convergence.
We now consider series where the condition ax = 0 1is no
longer assumed. The series Y po; ax is said to be absolutely con-

vergentif Y po, |ax| is convergent.

THEOREM 11.3.1.. An absolutely convergent series Y ., ar 1is

convergent and satisfies | e, ak| < Y req lakl.

PROOF: Since |Y jo, ar| <> i, |t;k], by the Triangle Inequality,

the Cauchy Criterion shows that

o0 oo
Z |ax| convergent = z ap convergent.
k=1 k=1

Moreover, taking n =1 and the limit m — oo, we find

|2?;1 ak| < E:°=1 |ak].
O

There are series which are convergent but not absolutely con-

vergent. For example,

o0 ¢ 1yk+1
Z (_112__ = log. 2
k=1

(see Problem 10.7) is a convergent series but not absolutely conver-

gent, since Y po, © is divergent.
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The sum of an absolutely convergent series is not altered by a
rearrangement of the terms in the series. In fact a series is absolutely

convergent if and only if it has this property. For example

4. =log 2

+
L=
|
W= | =

B =

but

1

1 1 1+11
2 & 7T 4 9 11 6

3
coo= — log 2.
+ 5 og
Here we are taking two positive terms followed by one negative and,
even though every term of the original series is ultimately included,

the sum is altered. To see this, let {s,}, {tn} be the partial sums

of the original series and the rearranged series respectively. Then

PSR PR . 0L S o e SR SO
ImT TS T E T T 4 an—3  4n—1 2n’
Now
R 1 1, 1 1
Mp=2TSTE LB 4n—3 4n—2 4n—1 4n
2% =574 6 B8 12 in—2 4n
so that

1 1 3
tan = Sqn + =82, — log 2+ = log 2= - log 2
2 n—co 2 2
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since limp_o0 8p = log 2. Also

t tan + : g log 2
r—1 ——_— — e -
In+1 In dn + 1 nireo 2 %
1 1 3
tany2 = t3n + + — = log 2

dn+1 4n+3 n—oo 2

since lim,—o ﬁ =limp—co jny3 =0 and therefore

lim %, =g log 2

n—oo

as asserted.

In fact, if you reflect on it for a while you will see that a non-
absolutely convergent series may be given any sum by rearrangement
and may even be made to diverge to Zoo.

We may test for absolute convergence of Y po, ax by applying

the tests of the preceding section to Y po, |ak|.

EXAMPLE 11.3.2. The series 5o, %% is absolutely convergent

by the Comparison Test, since

sin k 1 -
e S

0<|

and Y ;o & is convergent.
EXAMPLE 11.3.3. The series 3 o, (—1)* %:— is absolutely conver-

gent, by the Ratio Test, since

|(_1)k+l(k+1)2/2k+1| B 1
(—DFR2/25 T 2

e 1
g e g <t

There are several rather sophisticated tests for convergence of

series which are not necessarily absolutely convergent. Here we confine
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our attention to alternating series of the form 3 o (—1)¥+1ay,

ap > 0, for which a simple but effective test is available.

THEOREM 11.3.4.. (Leibniz’ Altering Series Test). Suppose {an}

is decreasing. Then

(= =)

Z(—l)“’lak is convergent <= lim a, = 0.
n—oo

k=1

CAUTION: The monotonicity assumption is essential. For example,

the series 1— 37+ 43—+ 3 —gr... isdivergent. Why?

PROOF: The condition lim, .. @, = 0 is clearly necessary for the
convergence of the series. To see that in the present circumstances it

is also sufficient, consider s, = Z:il(—l)k+1ak. Then
Sopn =a) —az +az —aq+ -+ azp—1 — @2n.
Therefore
son = (a1 —ag) + (a3 — ag) + - -~ + (azn—1 — azn),

a sum of positive terms so that {S3,} is a positive increasing se-

quence. Moreover

Son = ay — (ag e a;;) Je et (a2n—2 = a2n—1) — Qa2n

Sa
so that {s2,} is a bounded sequence and

s= lim s, exists.
n—00
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Since Sop41 = S2n + ﬁ, s = liMp—oo S2n41 also and therefore

s = lim s, exists.
n—oo

REMARKS.

(i) The proof shows that, under the conditions of Leibniz’ Test,
oo
0< > (-1)*ax <ar.
k=1

(ii) Under the same conditions, the error Y po vy (=1 ar s
truncating the series at N terms is of the same sign as and

smaller in magnitude than the first term neglected.

EXAMPLE 11.3.5. The alternating series Y po; ("—;Lk, i (_:};H,

e % are all convergent, by the Leibniz Test. O
We may adapt Raabe’s Test so that it is useful in testing some

alternating series when used in conjunction with Leibniz’ Test.

LEMMA 11.3.6. (RAABE’S TEST FOR SEQUENCES). Suppose

ar >0 and

w1 2yl
= =1 k-«}-o(k), k — oo.

Then
(a) p>0=>{a,} Iis ultimately monotone and
Bl =00
(b) p< 0= {ax} is ultimately monotone and

limﬂ—bm aj = ©0.
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The proof of this lemma is left as an exercise (Problem 11.27).

O

PROPOSITION 11.3.7. (RAABE’S TEST FOR ALTERNATING SERIES). Suppose

ar >0 and

i QRN TS TS
= 1-p o), koo

Then

o0
p>0= Z(—-l)k"'lak is convergent
k=1

o0
p>0= Z(—l)k"'lak is divergent
k=1

and if p=0, the series may be either convergent or divergent.

O

The assertions in the cases p > 0, p < 0 follow from the
Lemma and Leibniz’ Test. The doubtful case p = 0 is left to

problems.

EXAMPLE 11.3.8. The series

i(_l)k (a+1)(a+2)...(a+k)

e (b+1)(b+2)...(b+ k)
is absolutely convergent if b —a > 1 (see Example 11.2.20) condi-
tionally convergent if 1 > b—a > 0 and divergent if b—a < 0.
The assertion in the case b = a is obvious (Why?). The cases
1>b—a>0, b—a <0 follow from Proposition 11.3.7; the details

of the calculation are the same as in Example 11.2.20. O
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§11.4. Power Series.

A power series is an expresion of the form

o0

Z ax(z — a)*.

k=0

For example, if a function f(z) has derivatives of all orders at
z =a and pp(z) is the corresponding Taylor polynomial about
z = a, it is natural to enquire if limp—oo pn(z) = f(z) for some

values of z. This is equivalent to lim,_.oora(z) =0 or
f*)(a g
f(z) = Z £ o,

This power series is called the Taylor series of f(z) about z =a.
Clearly it converges to f(a) if z =a and convergesto f(z) for
all z, if f is a polynomial. However, even if the Taylor series
converges for z # a, it may not converge to the function f(z).
For example if f(z)=e 5, 2 #0, f(0) =0, then

f®(0) =0, k=0,1,2,... . The Taylor series has sum 0 for all
z but f(z)#0 if z#0.

THEOREM 11.4.1.. For each power series Y pe,ax(z — a)*, there
exists an R, 0 < R < oo, such that the series is absolutely conver-

gent if |t —a| < R and divergent if |z —a|> R.

PROOF (a = 0) : It suffices to prove this when a =0 since the
general case reduces to this by the substitution X = z—a. Suppose

Y reoakxy is convergent for some z¢ # 0. Then laxz§| < M for
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some M (infact limg_ooarz§ =0). Since
T T

|axa®| = |araf] [—|* < M|—[*.
To To

If |z| < |zo|, the geometric series > 32, M |f?|” is convergent.
The Comparison Test therefore implies that 3 e, axz® is abso-
lutely convergent if |z| < |zo|. This also shows that if 3 o, arz}

k

is divergent, then Y po,arz* is divergent if |z]| > |z1|. The ex-

istence of R as asserted follows.

a

The number R is called the radius of convergence of the power

series.

EXAMPLE 11.4.2.
() i, klzk s convergent if z =0, divergent if
|z] > 0 (R =0) by the Ratio Test since

(k + 1)lz*+1|

o0; Af z#£D
Eg —(L+1)lx[—+{

g, if =z=0

(i) o2, kz* isabsolutely convergent if [z| <1 and divergent

if |z| > 1. Here

I(k + 1)a*+1| 1
[kz*| —(1+E)[$| k::o ||,

so the Ratio Test shows that the series is absolutely convergent

if |z] <1 and is not absolutely convergent if |z| > 1. At

z =41 the series is divergent since {kz*} is unbounded.
(iii) .f:o ’,’c—: is abolutely convergent for all z by the Ratio Test
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since

|25 (k4 1)) _ z]
m e T e

The power series may be divergent at one or both of a £ R
or it may be conditionally convergent at one or both or it may be
absolutely convergent at both points. For example, the series (ii) is
divergent at = = %1.

(iv) Yore, "—,:- has radius of convergence R = 1 (Ratio Test)
it is conditionally convergent at 2 = —1 (Leibniz Text) and

divergent at z = 1.

V) Yre, 315;— has radius of convergence R = 1 (Ratio Test)

and it is absolutely convergent at z = +1 (Integral Test).

THEOREM 11.4.3. The power series

(= =] (= =]
(i) Z arz*, (ii) Z kagz®?
k=0 k=1

have the same radius of convergence.

The series (ii) is obtained by formally differentiating (i) term-
by-term. It follows that the series
oo
(iii) ) %5 «**! also has the same radius of convergence as (i),
k=0

which may be obtained by formally differentiating (iii).
PrOOF OF THEOREM 11.4.3: Since
lakz*| = |z] Jaxz* Y| < |2| |kapz* 7,

it follows from the Comparison Test that if (ii) is Absolutely Conver-

gent, then so also is (i). Conversely suppose Y ;- arzl is conver-

318



gent, zo#0. Then |azz§| <M and,if [z]<|zol,

= a &g
|karz* | < |axzg)] —klggl" '

|zo
i K— . |" 1,
|zl
The Ratio Test shows s k| E |" ~1 is convergent, if |%| <1

(see Example 11.4.2 (ii)), so the Comparison Test shows S, kagz*
is absolutely convergent if |z| < |zo|. Thus (i) and (ii) have the same

radius of convergence.

O

PrROPOSITION 11.4.4. If f(z) = Zr’:o arz® has radius of conver-

gence R >0, then f Iiscontinuouson (—R,R).

PROOF: Let zo € (—R,R). Wemust prove lim,_.., f(z) = f(zo).

=

Choose r so that -7 2
[/ 3 A L)
lzo| < r < R. —}é 0 % )](7
Then S 5o, lar|r® is convergent
and, if & >0, we may choose N so that
Z la,|r* < %
k=N+1
Then
f(z) — f(zo) = Eak:r: - Z arzl
l.

N

Za;m — Zakzo + Z ak:c — Z a,r.:ro

k=0 k=0 k=N+1 k=N+1
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so that

N

N fore) oo
1f@)—fo)l €1 ara* = axzfl+ Y laa*|+ D lakwol”.

k=0 k=0 k=N+1 k=N+1

Now the polynomial Ef:o arz® is continuous, so we may

choose 6 >0 sothat & < min{|zg+r|,|zo—r|} and |z—=z¢| <$é

implies
N N
|Za Za1x0|<— and
k=0 =0
o0 o0 €
Z Iak:rk[ = Z |ak|rk < § 5
k=N+1 k=N+1
so that

(=
lo — 20 < 8= |f(z) — f@) < s+ 5 +5=¢

O

THEOREM 11.4.5. Suppose f(z) =Y reo arz® has radius of con-
vergence R > 0. Then

(a) fozf = 2?:0 ﬁ% FF, |z] < R

(b) f(z) =Y 1o, karz*"!, |z| <R.

PRrOOF: We have see (Theorem 11.4.3) that all three series have the
same radius of convergence. Since f is continuous on (—R,R)

Proposition 11.4.4), [ f exists. Furthermore
0

[ agei= > w113 ada

k=n+1 k=n+1
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since the integral on the right also exists by Proposition 11.4.4. If

|z| £r < R, then |[t| < |z| implies

oo oo
| Z axt®| < Z laxt*| (the series is absolutely convergent)
k=n+1 k=n+1

oo

D

k=n+1

oo
— 0 since E lak|r* is convergent.

I . .
Therefore | [ | Y renyr axt®ldt < |z| 302 40 la|r* a4 0 and

T n
Ak k+1
I./o f_kzk—klx Fend
=0

sothat [ f=Y00, 2% z*+1, This proves (a).
To prove (b) we see from (a), if g¢(z) = e, karz*?,

|z| < R, then f(z)=ao+ f; g and therefore f'(z)=g(z), as

asserted.

O

COROLLARY 11.4.6. Suppose f(z) = Y jo,akz® has radius of

convergence R > 0. Then

_fP0
k= B k=0,1,...

so that the power series is the Taylor series of f.

This can be seen by observing that Theorem 11.4.5 (b) implies

that f hasderivatives of all orders given by f'(z) = 3 1o, kaxz* !,
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f"(z) = Spe, k(k — 1)axa*=2, and so forth.

A convergent power series is therefore the Taylor series of its
sum f.

The following examples might all be deduced from Taylor’s The-
orem by showing that the remainder r,(z) satisfies lim,—oo7n(z) =
0 in each case. It is however easier to obtain them by substitutions,

differention and integration of the geometric series.

EXAMPLE 11.4.7.

(i) sE==14z+22+23+..., [2|<],
1_1.n+1
since l14+z+--4+2"=———, a#1
l-=z
(i) 11£=1—x+m2—z3+..., |z] < 1.

Replace = by —a2 in (i).

4

oAyl

(i) log(l+z)=z-%S+%5-2-+..., |z|<1.
Integrate in (ii) from 0 to z.

(iv) gpr=1+20+3%+42+..., |g|<L

Differentiate (i).

3 5 7

(v) arctanz=z—-L+F-—-%4..., [gl<l

2

Replace z by z° in (ii) and integrate from 0 to =.
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(vi) tanh™'z =1 log }%:::r+’§—a+"?s+‘5,—7+..., |z| < 1.

2 in (i) and integrate from

Replace z by =
0 to =z (seeProblem 7.38(c).

Alternatively, replace = by —az in (iii),

subtract from (iii) and divide by 2.

(_1)k+l L

Taylor ’s Theorem for log(1+2z) showsthat 3 7o, *—¢

log 2 (Problem 10.7). This also follows from Example 11.4.7 (iii)

even though this formula was only established for [z] < 1. Recall

that in an alternating series of decreasing terms the truncation error

is less than the first term neglected. Thus, from (iii)

n (_1)k+1 " pntl
log(1 — R <
|log(1 + 2) ; i e
< s # 0se<l
n+1

Take the limit, = — 1— on the left to obtain

n 1
(_1)L+1 1
2 — = =
llog g k l_n-l-]_n—-ooo
so that
1 1 £ § 1
log 2—1—§+§—Z+g...

A similar argument may be used on (v) to deduce



EXAMPLE 11.4.8. The well-known identity

k

I
Hs .'I?E]R,,

QH
I
Nk

-
I

0

may be established easily from Taylor’s Theorem (Problem 11.23). An
alternative method of proving this is to observe, from Theorem 11.4.5,
that if

2

E(z)—1+11+2 4o g

then E'(z)= E(z), E(0) =1. Thus
0=e¢*E'(z)— e *E(z) = zl% [e™*E(z)]

and therefore e ?E(z) is constant and in fact equal to 1 (set

z = 0). Therefore we have E(z) = e*.

EXAMPLE 11.4.9. Taylor’s Theorem may also be used (Problem 11.23)
to prove

2k
sin a:—kzl( Sy h, cos T —Z( —1)* (ik

An alternative proof of this is as follows. Let

3

T T
S(I)=.’B"'§!—+§—...

g2 =
Cle)=l-gr+q-

Both series converge for all z € IR and, from Theorem 11.4.5, may

be formally differentiated term-by-term to obtain
§'(z) = C(z), C'(z)=-5(z)
and S(0)=0, C(0)=1.
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From here we find, on differentiation, that
g(z) = (S(z) — sin :1:)2 + (C(z) — cos :r:)2
satisfies ¢'(z) =0, ¢(0) =0, sothat g(z)=0 forall z. Hence

S(z) = sin z, C(z)= cos z.

§11.5. Euler’s Formula and de Moivre’s Theorem.

The preceding discussion may be used to motivate an elegant
unification of the transcendental functions e*,cos z,sin ¢ known
as Euler’s Formula. But first we must consider the complex numbers
€. The complex number i satisfies 2 = —1 and all complex
numbers are of the form a +ib where a and b are real. We
consider IR C € in the sense that we may identify a € IR with the
complex number a+i0 and may unambiguously write a = a+:0.

The algebraic operations + and - on € are defined by

(a+1b)+ (c+1id) = (a+¢) +i(b+d),
(a +1b) - (c + id) = (ac — bd) + i(ad + be).
In particular
(a+1b) - (a —ib) = a* + b?,
and we may take

Ll a—1b o 1 (i = &B)
a+ib_(a+ib)(a—ib)_4512+b2 '
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We define €'?,6 € IR, by Euler’s Formula
eiﬂ

=cos 0+ 1 sin 6.

The motivation for this definition is that if we replace z by 6 in

the formula
e’=1+z+;—?+§—?+%+%:—+..., zelR
we obtain
=(1—§+i—:+...)+i(9-§+i—j—...)

=cos 841 sin 6.

This is not a proof of Euler’s formula, but simply a formal manipula-
tion which motivates the formula as a definition of €', 8 € IR.

To further justify the definition we should check that €' be-

haves as an exponential should. First e = cos 04 sin 0 =

14i0=1=¢€% Also

eflz+y) — cos(z +y) +1 sin(z +y)
= (cos z cos y —sin z sin y) + i(sin = cos y + cos z sin y)
= (cos z+1i sin z)-(cos y+1 sin y)
=e%e¥, z,y € IR.
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From this we readily deduce de Moivre’s Theorem
(cos z +i sin z)" = cos nx +1 sin nz

for n=0,1,2,... . The theorem is established for negative integers
n by observing that e~ ** = cos(—z)+ ¢ sin(—z) =cos z —1 sin
and (e™*)" = cos nz — 1 sin nz.

De Moivre’s Theorem may be used to derive many trigonometric

identities with a minimum of effort. For example,
cos 2z + i sin 2z = (cos x 41 sin z)°
implies
cos 2z = cos’ z —sin?z, sin 2z =2 sin 2 cos z.

Other identities of this type are given in Problem 11.32.

From the Euler Formula we also obtain

cos T = %(e" +e”%), sinz= %(ei’ —e7'%)

and, since
— A -z 8 s e
cosh z= 2(e® +¢7%), sinh z= 5(e* — e™%),
cosh iz= cos z, sinh iz=1 sin z.

Finally, for any complex number z = z + iy, we may define
e’ = ™ = ¢%(cos y +1 sin y) = e” cos y + ie” sin y.

We conclude this section with a discussion of the Simple Har-

monic Oscillator and the Damped Harmonic Oscillator.
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A point on the line whose position z(t) at time t satisfies

a differential equation
z"(t) + w?z(t) =0 (w #0)

is said to be in simple harmonic motion. For example, a mass m
which moves subject to a force proportional to its distance from the
origin and directed towards the origin satisfies an equation of the form
mz" = —kz and so is in simple harmonic motion with w = y/k/m .
Fundamental facts about the differential equation are: (a) If z,(t)
and ,(t) are solutions then so also is z(t) = az,(t) + bxa(t).
(b) If z,(0) = 22(0), z}(0) = z5(0), then z,(t) = z2(t) forall ¢
(Problem 11.33). We may easily check that z(?) = cos wt, sin wt
are both solutions and that any solution z may be written in the

form
z(t) = a cos wt+ b sin wt

where a = z(0), b= 2'(0)/w. Thesolution z may also be written

in the form X A - 7_- e
z(t) = A cos(wt — @), /‘\ /\
where (A,p) are ,/ _J

the polar coordinates

of (a,b). This follows from -A

cos wt + sin wt]

b
= el L " S
() = el aZ + b2 a? + b2

= Alcos ¢ cos wt +sin @sin wt].

Evidently all solutions are periodic with period T = 2T since z(t+

!

T) = z(t); the number A is called the amplitude and the angle

¢ is called the phase of the oscillation. The number of complete
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oscillations per unit of time % = 5= is called the frequency.
Finding the two solutions cos wt, sin wt here involved a

certain amount of guess work. The general approach for discovering

solutions to equations of this type is to try to find a solution of the

form z =e*'; then
.’1:" _‘_"”‘)2m = (1\2 +w2)e,\t

so that e* is a solution provided M? 4+ w? = 0; A = +iw. But

eiwt e~iwl  are complex-valued. Two real-valued solutions are
?

1

. . ¥ . _
-2—(6“‘" +e ) = cos wt, —(e™'—eT™!) =sin wt.

2

If the motion of the oscillator is opposed by a force proportional

to the velocity z', then x(t) satisfies an equation of the form
z"(t) 4 2p2'(t) + w2(t) =0, p>0.

If we try z = e, we find that
2" + 2pa’ + wiz = (A? + 2pA + w?)e.

Thus e* is a solution provided A +pA+w?=0; A= X2 =
—p+ /p? —w? . Solutions of the damped equation are of the form
(Problem 11.33)

z(t) = ae™! 4 be?!,

i pPfwd,
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Case (i) Damped Harmonic Oscillator p < w : In this case A =
—p+iwy where wy=4/w?—p? All solutions are of the form

x(t) = ae(—p+iwo)t + be(—p—iwo)t — e—pt(aeiwot + be—iwnt).

In real form, the solutions may be written as

z(t) = e~"(a; cos wot + by sin wot) = Ae™ " cos(wot — ¢).

X4
Note that the effect of o a
the damping is an ?\‘ iy >
pig / _V' e i
oscillation whose amplitude 45
decreases exponentially to zero in EL” i
. . ~ 2
time and whose ‘period’ exceeds the undamped period, T = i d >
Wwo
2 2
ZT | Note that the ‘period’ UTIRER p—w .
w Wo
Case (i) Overdamping p > w: Inthiscase A; and Ay
are both real and all X
solutions are of the form
bt

z(t) = ae™! 4 bera! l \ﬁ

with )\1,)\2 < 0.
Here again all solutions z(t) — 0, t — co. But they do not oscillate
and in fact each solution has at most one zero and at most one interior

extremum.

Case (iii) Critical Damping p = w : Here solutions are of the

form z(t) = (a+bt)e' (Problem 11.34), do not oscillate and satisfy

z(t) = 0, t — oo.
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§11.6. Improper Integrals

If f iscontinuouson [a,00) we define theimproper integral

ff=,1i_xg°[ff

if this limit exists. If the limit exists the integral is said to be conver-

gent. Otherwise it is divergent.

EXAMPLE 11.6.1. fooo e %y = % , if a >0, and the integral is

divergent, if a <0, since

/T . {l(l—e'“T), if a#0
e Pde =4 ° .
0 2 if a=0.

EXAMPLE 11.6.2. f1°° =%z = =L, a>1 and the integral is

1—a ?

divergent, if a <1, since

]T:r_“dz.-:{ 3%; (T —-1), if a#l
1 log T, if a=1.

The Cauchy Criterion for the convergence of f:o f is that,

for each € >0, there exists T such that
q
pa2T= [ fl<e.
»

Since faT f increases with T if f ispositive foT f tends
to a limit as T — oo if and only if it is bounded we obtain a

comparison test similar to that for series.

PROPOSITION 11.6.3. Suppose f,g are continuous and

0< f(z)<g(z), agz<oco.
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Then [~ g convergent = [, > f convergent.

We may also obtain the comparison test in a limit form.

PROPOSITION 11.6.4. Suppose f,g are positive and continuous

and satisfy

. f(@) _
Jim o5 =L

(a) f 0<L <oo, then [~ convergent <= [~ f conver-
gent.

(b) If L=0, then [~ g convergent = [ f  convergent.

EXAMPLE 11.6.5 The integral fl°° m dz is convergent by

1

. . " nl
the comparison text since 0 < ST < B = T and

~3/2
]

3

2 =

EXAMPLE 11.6.6 f1°° zPe~*dzx is convergent for all p. Here we

use the limit form of the Comparison Test with f(z) = zPe™",

1

g(z) =e"2*. Thus

Po—2T
jg; = z_e% - 2 0, forall p.

Proposition 11.6.4 (b) implies flm [ is convergent.
The improper integral [~ f = 713_[3;1» [ f may be handled
similarly.

For functions f whose domain is a half-open interval (a,b]

or [a,b) we may also consider the improper integrals

b b b— i
[ r=tm [5 [ f=tim [ f
32
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For functions f integrable on [a,b], we have

/ﬂif=f:f and [:_f=f:f

but the improper integral may exist even if f is not integrable on

[@,b] in the Riemann sense.

EXAMPLE 11.6.7. [}, zPdz = -1, if p>—1 and is divergent

+10
if p<-1.
Thus f(]l+ z7/2dz =2 even ¢ 4
though the integrand is = x4
unbounded on (0, 1]. N
This follows from L x

fl 2Pdr = { ATl =), p# -1

t —log t, P =@

] - . -
Do P if p> —1, and diverges otherwise.
The various ideas of improper integral may be combined so that

an integral may be improper at two ends:

=] 1 oo
/ e TzPdt =/ e TzPdz +f e *zPdzx.
0+ 0+ 1

The first integral on the right converges, if p > —1, since
0D<e®*z?P <zP, if 0 <z <1, and f01+ zPdz is convergent
(Example 11.6.7). The second integral is convergent for all p (Ex-
ample 11.6.6).

Infact [~ e *zPdz =p!, if p=0,1,... (Problem11.25(b))
and the integral may be taken as an extension to noninteger values of

p of the factorial function.
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Problems

11.1. Determine which of the following series are convergent and which

are divergent. Give reasons.

OPg = ®) & CPwEI
(@ ki::l 7;:'(}14_—17 ’ (©) g:l (%l), ®) k§1 % '

® & wte W E by O X &5,
= (2n)! mz X 9ig
(J) El D% » (1‘) Jgﬂ Fil] (1) ng _JJL )
(m) 3 L1, (a) 3 e, (0) 3 tog(1+ }),
=1 k=0 k=1
() X logl+ ), (0 2 SHE, (@) 2 [ = sin(z)]-

+ sin(1).

&
s

=
I
-

11.2. Which of the following are convergent? Absolutely convergent?

o0k 00 . 2k T
@ Y 5, ) 3 S, @ T
k=1 k=1 k=2

n=1

==

11.3. Show that kz—:z ’(logl—k)v is divergent for all p € IR.

o0
11.4. Show that ) k((lo_Tl):),; is convergent for all p € IR and is
k=2

absolutely convergent if p > 1.
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11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

Show that

o0 o0 =
(®) Y =%, (b) 3 =12,
n=2 n=1
(C)kglzrfm———ls (d)k‘;‘ﬁ%_—l=%,
o= (k=1)! _ 1 £ 3 1 1 0.—1. -2
() X G = 700 » () ¥ wrigermen = s> «#0-L-2.
o0

(e) kzo (°+k)(a+k-li-l)(a+k+2) — mﬁs » a#0,-1,...

o0
. 1 .
Sum the series kg_o GTOGFR T (aFEEy where r is a

natural number.

Prove that n"e!™™ < n! < n"te!~™ and that

(n!)lfn [
n L

[HINT: Consider [ log z dz].

B

Let up, =143+---+%—log n. Showtat {u,} isconvergent

and, if 7 =limp—oo un, 0 <y <1. N.B. 74 isin the open
interval (0,1).
[HINT: Consider also the sequence

vn=1+%1+--4+L—log(n+1) 7 Iis called Euler number.
Assume the result of #11.8 and show that

: 1
n+2

1
e —) = 2.
4 2n) log

Assume the result of #11.8 and show that, if p,¢ are integers,

p>gq, then

lim ( i - i ! o
n—oco‘qgn+1  gn+2

1 P
.-+_ :lo e
o) = losl)

335



12,11,

11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

Assume the result of #11.8 and, by considering the sequence

Ugp — Uy, Show that

Z( 1).r.+1 — =log 2.

If the terms in the series Y po,(—1)**'% are rearranged by
taking p positive terms followed by ¢ negative terms, then

the sum is

log 2+ log( ).

Investigate the sequence

1 1

1
1+ 5+ 5+ --+-ﬁ—*2\/f_l-

We have seen that if 3 7., ar is convergent, then
limp—co @n = 0. Show thatif {a,} isdecreasingand 3 o, ax
is convergent, then lim,_ . na, = 0.

2

Prove that 3 oo n’z" (l—‘*ﬁ:—; , if Jz| < 1.

Prove that Z::o:o m — j;)l e't?d.'ll.

For what values of z is the series Y o, 2ka?*~! conver-

gent? What is its sum?

Prove that Y oo, n(z —2)" is convergent if 1 < z < 3.

What is its sum?
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11.19.

11.20.

11.21.

11.22.

11.23.

9 7 25 .
Prove that [ fwdt=z—% %—2—5-}—... if |z| < 1.

Show that equality also holds if z = %£1.

13..2k=1) &

749k is absolutely

Prove that the power series 3 7o,
convergent if
-1 <z <1, conditionally convergent if z = —1 and diver-

gentif =1 or [z|>1.

Show that 300, & g™ is absolutely convergent if |z| <e

and divergent if |z| > e.
Investigate the series Y oo, ':1—': e and Y oo (-1)" I‘n—',' S,

Use Taylor’s Theorem to prove:

22 ozt 2®
cosm=1—§—!-+ﬁ—a-+...
. 22 ¢ 2
51n:z=z:—§+-5-!——ﬁ+...
. z gz 28
[ _1+ﬁ+§+.§+.”
for all =z.
. Prove that
-1 - -2
(1+J:)°'=1+a:r+a(%§—)x2 0(01.12)(.6; )323-]-
forall ae R if |z <1. When a=0,1,2,..., thisis

the Binomial Theorem and holds for all =z € IR.
HINT: Denote the series by B(z). Show that (1+42z)B'(z) =
aB(z) and deduce (1+z)"“B(z) is constant.
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11.25.

11.26.

11.27.

11.28.

Show

(a) _ﬁ,m?%;:%, if a>0.

(b) f0°° tPetdi =nl, n=0,12.: .
() J° &= dr=1.

(d) f01+ log = dz = —1.

1:2 I m™
(e) fom 1+x=d+x4 = 3"
(f) fom '(?&‘%E’TT = % -
2= dz T
® L #m=i

(h) floo T‘i’,.—.pr=%log2, n > 1.

Let ax>0 and Lim %! _ . Show that,if c#1, the
k—oo Qaj

sequence is ultimately monotone and

(a) limgocoar =0, if 0<c<1

(b) limg_car =00, if ¢> 1.

If ¢=1 in the preceding example, the sequence may not be
k41

ultimately monotone. However if =1-R+0(}), k — oo,
the sequence is ultimately monotone if p # 0 and satisfies
limg—ocar = 0,00 as p >0, < 0 respectively. Prove this,

the assertion of Lemma 11.3.6 (Raabe’s Test for Sequences).

Prove that Y 5o, (—1)"[%’;—;—11]? is absolutely convergent
if p>2, conditionally convergent if 0 < p <2 and diver-

gent if p <0.
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11.29. (Root Test) Suppose a, =0 and

lim aX/" = c.
n—oo

Show that
(a)if 0<e<1, then Y jo,ax isconvergent
(b)if e¢>1, then Y ro,ax is divergent

(¢)if c¢=1, then the series may be convergent or divergent.

11.30. (Cauchy Condensation Test)
(a) Suppose a, > 0 isdecreasing. Show that > re,ar con-
vergent <= Y po,2ay convergent.
(b) Use (a) to show Y 7o, 77 is convergentif p >1 and
divergent if p < 1.

(c) Use (a) to investigate the series

S T L T
£ k(log k)’ £ k log k(log log k)P ;

11.31. Use de Moivre’s Theorem to show that
(cos = +1 sin z)m/m = cos(% z)+1 sin(% ).

First decide what the left-hand side of this expression should

mearn.

11.32. Show that

cos 3z=4 cos®z — 3cos z, sin 3z= 3 sin z — 4 sin’ z,
cos 4z=8 cos*z — 8 cos’z + 1, sin 4z= 8 cos®z sin = — 4 cos zsin z.
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11.33. (a) Suppose z = z;(t), = = z2(t) both satisfy the equation
z" +2pz' +w?z =0, 2(0) =a, 2'(0)=b (p20).

Show that z,(t) = x2(t) forall t=>0.

HINT: Show ¢(t) decreases, where g(t)= (z}(t)— :.':’2(t))2 +
w? (1 () — z2(8))”.

(b) Suppose z = z,(t), = = z(t) are as in (a) and neither
is a constant multiple of the other. Show that all solutions of

z" + pz' +w?z =0 are of the form z(t) = az;(t) + baa(t).

11.34. If p=w, show that all solutions of z'"+2pz'+w?z =0 are
of the form z(t) = (a + bt)e™*".

11.35. Prove the formulas

o1 . 1
sin 3 ¢ +sin(n + 3)z
. 1 ?
2sn 3z
1 1
cos 5 T —cos(n + 3)z
2 sin %z

l14+cos z+4cos 2z + -+ cos nz =

sin £ +sin 2z 4+ -+ +sin nx =

HINT: If 2z # 1 is any complex number, show

b= zn+l

l14z4+2°+---+2"=
l-2

and

1-— et'(n+1):t: e—-;- & 3. ei(n+§) -

l—el-: e—i'x_e’I
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