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I. INTRODUCTION

§1.1. Real Numbers. We begin by recalling some elementary al-

gebraic and order properties of the real number system. We will use

the following notation.

IR:  the set of real numbers

the set of integers {0,+1,+2,...}

the set of rational numbers, i.e. numbers of the form p/q where p,g€ Z, ¢ #0

the set of natural numbers or positive integers {1,2,3,...}

s 5 & N

the empty set, or set with no elements.

Evidently sCINC ZC QCR.
It is important to remember that
(1) Division by zero is not defined
(i) ab=0<«<=a=0o0r b=0
(i) a < b (“a is less than b7) is equivalent to b > a (“b is
greater than a”). Both are equivalent to b —a > 0. This is
what allows us to model the real numbers on a line; the real

numbers IR are ordered. For example,

lR.: n + 4+ l >
x o ; 1

0<l, 2y, 0>2 OBx<p<l

Some order properties are:
(0,) a,beR=a<bora=bora>hb
and only one of these holds.
(02) a<b 0<c=>ac<be
a<b ¢c<0= ac>bc

(03) a<b b<c=>a<c (transitivity)



(04) a<b celR=a+c<b+c
(0s) ab>0=a>0 and >0 or
a<0 and b<0.

If a<z<b wesay r is between a and b.
THEOREM 1.1.1. a<b=>a< }(a+b)<b.

PROOF: a<b=a+a<a+b<b+bd

—a=secsponing

REMARKS: (i) Determine where the properties ( 0; ) - ( 05 ) are used
in the proof.

(ii) This theorem shows that, for example, there is no “least
positive number” or number “z # 1 which is closest to 1”, since

between any two numbers there is another one.

§1.2. Induction. A subset S of IR is called inductive if

(I,) 1€85.

(I.) keS=k+1€8S.

For example, the sets IR, @ Z,IN are inductive. Think of some sub-

sets S of IR which are not inductive.

AxioM 1.2.1. (THE INDUCTION AXIOM): If § C IN satisfies (I, )
and (I, ), then S=IN.

Thus we see that IN is the only inductive set with no inductive proper
subset; IN is the smallest inductive set.

In practice we will use induction as follows. We will wish to
show that a certain statement [n] about the natural number n holds
true for all n € IN. We prove this by showing that

(i) [1] holds, and



(ii) if [k] holds, then [k + 1] also holds.
We conclude from this that [n] holds for all n € IN. Here
S={n € N:[n] holds} C IN and S satisfies (I, ) by (i) and
(I2) by (ii) so that S=1IN.

EXAMPLE 1.2.2: Suppose that 0 < a < b. We will prove that
[n]t G2 @ <P

holds for n=1,2,3,... .

PROOF:
(i) [1] holds. This is easy, we are given 0 < a < b.
(i) [k] holds == [k + 1] holds. To see this, suppose [ k] holds,

ie. 0<ak<bk

Then 0a < a*a <bfa < b  (why?)
so that 0 <.a*t? < P+,

ie. [k + 1] holds if [k] holds.

(i), (i) => [n] holdsfor all ne N .

EXAMPLE 1.2.3. (BERNOULLI'S INEQUALITY): If a > —1, then

(14a)">14na, n=123,....

ProoF: We wish to show that the statement

[n] : (1+a)"él+na
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is true for each n € N, if a > —1. First [1] is true, since
(14+a) =1+a. (*)
Secondly

(14+a)*>1+ka
= (1+a)**! > (1 +ka)(1+a) (Multiply by 14 a > 0, since a > —1)
=1+ (k+1)a+ ka®

> 1+ (k+1a. **)

Thus if [k] is true, then [k + 1] is also true. From (*), (**) we find

by induction that [n] is true for each n € N .

REMARK: Examine the proof of Bernoulli’s Inequality to determine
those values of n,a for which we can state that the strict inequality
(14+a)" >1+ na holds.

EXAMPLE 1.2.4: 1+2+4.--+n=1in(n+1), n=12,....

PROOF: 12 11(1+1). The statement is true when n=1.

Ao 1+2+---+k=%k(k+1)
= 1+2+-+k+(k+1)=Q+2+--+k)+(k+1)
1
=§k(k+1)+(k+1)
1
= -2-(k+1)(k+2),
so that, if the statement is true for n = k, it is also true for n =

k+ 1. We conclude, by induction, that 1+2+---+n = In(n+1),
n=1,23,... .



Of course some problems may be solved by many different means,
some with more advantages than others. If we were faced with the
problem of finding a formula for 1+ 2 + -+ + n, the sum of the
first n natural numbers, then to use the method of Example 1.2.4,
we would need to first guess the correct formula by looking at several
cases n = 1,2,3 etc. and then prove the formula by induction as we
have done.

An alternative method of deriving the result of Example 1.2.4

is as follows. Since
(n+1)2=n?=2n+1,

we have
22_12=21+1 n=1
32-22=22+41 n=2
42 -32=23+1

n=—(n=-12=2n-1)+1
(n+1)?=n?=2n+1.

Adding and noting the cancellations on the left, we get

n+1P2=1=2(142+--+n)+n
n+n=21+2+:-+n)

%n(n+1) -G
A more geometric way of approaching this question is to let

Sa=142+:++n.
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Then S, is the number of dots in the triangular arrays.

=1 n=72 n=3
° . e X X
° ® e o X
e o o
n=4

e X X X

® &% X

e o o X

[ ] L ] [ ] [ ]

Note that the number of crosses in the nth figure is S,_;.

Therefore

S,,+S_1=n2

Sn = Sa-1=n,

since S, + Sn—; is the number of points (dots and crosses) in a square

array of side n and S, —S,_; is the number of dots on the diagonal.

Thus

25, =n’+n=n(n+1)

= %n(n +1)

as before.

EXAMPLE 1.2.5: Determine the number of subsets of a set of n

elements.

First we make some experiments, then we guess the general result and
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finally prove it by induction. Denote the set by

Sn = {ay,a3,...,0s)}
n=1: S ={a;} has?2subsets ¢, {a;}
n=2: §;={a,a;} has4 subsets ¢, {a,},{a;}, {a1,a;}
n=3: S3={a1,az,a3} has 8 subsets ¢, {a1},{az},{as}

{al,ﬂz}, {ﬂnﬂa}, {02; 03}. {ﬂuazgﬂa}-

Now we may guess that S, has 2" subsets and prove this by induction.

First S; has 2! = 2 subsets (we just counted them). Second,
if it is true that Sk = {a1,a2,...,ax} has 2* subsets, then Siy; =
{a1,a2,...,8k,8k41} also has these 2* subsets since Sp C Siy;.
The only other subsets of Sy4; may be obtained by throwing a.;
into any of these subsets of Si to obtain a further 2% subset of Si4;
and 2% + 2% = 2. 2% = 2k+1 gsybsets altogether of Si4;. Thus if Sk
has 2% subsets then Si4; has 2%*! subset. Therefore S, has 2"

subsets, n=1,2,... .

EXAMPLE 1.2.6: “All dogs are shaggy.”

PROOF: Suppose that “all groups of k¥ dogs are shaggy”. Now con-
sider any group of k + 1 dogs. Disregard one of the dogs; the group
remaining consists of k dogs and are therefore all shaggy. The same
argument shows that the disregarded dog is shaggy if we simply disre-
gard a different dog. Thus “all groups of k dogs are shaggy” implies
“all groups of k+1 dogs are shaggy”. By induction “all groups of n
dogs are shaggy” for all n = 1,2,3,... . What, besides the dogs, is
shaggy here?



§1.3. The Binomial Theorem. We define the symbol n! (“n
factorial”) by 0! = 1 and (k + 1)! = k'k, so that n! is defined for
n=0,1,2,... . This is called an inductive definition. Equivalently

Ol=1, nl=12..:-- (n=1)n, if nelN.

Thus 0!=1, 1!=1, 2!=2, 3! =6, 4! =24.
If 0 < k <n, the binomial coefficient (}) is defined by

(n . n! _n(n=1)--(n-k+1)
k) T k(n=-k) 1.2000ees k '

For example,

()-55-= ()= ()=
(=3 =

PRrRoPOSITION 1.3.1 (PAascAL’s TRIANGLE LAw):

(e G)= (T

PROOF:
n n n! n!
(k— 1) i (k) SFE-Din-k+1) T Hm—-#)
. n 1 1
= F=Din—F) [n—k+1 3
n! n+1

., (k—l)!(.n—k)! "k(n—k+1)

i k!(r(ln++11—)!k)! - (ﬂ Z 1)'
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O

Pascal’s Triangle gives a convenient method of computing successive

binomial coefficients (:) y

012 3 4 56
1

151 =1 @=1 ()=1

133 1
146 4 1 )= "O=2 (=1

1510105 1
1615201561

b
o

Dbk WD~ O3

All entries not equal to 1 are obtained by adding the entry immedi-

ately above to the one to its left.

THEOREM 1.3.2. (BINOMIAL THEOREM).

(a+b)* = (g) a"+ (’1‘) a1+ (;‘) & AP (n " 1) ab™1+ (:) b,

PROOF (BY INDUCTION): The theorem is true when n = 1, since

(a+b)! =a+b= (;)a+ (:)b
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Next, if the theorem holds for some n, then

(a+b)"*! = (a+ b)(a+b)"

=(a+ b)[(g)a“ + ('l‘)a"-‘b+ (;)::"‘252 +ooet (n 1 1)ab"'1 + (:) "]
= [(g)a"“ + (’;)a"b+ (g)a"*b’ +ooet (nfl)aﬁbﬂ-l + (Z)ab“]
#[()amer (T)amw (7 )atsra (1 Jasm o+ (7)o
(e [+ Qe ) e
12 e
T y L

using Pascal’s Triangle laws and the fact that (J) = ("¢') =1, (7) =
(:I:) = 1. Thus, if the Binomial Theorem holds for some n, it also
holds for n + 1. Since we have already checked that it holds when

n = 1, it follows by induction that it holds for all natural numbers

n.

REMARKS: (i) It is also helpful to consider the Binomial Theorem in

the form

(a+b)" =a" +na""'b+ —-—--"(';; Dgn=252 4. 4 nab®=t 45",
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(ii) Note that, with a=1, b=z, we find
(1+z)"=1+nz+-n(r;—;1)zz+---+nz"'l+z"

>1+4+nz, fz>20andn>1 (Why?).

In fact we already know this inequality for ¢ > —1 (Bernoulli) but
this suggests further generalizations of Bernoulli’s Inequality.

§1.4. Absolute Value. @ We define the absolute value |z| of a real
number z by
z, if 220
|z| = .
-z, B 2<0
Geometrically |z| is the distance of z from 0 on the number line.
More generally |b — a| is the distance between a and b.

The absolute value has the following properties

(A1) |z| =20
(A2) |z|=04=z=0
(A3) |-z|=|z

(A4) |zy|= 2] |y|
(A5) If c>0,then |z|<c+= -c<z<c
(A6) —|z|<z <z

(AT)

1= vl | <le £9] S el + Iy| (Trisagle Inequality)
ProoF oF (Al), (A2), (A3):
Exercise

PROOF OF (A4):
Case z=0o0or y=0=zy=0=> |zy| =0 = |z| |y|

Case >0 and y > 0= zy > 0 = |zy| = zy = |z| |y|
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Case >0 and y < 0= 2y < 0 = |zy| = —zy = z(—y) = |z| |y|
Case <0 and y >0 same as preceding case
Case <0 and y < 0=>zy > 0= |zy| = zy = (—2)(~y) =

=] vl -
PROOF OF (AS5):

|z| <c+<=z<c and -z <c¢ (consider z>0and z <0)

& —-c<z<ec

PROOF OF (A6):

(A5) => (A6) if we take c = |z].
PROOF OF (A7):

-lz| £z < |z]

(A6)=’{ B

= —(lzl+ ) £z+y<(zl+y}) (add)

= |z + y| < |z| + |y]

from (A5) with ¢ = |z| + |y| and z replaced by z + y.
We now have proved the right-hand part of (A7) with the ‘4’ sign.

To obtain this with the ‘-’ sign, replace y by —y.

|z =yl < lz|+ | =yl = |z| + |yl
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Next, consider

(right-hand half of (A7), just

= -yl <
el=le+y-vislztyl+lvl o req)

= |z| -yl < |z + 9

(Interchange z,y)
and |y| - |z| < |z + yl
= |lz| -yl | < |z +y

and | |z|—|y||<|z—y| (Replacey by —y).
This proves the left-hand half of (AT).

§1.5. Intervals. Let a,b € IR, a < b. There are four types of

intervals | determined by a,b.

I=[a,b]={z:a <z <b} -closed interval
I=(a,b)={z:a<z<b} open interval
I=[ab)={z:a<z<b}

I=(abl={z:a<z<b}.

The last two intervals are neither open nor closed. The points a,b
are the left endpoint and right endpoint respectively of each inteval.
A closed interval contains both endpoints; an open interval contains
neither endpoint. Any point of I which is not an endpoint is called
an interior point of I. The point 3(a+b) is the midpoint of each of
the intervals above since its distance from a and from b is }(b—a)

and b - a, the distance from a to b is the length of the interval.
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It is convenient to extend this notation as follows.

(=00,00) =R
[a,0) = {z : 2z > a}
(a,00) ={z:z > a}

(-o0,a] = {z:z < a}

(=00,a) = {z :z < a}.

We will not, however, consider these to be intervals.

§1.6. Completeness of R. Let SCIR, b€ IR. Wesay b is an

upper bound of S if

z<b foreach z€S.

S is bounded above if it has an upper bound and S is unbounded
above if it has no upper bound. For example, [0,1], (—o0,1) are
both bounded above since 1 is an upper bound (2 or any number
greater than or equal to 1 is also an upper bound). Notice that an
upper bound of S may or may not be an element of the set S. The

sets (0,00), IN, IR, @ are all unbounded above.
If a € IR satisfies

a<z, foreach z €S,

then a is called a lower bound of S. A set which has a lower bound
is bounded below and a set with no lower bound is unbounded below.

A set which is bounded above and below is called bounded and
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otherwise it is unbounded. Thus S C IR is bounded if and only if

S C [a,b], for some closed interval [a,b].

DEFINITION 1.5.1: Let SCIR, b € IR. Suppose
(i) z<b, foreach z€ S,
(i) <y, foreach upper bound y of S.
Then b is called the least upper bound of S or the supremum of S.

We write
b=4ubS or b= supS.

Thus b= sup S means
(i) b is an upper bound of S and
(ii) b is a lower bound of the set of upper bounds of S.

For example,

sup(0,1) =1, sup(-1,1)=1, sup(—o0,0)=0.

If b= supS and b€ S, wesay b is the mazimum of S. Thus

1 = max[-1,1], but [~1,1) has no maximum.

DEFINITION 1.5.2: Let SCIR, a € IR. Suppose
(i) a<z, foreach z€ S
(i) y <a, for each lower bound y of S.

Then a is called the greatest lower bound or infimum of S. We write

a = g.l.bs. or a = inf S.

If a=infS and a € S we say a is the minimumof S.
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AXIOM 1.5.3. (COMPLETENESS OF R): If SCIR, S# ¢ and S

is bounded above then S has a supremum.

Equivalently, the Completeness Axiom for the Real Numbers is that
any nonempty set of real numbers which has an upper bound has a
least upper bound.

We asserted earlier that the set IN of natural numbers is un-
bounded above. This is called the Archimedean Property of IR. Even
though it may seem intuitively clear it should be proved. We will
deduce it from the Completeness Axiom. The proof is an example of
a proof by contradiction. Suppose IN has an upper bound. Then, by
the completeness of IR, IN has a least upper bound or supremum.

Let b=supIN. Then
b>n, foreach né€ N.

But b—1<b,so b—1 is not an upper bound of IN and there is an

element m € IN such that
b—1<m and therefore b<m + 1.

This contradicts b = sup/N, since m € N = m+1 € IN. The
assumption that IN has an upper bound leads to a contradiction and

therefore the assumption is false.

Problems
1.1 Show by induction that
2422 4...4n?= %n(n+1)(2n+1), nelN.
1.2 Give another proof of 1.1 by considering the expression
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(n+1)* - n®.

1.3 Show by induction that E = ( ) ,ne€N
k=1 k=1

ie. B4+ 4. 4n¥=(142+:--+n).

1.4 Check that

e SR TR 10w NS SN RO TOO IR
1.2 2% g0 Wipgstigti vyt agitig ™ 4

Guess a general formula and prove it by induction.

1.5 Given n straight lines in the plane, no two of which are parallel
and no three concurrent, determine the number of intersection

points.

1.6 Let [n] denote the statement 142+---4n = 3(2n+1)?. Show
that [n] = [n + 1]. Thus, by induction, [n] holds for each
n € IN. But we have seen (Example 1.2.4) that 1+2+---4+n =
in(n+1) # §(2n +1)?. Comment.

1.7 Let S be aset of n elements and 0 < k < n. Show that (2)

is the number of subsets of S each having exactly k elements.

1.8 Prove

@ @)*(Q)++(1)+ ()=
® (§)-()+rer(,2,)+evr () =0

Hint. Binomial Theorem.
1.9 Show (3) =(,2,)-

1.10 Check that

693 C-DE-D=3 C-De-He-D-3
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Guess a general formula and prove it by induction.

1.11 Prove that, if z,y € IR, n € IN, then
zn_yn = (z—y)(:t“_l +zn—2y+zn—3y2+___+zyu-2+yn—l)_

Hint: Don’t use induction.

1.12 Let a;,a3,...,a, be real numbers all having the same sign and
all greater than —1. Show that
(14+a1))l+4+az2)-(14+an)214+a1+az+--+an.
The case a; = a; = -+ = a, = a > —1 is Bernoulli’s

Inequality (14 a)" 21+ na.

1.13 Solve
(a) |z=1=0 (b) |[z-1]=2
(b) lz—-1<2 (d) lz-1]<2.

1.14 If a,b € IR, what z satisfy
|z —a|+|z—=b=|a-b|?

1.15 Determine whether each of the following is true or false. Give
a reason for your decision in each case.
(a) z<5=|z| <5
(b) z-5|<2=3<z<7T
() N+3z|<1=2z2>-%

(d) There is no z such that |z —1| = |z - 2|.

1.16 If A, B,C are real numbers, show that
|A-B|<|A-C|+|B-C]|.

1.17 If A, B are real numbers such that |4 — B| < 7, show that
|A? - B?| < 3(2|B| + }) -
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1.18 Express the solution sets of the following in interval notation.
(a) -3<z+3<5 (b)) 1<3z-2<52
(c) |z=T|<5 (d) 1+3z| <4.

1.19 If a,b € IR, prove 2ab < a? + b? . Under what circumstances
does equality hold?

1.20 f 0<z <y, prove z<\/:z_y'<£;-l<y.
1.21 Show n<2",if n€IN.

1.22 Write down sup S, inf S for the following when they exist.
(a) S=(0, 1] (b) S = (=00,0)
(¢) S={i:n=12,...} (d)S={L—-—:l:;n=1,2,...}.

1.23 If 0 < a show that there is a natural number n such that

0<ic<a.

1.24 If 0 < a show that there is a natural number n such that

0<2™" <a.

1.25 Prove the Well-Ordering Principle: If S is a nonempty subset
of IN, then S contains a least element, i.e. S has a minimum.
Hint: Suppose S has no least element. Consider IN\S = {n :
n€IN, n ¢ S}. Use induction to show IN\S = IN and hence
S = ¢ contradicting S # ¢. :

1.26 Is the empty set ¢ bounded? Explain.

1.27 Let T1,T250 0033y be real numbers. Prove
|21+ 22 + -+ + 2a| S |21] + 22| + -+ + |2al -

128 Let s, =14+r+r24...4r",

) o i
l1=r

(a) Show by induction that s, = I raEl.
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(b) Give another proof of (a).

Hint: Use 1.11 or consider s, — rs, .

129 If a >0 and n € IN, show that the equation z™ = a has at
most one solution z > 0. We will see later (page 63) that it
has one solution z. We denote this unique solution z = a* .
If 0<a<b,prove ar < b¥ .

Hint: Use # 1.11.
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II. SEQUENCES

§2.1. Functions. Let D C IR. A real-valued function f of domain
D is a rule which, with each z € D associates a real number f(z).
The range f(D) of f is the set {f(z): z € D}. For example, the
function f defined by the rule f(z) = z?, 0 < z < 2 has domain
D =[0,2) and range f(D)=[0,4).

A real sequence is a real-valued function of domain IN, the set

of natural numbers. For example the rules

{=3)"

am)=n—-1, Hn)=zn, dn)=r, dn)=

=

define sequences a, b, c,d. The expression a(n) is called the n'® term
of the sequence a and will usually be denoted a,. We will normally
specify a sequence by simply giving the rule and speaking of the se-
quence {n—1}, or {3 n}, or {1}, or (=),

It is also sometimes convenient to consider sequences somewhat
less precisely and to simply give a few terms which suggest a general
rule:

{0,1,2,3,...}, {3+ 8 75}

{1,1,1, ...}, {-1,3-3.%---}

§2.2. Limit of a Sequence. Before considering limits in

general, we will first discuss the special case of sequences.

DEFINITION 2.2.1: The sequence {an} is convergent with limit £ if,

for each ¢ > 0, there exists a natural number N such that

n2N=la.-{|<e.
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The sequence is said to be divergent if no such number £ exists.

Note: ¢ is the Greek letter ‘epsilon’.

REMARKS: .
(i) The statement ‘{a,} is convergent with limit £’ is abbreviated

to

lim a, = £.
n=— 00

(ii) The definition says ‘limp—ec @n = £’ means the distance |ap—¢|
between a, and £ is as small as we please provided n is large
enough.

(i) Equivalently ‘lim,—e @, = ¢’ means, for each interval I with
interior point £, all but a finite number of terms of {an} are
contained in [.

(iv) The choice of N in Definition 2.2.1 depends on the number ¢
given and it is important to remember that we must be able to

find such a number N for each positive number .

EXAMPLE 2.2.2: If a, =1, n = 1,2,3,..., then B, o dn = 1.

Let e>0. Now n2 1= g, - 1|=]1-1|=0<e.
Thus, for each € > 0, the choice N = 1 works in Definition
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2.2.1 in this case. In fact any choice of N is satisfactory for this

sequence.

EXAMPLE 2.2.3: If @, = 1, n =1,2,3,..., then limp.ocan = 0.

To see this, consider

1 1 1
—_— — — < —— 1 > .
|aﬂ 0‘ lﬂ. 0[ n — N! lf n - N

Therefore, if ¢ > 0, we may choose N to be any number greater

than 1. Then N>% means ‘le<5 so that
n>N=>|a,-0|<e¢

and lim,_.. @, = 0, as asserted.

PROPOSITION 2.2.4 (UNIQUENESS OF LIMITS). For any sequence {a.},

at most one number ¢ satisfies Definition 2.2.1.

PROOF: Suppose £;,#; are both limits of {a,}. Thus,if € > 0, then
§ > 0 and there exist N;, N2 such that

£

and

()

n_>_Ng=>|a,.—21|< 2

Let N = max{N;,N;}. Then n>2 N=n2>2N; and n 2> N; =
IEI_EZI = |el'—an+an_e2| < Ian_ell+|an_£2| < §+§=5
(Triangle Inequality).
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Thus 0 < |¢; — €| < ¢, for each € > 0, so that 0 = [¢; — £;|,
since we have seen in §1.1 that there is no smallest positive number,
and so £; = £;.

A sequence is said to be bounded if there is a number K such

that

IaﬂISK$ neml.2.3,.:.%

PROPOSITION 2.2.5. A convergent sequence is bounded.

PROOF: Suppose limp—oo Gn = £.

Let € = 1. There exists N such that

n2N=|an—-{ <1

= |an| — || < |an — €| < 1 (triangle inequality).

Therefore |an,| <1+ €|, if n > N, and
lan| € K = max{|a,|,|az]|,..-,lan=1l,1 + |€]}, n=1,23,....

O

REMARK: (i) A bounded sequence need not be convergent. To see
this, consider {(—1)"}. This sequence is bounded, since
|(=1)"| = 1. However the sequence is not convergent: suppose

limp—o(—1)" = £. Then there exists N such that n > N

= |(=1)"=-¢ <1 (e=1)

—|1-£<1 and 1+€=|-1-£<]1
—2=(1+1=[1-£L+1+¢
SN={+]14+€ <1+1=2, thatis 2<2.
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This contradiction shows {(—1)"} is not convergent.

(ii) Boundedness is a necessary but not a sufficient condition for con-
vergence of a sequence. As we saw in (i), a bounded sequence might
not be convergent. However, an unbounded sequence is necessarily di-
vergent. For example, from the Archimedian Property, page 14 {n}

is unbounded and therefore divergent, by Proposition 2.2.5,

THEOREM 2.2.6. Suppose a, =¢, n=1,2,... . Then

By oo g = £
ProoF: Exercise.

THEOREM 2.2.7. Suppose limp—ec Gn = £, liMp—oo b = m. Then
(a) limpaco(Gn + bn) =€+ m,
(b) limpeco Gnbn = &m,
(c) limpneo 3 = L if m#0.

PROOF OF (a): Forall n=1,2,...
|an 4 bn — £—=m| = |(an = £) + (bn — )| < |an — £] + |bn — m|. (A)

If € >0, there exist N;, N; such that

n2N1=>|a,.-€|<§-
n2N2=>|b,.—m|<-;-.

Thus n > N = max{N;, N2} = |an+ba—€—m| < 5+ 5 =¢, from

(A). Hence
nli_l.réo(a,, +by) =0+ m.
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ProoOF OF (b): Forall n=1,2,...

|anbn — €m| = |anb, — €b, + £b, — €ém|
= |(@n — £)bp + (bn — m){|
< |(@n = £)bn| + |(bn — m)E|

= |an = £| [ba]| + [bn — m] |€].

Now {b,} is convergent, so there exists a number K such that

|bn| < K n=1,2,... (Proposition 2.2.5). Hence
|anbn — ém| < |an — £|K + |bs — m| |£].
If € >0, there exist N;, N, such that

n> N, = lan—£€ <e/(K+f]) and

n> Ny = |by — m| < /(K + |¢]).

Hence n > N = max{N;, N3} = |apb, — €m| <

(K + |€])e/(K + |€]) = ¢ from (B) and therefore

lim a,b, = £,
n=—00

PROOF OF (c): It is enough to prove that

; . 1 1 "
nlil.lgob“—m:nlﬂ E—;, if m#O.
Then use Part (b) to deduce
o B s R
SRR T RmTImiE
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To prove (C) consider

T i
» b | Toal ]

There exists N; such that

m
n,>_N1=>|b,.—m|<I
m

i N ko e

2
=>0<| |<|b| (case m > 0).

Thus, from (D),

1 1 2

.y WS i > N,.
Ib,, m|<|m|2 |bp =m|, if n2>N

There exists N, such that

2
|bn—m|<%£, if n2>2N,.

If n > N = max{N,;,N:}, then both (E) and (F) hold so that

1 1 2 |mf?
SN=|— = — —_——— = E.
n> |bn ml<|m|2 - Tl

Therefore limp—co f: =1

= as asserted in (C).

EXAMPLE 2.2.8: limp—~oo(3 + %) =3, by (a), since

lim3=3 and lim -1-=0.

n=—00 n—oo N

EXAMPLE 2.2.9: limp—oo $"+: = £ | by (a) and (c) since
6n+5 6+ %_
Tn+8 7+2%
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and limp—oo(6 + 2) =6, limp—oo(7+ 2) =7 #0.

EXAMPLE 2.2.10: lima—e 4 =0, by (a), (b) and (c), since

1+2

1+ %

n+1 n(1+%) -
n?+1  n?(1+ )

.
n

-
a3
.

since 2y = -
If ny <nz <nz..., where n; € IN,, then {a,,} is a subse-

quence of {a,}. For example, {Z), {7} {1k b1 b3+ b

{%} are all subsequences of {1}.

PRroOPOSITION 2.2.11. {a,} is convergent with limit £ <> each

subsequence {an,} of {a.} is convergent with limit £.

PROOF:
“ =" Suppose {an} is convergent with limit £. If ¢ > 0,

there exists N such that
n2N=|a, - <e. (A)
Let {an,} be a subsequence of {a,}.

k2N=n,2k>N (why?)

= |an, — ¢| < g, from (A).

Therefore limg—oo an, = £.
“ <=7 Suppose each subsequence of {a,} is convergent with
limit €. But {a,} is a subsequence of itself. Therefore {a,} is

convergent with limit £.
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EXAMPLE 2.2.12: The sequence {(—1)"} is not convergent since
{(-1)*"} = {1,1,1,...} and {(-1)***'} = {-1,-1,-1,...} and
bgt-h subsequences of {(—1)"} and hgave limite;,f —1 respectively.

Recall that we also showed that {(—1)"} is divergent directly
from the definition of convergence (cf. Remark (i), p. 22).
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Problems

2.1 Prove Theorem 2.2.6: @y =¢, n= 1,2, = liMysee @n = C.

2.2 (SQUEEZE PRINCIPLE). Suppose zp < zp S yYn, n = 1,2,...

and {z,}, {yn} are both convergent with limit ¢. Show that

{2n} is also convergent with limit c.

2.3 Using only results already established, show that each of the

following sequences is convergent and find its limit
@ {5}  (b){EB),
(c) {3523},  (q){iiddijeda)
() {&E),  (f){Hzn)

[You may assume |sinn| < 1]

2.4 Show that limp,—an = £ = limp— |an| = |€|. Does the

reversed implication hold?

2.5 Suppose a, > 0 and limp—e @n = a. Show that a > 0. Does

ap>0=a>07

2.6 Suppose a, > 0 and {a,} is convergent with limit a. Show

that {,/@n} is convergent with limit \/a . Hint: Do the case
a =0 separately. When a > 0, show /@, — /a = 7}1_?—\7; .

2.7 Let z, = /n+1— y/n. Show that {z,},{\/n z.} are both

convergent and find their limits. What can you say about {nz,}?
§2.3. Monotone Sequences. The sequence {a,} is sncreasing if

a1 £a2<a3<5... (apnSany1, n=12,...)
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and it is decreasing if
012022032... (6,20,.+1,n=1,2,...)

The sequence is monotone if it is increasing or decreasing.

PROPOSITION 2.3.1. Let {a,} be a monotone sequence. Then {an}

is convergent <=> {an} is bounded.

PROOF:

“ =" Let {an} be convergent. Then {an} is bounded, by
Proposition 2.2.5, page 22.

“ &= " Suppose {anp} is increasing and bounded. Let £ =
sup{an, : n =1,2,...}. We will show that ¢ = limp—co @n. If ¢ >0,
then £ — ¢ is not an upper bound of {a, : n = 1,2,...}, since
¢ — ¢ < £. Therefore, there exists an element of the set which is

greater then ¢ — ¢ : there exists N such that
L—e<ap.
Therefore n > N and {an} increasing =
l—e<an<apn<f=>la, - <c¢

and hence limy—oo @n = £.

The case where {a,} is decreasing is similar.

- =

EXAMPLE 2.3.2: The sequence {c"} is convergent with limit 0, if
0 < ¢ < 1, convergent with limit 1, if ¢ =1 divergent, if ¢ > 1. In

fact it is unbounded if ¢ > 1.
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0<c<1: In thiscase 0 < " = ¢c" < ¢, 50 {c"} isa

decreasing bounded sequence. Therefore
= nli_x.:xgo c" existsand 0<f<1 (why?)
{c"*1} is a subsequence of {c"}, so that
¢= lim c™*!, by Proposition 2.2.11. (A)

But ¢™*! = cc” implies, by Theorem 2.2.6(b)

cd=¢ lim c" = lim . (B)

n—0oo n—oco

(A)(B) = Ll=cl=>(1-c)l{=0

= {€=0, since c#1.

c=1: Here limpoc” =limy—o 1 =1 (Example 2.2:2)-

€>1: In this case ¢"*! > c", so that {c"} is increasing. If
{c"} is convergent, then 1 < £ = limp—co c" and the same argument
as before shows (1 —¢){ =0. But c# 1,£ # 0 gives a contradiciton
so {c"} is divergent. Therefore, {c"} is unbounded, by Proposition
2.2.13, since it is monotone and divergent.

We give an alternative approach to this example based on the
Squeeze Principle (Problem 2.2, page 30) and Bernoulli’s Inequality
(Example 1.2.3, page 3). The cases c=0, ¢ =1 are easy.

0<ec<l: Then

0=

>1,s0 1 =1+a where a > 0 and

|
C-1+‘.
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Therefore 0 < " = 7 _,_ln).. <y +1M (Bernoulli’s Inequality)
and, since liMp—oo 0 = 0, limp oo 7357 = 0, We have

hmy oo c™ = 0.

¢>1: Here ¢ =1+a, where a > 0.

Thus ¢® = (1 + a)® > 1 + na, by Bernoulli’s Inequality, and
this implies {c"} is unbounded and therefore divergent by Proposi-
tion 2.2.5.

EXAMPLE 2.3.3: limp—oc/® =1, if ¢> 0.

c>1: Let z, = c*/". We will show 1 < znp4; < z,, ie. Zp

is decreasing and bounded below.

(Batr)"H = () =c 21

(In)n+l P (C-})n+l = Cl+-,"; =CC% >ec

since ¢ > 1 == ¢!/® > 1 (Problem 1.29, page 20).
Thus 1 € (2p41)"! < z7*! and therefore 1 < zp41 < z,
(Problem 1.29, page 20). Hence 1 < £ = lim,—o c!/® exists. Also

{c?=} is a subsequence of {c¢'/"} so that

¢= lim c%.

n=—0oo

But ¢3x = Vc!/" so Problem 2.6, page 30, gives

VvZ= lim et

n—og

Thus 1 < ¢ = /7 which implies ¢ = 1.
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0<c<1: Here c=k“1,(erre k > 1, so that
/n — k—l/n - I/kl/n_

The first part of this example and Theorem 2.2.7(c), page 25, give

limp—oo ¢}/® =1 in this case also.

EXAMPLE 2.3.4: (The number e)

ed—erli (1+ )" exists and 2<e < 3.

PROOF: Let z, =(1+ 1)~

STEP 1: {z,} is bounded, 2 < z, < 3.

The Binomial Theorem gives

1 n(n-1) 1 n(n-1)(n-2)
n G+ =123 ()3

Therefore, since 0 < n(n—1)...(n—k+1)(1) <1, if 1 <

k < n, we have

1 1
2<::,,<1+1+2'+31'+ -+-—'
1,1 1
<l+l+g+m+tog
e
=1+ ’,——1+2(1-—)<3
—2

STEP 2: {z,} is increasing.
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From Step 1,

=14l (1-2) !(1—%)(1-§)+..

2 n—1
+-'E(1-- ;)(1—;)...(1—

)

n

b =1+1+%(1—n%)+l(1-—1—)(1-ﬂi1)+...
! n
(ﬂ+1)'( n+1)( 1)"'(1_n+1)'

Starting from the left, each term in the expression for z, is less than
or equal to the corresponding term for zn4+1 and the expression for

Zn4+1 contains one more positive term. Thus z, < Zn41.

Steps 1 and 2 give the result asserted.

§2.4. The Bolzano-Weierstrass Theorem. We saw in Proposition
2.2.5 that a convergent sequence is necessarily bounded. While a
bounded sequence need not itself be convergent the proposition has

the following important partial converse.

THEOREM 2.4.1 (BOLZANO-WEIERSTRASS THEOREM). A bounded

sequence has a convergent subsequence.

PROOF I: This proof shows that every real sequence {a,} has a

monotone subsequence. This must be bounded and therefore conver-
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gent if {a,} is bounded. Consider the subsequences

{a11a2$03:---}
@ {02,03,84,.._}
IE] {03,a4g as, . .‘.}

llllll

-------

Notice that, if M > N, then is a subsequence of .
There are two possibilities. Either

(i) Each sequence has a largest element or,
(ii) There is a sequence which has no largest element.
In case (i), let an, be a largest element of

Let a,, be a largest element of |n; +1

......

Let a,, be a largest element of |ng_; +1

Then ny < ny3 <nz <... and
Gpy, 2 Gny 2 Gpy 2 ...

so that {an,} is a decreasing subsequence of {a,}.

In case (ii) some subsequence contains no largest element.
Let n; = N. There exists n, > n; such that a,, > a,, and,
inductively, ny > ni_; such that a,, > an,_,. Thus {a,,} is an

increasing subsequence of {a,}.
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PROOF II: Let {an} be a bounded sequence. There exist A,B € R

such that
GnE[A,B], ﬂ=1,2,... .

At least one of the intervals [A, 4fﬁ],[ﬁ.‘,L"”,B] contains infinitely
many terms a, of the sequence. Denote such an interval [A;,B,].
At least one of [A;, 41381] (41381 By] contains infinitely many an;
call it [Az, B;]. Proceeding in this way, we obtain intervals [An, Bal,
each of which contains infinitely many terms from the sequence {a,}.
Moreover

B-A

[An+ls Bn+l] a [AruBn]y Bn — An L on )

n=1,2,..

Thus {A,} is increasing and bounded and {B,} is decreasing and
bounded. Since limp—oo 7= = 0 (Example 2.3.2, page 31), both

sequences have the same limit

¢= lim A, = lim B,.
n—oo Nn=—00

The construction of [An, Bn] shows that there is a subsequence {an, }

of {an} such that
AkSamsBk, k=1,2,....

Thus ¢ = limi—ec Gn,, by the Squeeze Principle.

e e

O

§2.5. Cauchy’s Criterion for Convergence. An interesting as-

pect of monotone sequences is that they allow us the opportunity of
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detemining whether or not they are convergent without the necessity
of initially guessing likely candidates as limits and using the definition
of convergence directly. This, for example, allowed the definition of e
as the limit of a sequence.

Fortunately this type of discussion may be extended to sequences
in general. Recall that a sequence {a,} is convergent if we can find
a number ¢ such that a, is as close as we please to £ provided we
take n large enough. The Cauchy Criterion avoids the necessity of
finding ¢ explicitly and says that {a,} is convergent if and only if
the terms in the sequence are as close together as we please provided

we omit a finite number of terms.

DEFINITION 2.5.1: The sequence {a,} is a Cauchy Sequence if, for

each € > 0, there exists N such that

m,n 2> N = |a, — am| < €.

THEOREM 2.5.2 (CAUCHY CRITERION). {a,} is convergent <=

{an} is a Cauchy sequence.

EXAMPLE 2.5.3: If z, = (-1)", then {z,} is not a Cauchy sequence

since |ZTn41 — Tn| = 2, for all n.

EXAMPLE 2.5.4: If {an} =1+3+3+---+ 1, then {as} isnota

Cauchy sequence and so it is divergent. To soo this, consider

T 1 & 1 P 1
itk g s Ser iy g 2n
1 1

>ﬂ('2—n)— 5, for all n.
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Thus we conclude that the sequence {1+ 3 +---+ %} is divergent.
In fact we can deduce that the sequence is unbounded since it is

increasing and therefore divergent if and only if it is unbounded.

ProOOF OF THE CAUCHY CRITERION:
“ =3 " Suppose {a,} is convergent with lim,—ecan = £. If

€ > 0, there exists N such that

€

Thus,

n,m> N = |ap — am| < |an — €] + |am — £

<£+£—s
-l

Therefore {a,} is a Cauchy Sequence.

“&=" STEP 1: A Cauchy Sequence is bounded.

PROOF: Let {a,} be a Cauchy Sequence. There exists N such that

m,n > N = |a, — am| < 1. Therefore

n>N=|a,—a,| <1
= |aa| = |an| L lan —an| L1

= |an| < |lan| +1

and |a,| < K = max{|a|,...,|lanm1l,|lan|+ 1} k=1,2,3,... .

STEP 2: A Cauchy Sequence has a convergent subsequence.
This follows from Step 1 and the Bolzano-Weierstrass Theorem
(page 35).
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STEP 3: If {an} is a Cauchy Sequence and limi—o @Gn, = ¢, then

51—

Let € > 0. There exists K such that

k> K=>|an, = <= (lm an, =2).
2 k—o0

There exists N such that

m,n2 N = |a, — a,| < % ({an} is Cauchy).

Choose a number k > K such that
ng > N.
Then

n 2N = |an = £ < [an = an || + [lan, = 4]

<€+€—£
ey

Therefore limp—o a, = £. Combining Steps 2 and 3, we find {a,}

is a Cauchy Sequence == {a,} is convergent.

40



2.8

2.9

2.10

2.11

2.12

2.13

2.14

Problems

Suppose the sequence {a,} is defined inductively by

a1=0, an+1=v3+2a,., n=1,2,3,... .

Show that limp—ec@n = 3 by showing that the sequence is

increasing and bounded and hence convergent.

Let s, =147 +r?+...r". Show that the sequence {s,} is
convergent if |r| < 1 and divergent if |r| > 1. What is its limit

when |r| < 17

Let a; = 0,a2 = 1,8n42 = 3(an + Gn41), n = 1,2,.... Prove

that limp~ooan = 2.
If 0<a<b, prove limp—os(a™+ b")/™ = b.

Show limp—oon'/™ = 1 by considering the sequence {z,},

n(n—1

where z, = n!/"—1> 0. Show that n = (14z,)" > “5—z2

and deduce from this that limy—oozn =0.

Show limp—eo n'/™ = 1 by proving that the sequence is even-
tually monotone and that it is bounded. Hint: Consider also
the subsequence {(2n)3}.

(a) Give a definition of

lim a, = o0 (infinite limit).

n=—oco

(b) Suppose limp—oc @n = 00,liMp—oo bn = 00. Use your defi-
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2.15

2.16

2.17

nition to prove
lim (ap + b,) =00, lim apb, = oo.
n—0o0 n—oo

(c) Show by examples that, with an,b, asin (b),

lim (an = ba),  Jim 5

n—oo b,

may exist as a real number, as an infinite limit or may fail to
exist.
(d) Show lim,—eo Gp = 00 = lim, oo % =0 (an #0).

(e) Show lim,—e ﬁ =0 = limyco Gn =00, if a, > 0.

Suppose limp—~ooan = 0 and {b,} is a bounded sequence.

Show limp—ec Gnbn = 0.

Let a, € [A,B], n =1,2,... and limp—~oan = £. show £ €
(4, B].
Hint: Consider the sequences {a, — A},{B —an}. Use # 2.5.

Suppose lim,—oc Zn = a. Show

: 3f3 . a8
-
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III. LIMITS AND CONTINUITY

§3.1. Graphs We denote the Cartesian coordinate plane by IR?.
Thus

R’={(z,y): z€R, yeR}

If f is a real-valued function of domain D C IR, then its graph G

is the subset of IR? given by

G ={(z,f(z)): z€D}

= {(z,y): z€ D, y= f(z)}.

(x,7)

EXAMPLES 3.1.1:

(a)
1#]
Part of the graph
x of the sequence {%} , i.e.
-y f@)=1%, z=1,23,...
o 7] & 3 & *
(b)
Graph of the function f
is given by
=z2 - .
g ' - _;sx f(z)=2z*-1z, z €[0,2]
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Graph of the function

g , where

. g { L z € [-1,0)

z, z €[0,2]

AJ

(d) o
Part of the graph of
X the function h, where

. 7\/3;
h(z)=sinz, z€R

(e)

Part of the graph of

gmumﬂ;&n AN I e e
the function k, where

& zeq
A A SOt e k =
" R { 0, z¢Q
f
() oF
Graph of the function p, when
X pa)=lel, ze(-2,2)
(g)
I Graph of the function g, where
9(z) = |z|, z € (=2,2)
T X z #0.

We now consider a real-valued function f such that f(z) is defined

for all z near a but not necessarily at z =a.

DEFINITION 3.1.2: The function f has limit ¢ at a if, for each
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€ > 0, there exists a é > 0 such that

O0<|z—a|<é=|f(z)-{| <e.

Note: & is the Greek letter ‘delta’.

REMARKS: (i) The statement ‘ f has limit £ at a’ is abbreviated

to

lim f(z)=¢ or li:nf=€,

I—a

(i) f need not be defined at a and, even if it is defined, the value

of f(a) does not effect the existence or value of 31:1"1‘ f(z).

(iii) f must however, be defined for all z close to a, z # a. Thus,
for example, if f is the function in Example 3.1.1(b), then none

of
hgn y hgn £ llgnf

exists, since f is not defined for all z near 0,1 and 3. We
will see, in fact that li:nf =a?-a,if a€(0,2), and liinf

does not exist, if a ¢ (0,2).

(iv) liinf = ¢ means that the distance |f(z) — £| between f(z)
and ¢ is as small as we please provided z is close enough to

but different from a.

(v) It is worthwhile taking some time now to consider the Exam-
ples 3.1.1 and discuss the limits of the functions there at various

points and to identify points where the limit fails to exist.
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G ={z,f(z)): z€ D}

I '
a+s L+t 4 LA e --“‘-"*T":V
| ' R
x - cam =
" r‘— V4 £x) £-3 t
I LY |
a-er I
’ a-5 ‘; ar$ 5
|
Dsrad i M?ﬂ-;-re. ';}'““ A

EXAMPLE 3.1.3: Let f(z) =3z + 5, z € IR. We will show
lifnf=8 (equivalent: 11311 3z+5=8).
Let € > 0. We must show that we can find é > 0 such that
O<|z-1<é= |f(z)—8| <e.

Now |f(z)-8|=[3z+5-8|=13z-3|=3|z-1]|. (A)
Choose & =¢/3. Then, from (A)

0< |z—1|<5=§=>|f(z)-s|<3§=5.
3z + 5, z¥l,
Notice that, if h(z) = ,then lifnh = 8,
7 =1

without any change in the ,a.rgument of Example 3.1.3. The value of
h(1) is irrelevant as is the fact that 1 is in the domain of hA. The

expression li{n h describes the behaviour of A near 1 but not at 1.
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EXAMPLE 3.1.4: Let p(z)=z% z € IR. Then h_r;:lp =4.

Let € > 0. Now, since

Ip(z)—4|=|z2 —4|=|z-2| |z +2|= |z + 24| [z +2|

<(lz+2/+4)z+2| (triangle inequality)

we find
|z +2| < 1= |p(z) — 4| < 5|z +2|.
Therefore
- £ (3
2 +2| < 6 = min {1, 3} = |p(z) -4l <5 ¢ =¢
so that

lim p(z) = 4.
=2
EXAMPLE 3.1.5: Let g(z)=¢, z €IR. Then
lim g(z)=¢c, foreach a€lR.

In this case any 6§ > 0 works for every ¢ > 0, since

O<|z—a|<é=|g(z)—¢c|=|c—c|=0<e.

EXAMPLE 3.1.6: Let F(z)=121, z#0. Then

imF =

3

b:loi —

Let ¢ > 0. Our task is to produce a § > 0 such that

0<|z—3|<é= |F(z)-3}|<e.
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Now

3-z
3z

1 i ;
P -gl=13 - 31= 52| itaro

_ |z =3

The term |z| in the denominator can make this expression very large

if z is near zero. But

|z—3|<2=3-|z] < |z -3] <2 (triangle inequality)

=1<|z|
|z -3
3 y

- ‘F(z) ) %\ < from (B).

Hence

0< |z -3 <é§=min{2, 3} = ’F(:c)—%‘<e

; 1
e
L z<0

-1, z > 0.
does not exist. To see this suppose lin}) f(z)=¢£. Let € =1. There
b e d

EXAMPLE 3.1.7: Let f(z) = { Then :ltiu%f(:r)

exists 6 > 0 such that 0 < |z -0| = |z| < § = |f(z)—¢] < 1.

Hence

-$6<z<0=|1-{<1=1-4<[1-4<1=¢€>0

0<z<éd=|-1-4<1=14¢<|-1=-f<1=¢€<0.

The contradition £ > 0 and ¢ < 0 shows that £ cannot exist.
The following theorem relating limits of general functions and

limits of sequences is very useful.
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THEOREM 3.1.8. li:nf =4£.
&  f is defined near a and every sequence {z,} in the domain

of f such that z, # a, nanggz,. = 4l satisfies nlz-ngo flza)=2L.

In Example 3.1.7, we found that lign f does not exist, when
1, 0
f(z) = il . This also follows if we observe that
-1, z>0
{-l}, {-,1;} both have limit 0 but nli_n;cf(-%) =1, lim,...wf(%) =

n

—1 and, since these limits differ, lign f does not exist.

EXAMPLE 3.1.9: If f(z)=121, z#0, then lim f does not exist,

since lim 2 =0 but { f (%)} = {n} is not convergent (it is

n—oo
unbounded).
If a #0, then li;nf = 1 . ie, ix__nii = 1. This follows

from Theorem 3.1.8 and Theorem 2.2.7, page 25 since, if {z,} is
any sequence such that z, #0, z, # ¢ and r'11_.1120 zp, =a #0, then
R el

We could prove lim 1 =1 directly from the definition using
(e,6) as we did in the case a = 3 in Example 3.1.6. In fact, you
should check that each of the Examples 3.1.3 — 3.1.6 may be easily
deduced from our results on sequences if we use Theorem 3.1.8.

Using, Theorem 3.1.8 we find that the following are implied by

the corresponding results for sequences.

COROLLARY 3.1.10. Suppose li:nf=£, Ii:ngzm. Then
(a) Lm(f +9)=L+m,

(b) lim fg = ém,

(c) 1i§n{-=§, if m#0.

COROLLARY 3.1.11. (CAUcCHY CRITERION). limf exists <=
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for each € > 0, there exists a 6 > 0 such that, if 0 < |z —a| < §
and 0 < |y—a| < §, then |f(z)— f(y)| <€.

COROLLARY 3.1.12. Suppose f(z) < h(z) < g(z) when 0 < |z —
al<r.
Then li:nf=£, lizng=€=>1i:nh=£.

Closely related to H:n f are the one-sided limits l:rf f and l‘ilzl: ¥

the limits from the right and left at a.

DEFINITION 3.1.13: (a) I.HU' = £ means, for each € > 0 there exists
6 >0 suchthat 0<z-a<éd= |f(z)-{| <
(b) lim f = ¢ means, for each £ > 0, there exists § > 0 such that
e

0<a-z<é=|f(z)-¢{ <c.

<0
EXAMPLE 3.1.14: If f(z)= { 1 = iy then
-1, »

ltij?f=_1’ and lg:_:;f=1.

The details of the proofs of the corollaries are left as exercises.

PROOF OF THEOREM 3.1.8:
“=" Suppose Iizn f=¢ and let {z,} be a sequence in the domain
of f such that nll.zlgo zn = a (zn # a). We wish to prove
nl._x_ngc f(zn)=¢€. If € >0, there exists § > 0 such that

O<|z—a|<é=|f(z)-{| <e (A)

(since li‘rlnf = {).

Also there exists N such that
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1 n
L —

n>2N=0<|zp—a|<$é (B)

(since “li_x_zgo Ty = a5 Zn ¥ a).
From (A), (B), n 2 N = |f(za)—£| < €. Therefore

nll.ngo f(zs) = L.

Suppose nlingo f(z,) = € for each sequence {z,} in the domain
of f with z, # @ and lim z, = a. We wish to show lifnf=
n—o0

¢. Suppose that f does not have limit £ at a. Then there

is some €9 > 0 for which no § > 0 works in Definition 3.1.2.

Thus, for each n = 1,2,..., there exists z,, 0 < |z, —a| <
and such that |f(z,) — €| 2 €9 > 0. Hence nlin:oz,. =@, Tp#

a,but {f(za)} is not convergent to the limit £ contradicting

our hypothesis. Therefore lign i,
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PROBLEMS

3.1 Sketch the graph of each of the functions. The domain is IR

unless specified otherwise.
(a) f(z)=3z+2,

(b) 9(z) = Bz +2|,

(c) h(z) = z|z|,

(d) k(z)=v4-2% -2Zz<L2,
(@«w={

Z, z>0
z?, z<0

(f) m(z) = [z], where [z] is the greatest integer less

than or equal to z.

(8) p(z) =l -1 - |z +1]

z ifz=31 n=1,2,...
h = L] n? g by
(B) o(z) { 0, otherwise.

32 Let F(z)==z.1If € >0, determine § sothat 0<|z—a|<
§ = |F(z)—a|<c.

This proves limz =a.
T=-a

3.3 Give an (¢, 6)-proof that lir:clI 3z+2=-1.
Lo —

oz, z2<1

3.4 Let - .
L R
function. If € > 0, determine § so that

Sketch the graph of this

O0<|z-1]<é6= |f(z)—5| <€ ie. prove limlf(::)=5.
b A d
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3.5 Let f(z)=z?. Show that lim f(z) =1 in two ways, one
using the (&,8) definition and the other based on sequences,

using Theorem 3.1.8.

. z=i n=1,2,...

36 Let p(z) = {0 cibmrsidl Explain care-

fully why :lim p(z) exists for each a € IR with one exception.
—a

3.7 At what points a € IR does lim g(z) exist, where ¢ is the
I—a
function in # 3.1(h)?

3.8 Write down the value of each of the limits
:1_1.1101+ [:L'], zli%l- [:B] - gh_l.r;. [I] :

(See #3.1 (f).)

3.9 Show that ﬁ:nf = £ if and only if both l‘x.x_?f and lilllf

exist and equal £.

3.10 Determine which of the following limits exist:

. z?-—4 . z¥-4
B ig<ss TS

y z2 -4 . z2 -3
(c) Jim =5 (d) lim ——

. - 3 = b
() Jlim = (® lim .
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311 If P(z) = co + a1z + 222 + -++ + cpz™, z € IR, where
€0y C1,...,Cn are constants, ¢, # 0, then P is a polynomial

of degree n. Given zlimc=ca.nd }intz=a (of Exam-

ple 3.1.5, Problem 3.2) and Corollary 3.1.10(a), (b) show that

imP=P(a), i a€R.

312 If R(z) = P(z)/Q(z), = € IR, Q(z) # 0, where P,Q are

polynomials, then R is a rational function. Prove
imR = R(a), if a€lR, Q(a)#0.
a

What can you say about ].i:nR yif Q(a)=07?

3.13 (a) Give a definition for * lim f(z)=1£".
I—00
(b) Show, using your definition, that if lingo f(z)=£ and £ >
I—

0, then there is a number B such that z > B = f(z) > 0.

3.14 Show 3i2f(:)=£4=)limh_.gf(a+h)=£.
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§3.2. Continuity. Let D C IR. A point a is an interior point
of D if there is an open interval I such that a € I C D. Thus,
for example, 7, } are both interior points of [0,1] while 0,1 are
elements of the set but not interior points. The set IN has no interior
points.

We have seen that if @ is an interior point of the domain of f

then h'zn f might not exist, or it might exist and differ from f(a).

However, for ‘nice’ functions, lim f = f(a).
a

DEFINITION 3.2.1: A function f is continuous at an interior point

a of its domain if

lim f = f(a).

REMARK:  There are two ways in which a function could fail to be
continuous at an interior point of its domain:

(i) lim f might fail to exist as in the case a = 0 for the function

0, 0
ﬂﬂ:{l ::o'

This function is not continuous at 0 since Iign f does not

exist. It is continuous at all other points.

(i) lim f might exist but be different from f(a) as in the case

_ :t-,éO;.
f(r)-{o’ b

here li{x,nf =1 # f(0) so f is not continuous at 0.

PROPOSITION 3.2.2. f is continuous at a <=> for each ¢ > 0,

there exists § > 0 such that |z — a| < § implies

If(z) = f(a)| <.
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[Notice that we have omitted ‘0 < |z — a|’. Why?]

PRrOPOSITION 3.2.3. f is continuous at a <

lim f(a + k) = f(a).

PROOF: See Problem 3.14.

PROPOSITION 3.2.4. f is continuous at an interior point a in the
domain D of f < each sequence {z,} such that z, € D and

limz, = a satisfies
n—ung

lim_ f(zn) = f(a).

PRrOOF: See Theorem 3.1.8.

THEOREM 3.2.5. Suppose f,g are continuous at a. Then f+g, fg

are continuous at a and f/g is continuous at a if g(a) #0.

COROLLARY 3.2.6. A rational function is continuous at every point

in its domain [cf. Problem 3.12, page 54].

PROOF: Theorem 3.2.5 follows form Corollary 3.1.10, page 49 with
= f(a), m=g(a).
O

Let f,g be functions. The composition f o g is defined by

(fog)(z) = f(g(z))

for each z in the domain of g such that g(z) is in the domain of f.
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THEOREM 3.2.7. Suppose g is continuous at a and f is continuous

at g(a). Then fog is continuous at a.

PROOF: Let {z.} be a sequence in the domain of f og such that
lim z, = a. Then {g(z,)} is a sequence in the domain of f
such that nli.ngo g(zn) = g(a) (since g is continuous at a) and
nli_.ngof(g(:r,.)) = f(g(a)) (since f is continuous at g(a)). Here we

have used Proposition 3.2.4 twice. O

EXAMPLE 3.2.8: The functions f given in (a), (b), (¢), (d) are
continuous on their domains

(a) f(z)=2z, z€eR (b) f(z)=22-1, z€eR

(c) flz)=1%, z#0 (d) flz) = 5.
The function f given by f(z)=+/z, z >0 is continuous at each

a € (0,00). Our discussion does not yet deal with the point 0 for

this function since 0 is not an interior point.

DEFINITION 3.2.9: (a) f is continuous from the right at a if
l::_?f = fla)
(b) f is continuous from the left at a if

lim f = f(a).

EXAMPLE 3.2.10: (a) If f(z)=+/z, z 20, f is continuous from
the right at every point in its domain including 0.
0, <0
(b) The function f(z)= { s

18 z20
uous from the right at all points in its domain including 0. It

(cf. page 55) is contin-
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is continuous from the left at all points except 0:
limf=1= f(0), lmf=0.

8 z#0
0, z =0
continuous from the left or from the right at 0 since

(¢) The function f(z) = { (cf. page 55) is not

lm f =limf = 1# f(0).

PROPOSITION 3.2.11. A function is continuous at an interior point
a of its domain if and only if it is continuous from the left and right

at a.

ProoF: Exercise

§3.3. Continuity on a Closed Interval. The function f is said
to be continuous on [a,b] if f is continuous at each point in (a,b),

continuous from the right at a and continuous from the left at &.

PROPOSITION 3.3.1. f iscontinuouson [a,b] if and only if nlinéof(zn) =
f(c) for each sequence {z,} such that z, € [a,b] and limp—oo Tn =

c.

The proof of Theorem 3.1.8, extended to one-sided limits estab-

lishes Proposition 3.3.1.
a
LEMMA 3.3.2.  Suppose f is continuous at ® and f(a) >0(<0).

Then there is a § > 0 such that

z€(a-6, a+é)= f(z) >0 (<0).
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Note: If we replace ‘continuous’ by ‘continuous from the right’
or ‘continuous from the left’ we must replace ‘(a — §, a + §)’ by

‘l[a, a+68)’ or ‘(a — &, a], respectively.

PROOF: There exists 6 > 0 such that

|z —a| <é=>|f(z) - f(a)l < f(a) (e =f(a))
= f(a) - f(z) < |f(z) - f(a) < f(a)

= 0< f(z).

O

THEOREM 3.3.3. (BOLZANO’S INTERMEDIATE VALUE THEOREM).
Suppose

(i) f is continuous on [a,b)] .

(i) f(a)<0<f(b). (or f(a)>0> f(b))
Then f(c)=0 for some c € (a,b).

Proor I:
Consider f (%,Lb) :
If f(%b) = 0, then we may take c¢= %9

ff(22) <0,let ay =2, b =b.
ff(22)>0,let a=a, b =2ft.

Thus we have either found ¢ or [ay,b;] C [a,b] such that f(a;) <
0< f(by), by =a1+4 "'T" . Next consider f(E-‘%!-‘-) and continue.
We either find ¢ in a finite number of steps or an increasing sequence
{an} and a decreasing sequence {b,} in [a,d] such that f(a,) <
0< f(ba), bn=an+%2. Thus lim a, = lim by =c€ (a,b).

n=—00
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Since f is continuous at ¢

lim f(an) = f(c) = f(c) <0

“lingo f(ba) = f(¢) => f(c) 20 (Problem 2.5, page 30)
Therefore f(c)=0.

Proor II:
Let c=sup{z:a<z<b, f(z)<0}
[The set is not empty (Why?) and is bounded (Why?)]. There are
three possibilities: f(c) <0, f(¢) >0, f(c) =0. Suppose
f(c) < 0. Then c € [a,b) (Why?) and, since f is continuous from

the right at ¢, there exists § > 0 such that
€, c+6) = f(z) <0 (Lemma 3.3.2)

which contradicts the definition of ¢. Thus f(c) 2 0. Suppose
f(c) > 0. Then c € (a,b] and, since f is continuous from the left at

¢, there exists § > 0 such that
z€(c—6, cJ= f(z)>0 (Lemma 3.3.2)

again contradicting the definition of c¢. Therefore f(c)=0.

O

THEOREM 3.3.4. (WEIERSTRASS’ MAXIMUM-MINIMUM THEOREM).
Suppose f is continuous on [a,b]. Then f has both a max-

imum and a minimum value on [a,b]. This means that there exists
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c € [a,b] such that

f(z) £ f(c), forallz € [a,b
and there exists d € [a, b] such that
f(z) > f(d), forall z € [a,b].

PROOF:

STEP 1: f is bounded on [a,b]. This means there exists M such

that
|f(z)] € M, forall z€ la,b].

We will prove this by contradiction. Suppose f is not bounded on
[a,b] i.e. no such number M exists. Then, for n = 1,2,..., there

exists z, € [a,b] such that

|f(zn)| 2 n. (A)

The sequence {z,} is bounded (z, € [a,b]) and therefore has a con-

vergent subsequence {z,,} (Bolzano-Weierstrass Theorem, page 35)

and,if c= klim Zp, ,then ¢ € [a,b] (Problem 2.16, page 42). Hence,
—0c0

since f is continuous at c,

Jim f(zny) = £(c),

which contradicts (A). Thus f is bounded on [a,b].

STEP 2: f has a maximum value in [a,b].

To see this, let M = sup{f(z): z € [a,b]}, which exists by Step 1.
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Now, for n=1,2,..., there exists z, € [a,b] such that

M- <fz) <M
and hence

lim f(z0) = M. (B)

But, as in Step 1, {zr,} has a convergent subsequence {z,,} such
that ¢ € [a,b] if ¢ = klim Tn, . Again, the continuity of f at ¢

implies
Jim f(za,) = (o). (©)

Now (B), (C) = f(c)=M 2 f(z), a <z <b.
It may be proved similarly that f has a minimum value in

[a, b] .

O

These two theroems have many important corollaries. We list a

few.

COROLLARY 3.3.5. If f iscontinuouson [a,b] and f(a) <y < f(b)

(or f(a) >y > f(b) ), then there exists ¢ € (a,b) such that f(c)=y.

PRrooF: This follows by replacing f(z) by f(z)-y, a<z<bin
Theorem 3.3.3.

O

COROLLARY 3.3.6. If f is continuous on [a,b], then {f(z):z €

[a,b]} is a closed interval or a point.

62



PROOF: By Theorem 3.3.4, f achieves its maximum and minimum
values in [a,}] at some points ¢, d € [a, b] and every value in between

these.
O

COROLLARY 3.3.7. If a> 0 and n € IN, there is a unique number

z > 0 such that z" = a. This number is denoted a* .

ProOF: Consider the function f
f(z)=2z"—a, z€][0,00).

This function is continuous on its domain (Problem 3.11, page 54).

Now f(0)=-a<0,and

f(z) =z"(1 W f.,) 2:“(1 - -E) if z>1

since z21=2"2>2

)
11
s Tz

=

IV

z®

2e-3

. 1:>ma.x{1, 2a}

v

0.

\"

(You may prefer the argument given in Remark (i), page 64.) Thus,
since f takes a positive and a negative value and is continuous, the
Intermediate Value Theorem implies that f(z) = 0 for some z. Thus

z" — a = 0 has a solution z > 0. The equation z" —a = 0 cannot
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have more than one solution since

0<z; <zy =2z} <z7 (Example 1.2.2, page 3).

O

REMARK: (i) If the properties of ‘:llngo ’ are used (Problem 3.13,
page 54), the existence of a point z such that f(z) > 0 in the
preceding proof is easy to see:

Since

a . . f(2)
—=1—; implies lim —= =1

z=—oc M ¢

it follows that %f—l , and therefore f(z), is positive if z is large

enough.

(ii) If n is odd, a similar argument may be used to show that
there is a unique z € IR such that z" = a for any a € R (i.e. we

don’t need a > 0 in this case).
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Problems

3.15 For each of the functions in # 3.1, page 52, find all points where

the function is not continuous. Explain briefly in each case.

3.16 For the functions in Example 3.1.1, (c¢) - (g), page 43, 44,
identify all points in the domain where each function is not
continuous. [In discussing (e), you may use the fact that every

real interval contains rational and irrational numbers].

3.17 Let f(z)=£=2, z#2. Can f(2) be defined in such a

z=-2"

way that f is continuous at 27 Explain.

-1, <0
318 Let f(z)= { 1 ‘ > o - Can f(0) be defined in such a
) I

way that f is continuous at 0? Explain.

sinl, z#0

0, z=0"

Show h is not continuous at 0. You may use sin m =

(=1)".

3.19 Sketch the graph of the function h(z) = {

3.20 Show that |f| is continuous at a if f is continuous at a.

3.21 Suppose f,g are continuous on [0,1] and f(0) < g(0), f(1) >
g(1). Show that f(c) = g(c) for some c € (0,1).
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3.22 Suppose |f(z)| < |z| forall z € IR. Show that f is continuous

at 0.

3.23 Let f be continuous on [0,1] and such that f(z) € [0,1] for
each z € [0,1]. Show that f(z) =z for some z € [0,1].

3.24 You are given:

|sinz| < |z|, |cosz|<1, if z€IR,

y)sin(x;y), if z,y€elR.

: : z
sinz —siny = 2cos(

Show that the sine function is continuous on IR.

3.25 Let p be a polynomial of odd degree. Show that the equation

p(z) = 0 has a root.

3.26 Let p be a polynomial of even degree. Show that the equation
p(z) = ¢ does not have a root for every ¢ € IR. [Hint: Show p

must have either a maximum or a minimum].

z, if ze @
0, if z¢Q

at 0 and is not continuous at any other point in its domain.

Show that f is continuous

3.27 Let f(::)={

3.28 Show that there are antipodal points on the equator which

are at the same temperature [Let T(f) be the temperature
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3.29

3.30

3.31

on the Equator at Longitude 6, 0 < @ < 2r. Assume T is
continuous on [0, 2x], T(0) = T(2r). It must be shown that
T(6¢) = T(6g + ) for some 6;]. Hint: Consider f(8)=T(8)-
T@+7), 0<6=Lm.

Let f be continuous on [0,1] with f(0) = f(1).

(a) If n is & natural number, show that f(z) = f(z+ 1) for
some z € [0,1 — 1], This means that the graph of f has a
horizontal chord of length 2.

(b) Suppose 0 < a<1, a#i n=12,.... Construct a
function f, continuous on [0,1] with f(0) = f(1) such that

f(z)# f(z+a) forall z€ [0, 1 -a].

A function f has the Darboux (intermediate value) property
on an interval I if, when p, ¢ € I, p < ¢, f takes every value
between f(p) and f(g) in the subinterval (p,q) of I. We have

seen from Bolzano’s Theorem that
f continuous on I == f has the Darboux property on I.
What about the converse implication ‘ <=7

Hint: Consider the function in Problem 3.19.
Let f(z)=z= . Show f is continuous on its domain.
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3.32 Suppose f is continuous on (0,00) and
Al e

Show that f(c) € f(z) for some ¢ and all z € (0,00); f has

a minimum at c.
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IV. DIFFERENTIATION

§4.1. The Derivative. Let a be an interior point of the domain

of f. If

i £2) = £(@)

z—=a zT-—a
exists, then f is said to be differentiable at a; the limit is denoted
f'(a) and is called the derivative of f at a.
The following two expressions for f'(a) are equivalent (see Prob-
lem 3.14, p. 48):

f'(a) = lim M,

z—a T—a

fla+h)— f(a)
£ :

fe) = im,

Thus, associated with f we have a new function f', the derivative
of f whose domain is the set of all z in the domain of f such that
f'(z) ef limp—o L"z-ﬂ’—) exists.

Consideration of the derivative arises naturally in many different
ways.

(i) The secant line joining the points (z, f(z)) and (a, f(a)) on

the curve y = f(z) has slope

f(z) = f(a)
o e W # a. "
-
Our intuition tells us that this _ W
/
slope is as close as we please to the |
slope of the tangent line of the ! + —
0 A X

curve at (a, f(a)) provided we take
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z sufficiently close to a. In fact we
take this as the definition of the

#* .
A
£ =

tangent: If f is differentiable at a, _/'

then the tangent to the graph of Vs - o
- (2, fe) F= i rmA T
f at (a, f(a)) is the straight line through

(a,f(a)) with slope f'(a)).
Thus the tangent line has equation a

v

y = f(a) + f'(a)(z - a).

(ii) The number f'(a) may also be interpreted as the rate of
change of f at a. For example, suppose a particle travelling in a
straight line has coordinate f(t) meters at time ¢ seconds. If A is
positive or negative (but not zero) the average velocity between times
t and t+ h is given by

change in position coordinate  f(t+ h) — f(t)
change in time - h '

This leads us to define the velocity of the particle at time ¢ (or in-

stantaneous velocity) by

o(t) & F(2) = Jim ft+ h;—f(f)_

(iii) If the function f' has itself a derivative then this is called
the second derivative of f and is denoted f" or f(?). Inductively,
the nth derivative f(™ is defined to be the derivative of f("=1),
where f(1) = f'. It is also convenient to use the notation f(®) = f.

(iv) In (ii) a(t) = v'(t) = f"(t) is the acceleration, the rate of

change of velocity at time t.
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PROPOSITION 4.1.1. (DERIVATIVE OF A CONSTANT FUNCTION). If
f(z)=c,forall z € R, then f'(z)=0 forall z € R

PROOF: If h 71: 0’ L(ihz;ﬂﬂ' = L)-:s = "g‘ = 0 . Therefore limh_.o L(_Lﬂ__z"th" z) -
O,forall z€eIR.

O

PROPOSITION 4.1.2. (DERIVATIVE OF A LINEAR FUNCTION). If

f(z)=mz+b,and z € IR, then f'(z)=m, forall z € R

Proor: If h#0,

f(z+h)—=f(z)  m(z+h)+b—(mz+b)
h - h
mh

h

=m.

Therefore limp_g &ﬂ,.tﬁﬂ =m,forall z€ R

O

PROPOSITION 4.1.3. (DERIVATIVE OF A POWER). If f(z) = z"

’

then f'(z) =nz®"!,M=0,1,2,

PROOF I: This proof uses the Binomial Theorem. If h # 0,
f(z+h)=f(z) _ (z+h)"=z"
h = h

1 -1
- [z:“ +nz" 1h 4+ %m""zh2 + A" = :z:"] (Binomial Theorem)
=nz""! 4 Mz"""h + -4 A1

1.2

Therefore Iimh_f&%':&l =nz""!, foreach z € R
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ProoF 1I: Here we show f’(a) = na™~! by using Problem # 1.11,
pl8. If z#a,

f(z) = f(a) _z"—a”

I—a Ir—a

1
(z —a)

(z—a)(z"'1+z"'2a+z“'3a2+-~+za"'2 +an-1)

= zn—l 4 zn—2a & In—302 ohcare .3an-2 o an-—-l_

Each of the terms in this expression has limit a®~! (z — a) and there

are n terms in all. Therefore f'(a) = lim,_, £2=£(2) = pgn-1,

r—a

O

PROPOSITION 4.1.4. (DERIVATIVE OF A ROOT FUNCTION). If f(z) =

zw, >0, then f'(z)= %z*'l

Proor: Exercise.

O

THEOREM 4.1.5. Suppose f is differentiable at a. Then f is con-

tinuous at a.

PROOF: If z # a, then f(z)~ f(a) = £2=Ll8)(z_q). Thus f(z) =
fla)+ L==L8) (2 g), s0 that lim,_, f(z) = f(a)+ f'(a).0 = f(a)

and f is continuous at a.

O

The converse of Theorem 4.1.5 is not true. If f is continuous
at a, it does not necessarily follow that f’(a) exists as shown by the

following example.
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EXAMPLE 4.1.6: If f(z)=|z|,z € IR, then f'(0) does not exist.

f(z) = £(0) _ |zl -0

z—-0 z-0
_'.1:‘_{1, ifz>0
T2 | =1, fz<0.

Therefore lim,_.o £Z=£C) does not exist; f is not differentiable at

0 even though it is continuous there.

84.2. Alternative Notation. It is sometimes convenient to denote

the differentiation operation by D :
f'=Df, fP=D,... ™ =D

If we wish to emphasize the letter being used for our independent

variable we may even use D, or D;:
3 2 1 . -1
.sz = 3:: 3 Dtt“' = Et .

A notation introduced by Leibniz is also extremely useful. When

considering

f(z+h) - f(z)
h ’

let y = f(z), h= Az, Ay = f(z+h)- f(z). Then f'(z) =

Limaz—o %{- and we write

fi(z) =7

It is usual to call %ﬁ- a ‘difference quotient’. Variations of these no-
tations may also be found. For example, the differentiation operation

may be denoted by j‘; or f; . Thus D, =4, D,= i'?_
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§4.3. Some Rules for Differentiation.

THEOREM 4.3.1. Suppose f,g are such that f'(a), g'(a) both ex-

ist. Let

P f i =1g'- (9(a) # 0).

Then F'(a), G'(a), H'(a), all exist and are given by
(a) F'(a)= f'(a) +g¢'(a)

(b) G'(a) = f'(a)g(a) + f(a)g'(a)
iy 9(a)f'(a) — f(a)g'(a)
(C) H (G) - g(a)z
More informally, this may be stated

(a) D(f+g)=Df+ Dg Sum Rule
(b) D(fg)=gDf+ fDg Product Rule
(c) D(‘g—) = 4P[5/Ds (g £ () Quotient Rule

9

PROOF: We are given that

f'(a) = lim f_(:::)_—ﬁa_), ¢'(a) = lim

z—0 r—a I—a

g(z) — g(a)
g - (A)

both exist.

(a)

F(z) - F(a) _ f(z) +9(z) — f(a) — g(a)
I-—a I-—a
= [E)=f8)  9(z) —g(a)

L= a Ir—a

Therefore F'(a) = lim,;—, Sixl=fte) o f'(a)+g'(a), from (A).

I=a
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(b)
G(z) - G(a) _ f(z)9(z) — f(a)g(a)
I—a I—a

_ f(z)g(z) — f(a)g(z) + f(a)g(z) — f(a)g(a)

r—a

DI ) e =s(e)

Theorem 4.1.5 implies lim,_., g(z) = g(a) so that, from (A)

G(::) G(a)

G'(a) = = f'(a)g(a) + f(a)g'(a).

8-"0

(c) It is sufficient to consider H = % to prove the quotient rule. If

we show H' = :ﬂi in this case, then the general formula (c)
follows by applying the product rule (b) to f % .

H(z)-H(a) _ 7o~ 5@ _ _ -1 g(z)—g(a)

z—a T z—a  g(z)g(a) z-a

Therefore, as before,

B =-S5

COROLLARY 4.3.2.
(a) Dz =nz™?!, n=0,1,2,... alzelR.
(b) Dz =nz""!, n=-1,-2,-3, z#0
(¢) Dz* =az*"!, a€Q, z>0.

OUTLINE OF PROOF:
(a) We have already seen two proofs of this in Proposition 4.1.3. A

simple proof by induction is as follows. First show Dz° = D1 =

75



0 and Dz! = Dz = 1. Then, if Dz™ = nz™"! | it follows from

the product rule that
Dz"*! = D(zz") = znz""' + 12" = (n + 1)z"

so that (a) holds for all n =0,1,2,..., by induction.
(b) To prove this observe that n = —m , where m € IN. Use the
quotient rule and (a) to find

1 —mz™~1
n -m _ —_—
Dz" = Dz™™ = D = =
=—mx"™" ! = nz"" L,

(c) Proposition 4.1.4 asserts Dz = 1z%~1, if n € IN. Now use

induction on m to show that
m 5
Dz™/" = —z%-1 if myneN.
n

Finally use the quotient rule to extend the formula to negative

integers m.

We have only asserted (c¢) for z > 0. However, the formula is
true for all z € R when a = 2, n odd, with the possible exception
of z=0.

The preceding theorem and corollary show that any polynomial
n
P(z) =ag + a1z +az? 4+ +anz" = Za;‘z"
k=0
is differentiable at each point in IR and
P'(z) = a; + 2a37 + 3a3z? + - + na,z"" ' = Z kazz*~1.

_k=0
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More generally a rational function P(z)/Q(z) is differentiable at each
point in its domain.

THEOREM 4.3.3. Consider a composition of two functions

F=fog [F(z) = f(g9(=))].

Suppose that f'(b), g'(a) both exist, where b = g(a). Then F'(a)
exists and

F'(a) = f'(b)g'(a) The Chain Rule.

In the Leibniz notation this may be expressed as follows: If

y=f(u) and u=g(z),

then

Z=2. 2 (=fwe)

at any point = such that %&, % both exist.

EXAMPLE 4.3.4: D(z? + 1)* =3(z2 + 1) %2z,

y=f(u,)=u'l‘ u=g(z)=:l:2+1 so that
dy 1 =} du _
T il iy s



EXAMPLE 4.3.5: The formula D% = :;1-,)1 used to prove the quotient

rule is a special case of the chain rule:

dy _ dy du 1 ,(z)__g'(z)
o T R 7

EXAMPLE 4.3.6: The volume of a spherical balloon is growing at the
rate of 15 cm? /sec. At what rate is the radius growing when the
radius is 10 cm?

The Volume V and radius r are related by the formula

V = %‘n’ra.
Thus
dV  dV dr o dr
B+ * 5 a"" 5

from the chain rule. When r = 10

dr
3 2—-
15 = 4710 e

so that, at this instant the radius is growing at the rate I;;‘fﬁ-, - aoin

cm/sec.

PROOF OF THEOREM 4.3.3: The following is ‘almost’ a proof of the
chain rule. Since Lo where Az =z —a, Au =

9(z) = g(a) and Ay = f(g(z)) — f(g(a)), and limas—oOu =0,

because g is continuous at a, it follows that

Ay . Ay, . Au
a0 Bz ( AI:IB-O Au ) Alil-’i-o _A.;)
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and so 3 = drdu

dz L 2% . The flaw in this ‘proof’ is that % = Syl
t

a
is valid only as long as 0 # Au = g(z) — g(a), which may fail to
hold for z arbitrarily close to a. The following argument avoids this
difficulty.

Since f'(d) = limy—, ﬁ—tfm exists,
f(u) = f(b) + f'(b)(u — b) + E(u)(u — b) (A)

where

= {0, w8

u=~b

and E is continuous at b, since limy—p E(u) =0. With u = g(z),

b=g(a), z#a,

F(z) = F(a) _ f(9(z)) — f(g(a))

I—a I —a

- m,)wJ, E(o(z))? (x) g(a)

Thus F'(a) = lim,., ZE=F@) exists and

z—a

F'(a) = f'(b)g'(a) + 0g'(a) = f'(b)g'(a).

The fact that lim,_., E(g(z)) = 0 follows from Theorem 3.2.7, page
57.

O

§4.4. One-sided derivatives. The left-hand and right-hand deriva-
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tives of f are denoted D_f and D4 f and are defined by

Dofia) = tim {E)=1@

- T —4a

D, f(a)= lim M

z—a+ r—a

2, z20
EXAMPLE 4.4.1: If f(z) = |z| = { , then
-z, z<0

A0 fB_ T e=0

=0 & 2 -1, <0

|z|

L

W

D—f(O) = zl_l.l'él- —z— = —1 c~§
- 1 12l
D.s(0)= i, =1

REMARKS: (i) f'(a) does not exist if a is an endpoint of the domain
of f. However, D_f(a) may exist if a is a right endpoint and
D, f(a) may exist if a is a left endpoint of the domain of f.
(ii) Note that, asin Theorem 4.1.5, page 72, the existence of D_ f(a)
implies the continuity from the left of f at a and the existence
of D4 f(a) implies continuity from the right of f at a.
(iii) The function f is differentiable at a if and only if D_ f(a) and
D, f(a) both exist and are equal and then f'(a) = D-f(a) =

Dy f(a).
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Problems

4.1 If f(z) = 3z — 5z + 2, use the definition of the derivative to
find f'(2), f'(-1), f'(a).

4.2 If f(z) = /7, use the definition of the derivative to find f'(2), f'(a),a >

0.

4.3 Use the rules of differentiation to find the derivative of each of
the functions
(a) (1-2z)%, (b) (1-22)71, (¢) V1-2z

@ =532, () V(ER), @ [{a*+@+10) +1)0.

z2, z<1
4.4 Let f(z)={a::+b e

(a) For what values of a,b is the function f continuousat 17
Explain.
(b) For what values of a,b is the function f differentiable at
1? Explain.
z, z€Q 2, z€Q
4.5 Let = , &
«1a={5 go ={3 sq

Each of f,g is continuous at exactly one point in its domain.
Determine the existence or otherwise of the derivative of each

of the functions at that point.

4.6 If f® g(™ exist, show

(fo)™ = (z) Mg+ G) f '+ (g)f(n—z)g(ﬁ)-{-- b (:) Fg.

This is Letbniz’s Rule. In the case n = 1 it is the Product Rule.
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4.7

4.8

4.9

4.10

4.11

4.12

4.13

Find all points on the curve y = z? where the tangent line

passes through (1,0).

Prove Proposition 4.1.4, page 72, Dz+ = ;l;z*",z >0
Hint: Let y =z"/", b=a"/", Then £—=2"" = =t .
You are given lim cosz = cosa, cos0 =1 and

I=—a

™

cosz<gi<1, if 0<|z] < =.
z 2

(a) limg—o 2% = 1.

(b) Show Dsinz = cosz [Hint: #3.24, p. 66]
(c) Use cosz = sin (¥ — z), (b) and the chain rule to show

Dcosz = —sinz.

At what points on the curve y = z® — z is the tangent

(a) horizontal? (b) parallel to the line y =3z +47

Show that the area of the triangle formed by the tangent line to
the curve zy = 1 at the point (a, %) and the coordinate axes

is constant (i.e. independent of a ).

The volume of a sperical balloon is, at a certain instant, growing
at a rate of 32 cm? /sec and, at the same instant, its surface
area is growing at 16 cm? /sec. Find the radius of the balloon

and the rate at which it is growing at that instant.

The volume of an expanding cube is increasing at the rate of 4
cm? /sec. How fast is the surface area growing when the surface

area is 24 cm 2 ? [Ans. 8 cm ? /sec.]
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4.14

4.15

4.16

4.17

4.18

A meteorite falling directly to earth has velocity inversely pro-
portional to /s when at a distance s from the centre of the
earch. Show that its acceleration is inversely proportional to

82,

An inverted conical tank has height 4 m and radius 1 m at the
top. Oil flows in at the rate of 2 m? /min. How fast is the level
rising when the depth is 2m? [Volume of cone = 1 (base area)

x (height). Ans. £ m/min).

~

A boat is attached by a rope from its bow to a winch on a dock 3
m above the level of the bow. If the rope is being hauled in at
the rate of 2m/sec, find the rate at which the boat is travelling

through the water when it is 4 m from the dock.

A boat sails parallel to a straight beach at 20 km/hr and main-
tains a course 4 km offshore. How fast is it approaching a

lighthouse on the shore when it is 5 km from the lighthouse?

If the position of a particle in the plane at time ¢ is (z(t),y(?)),
then its speed is given by [z'(t)? + y'(t)z]* . Suppose a par-

3 with a constant speed of

ticle moves along the curve y = z
2 cm/sec and its z coordinate is increasing. Find the rate at
which the r coordinate is increasing when it is at the point

(2,8) on the curve.
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V. PROPERTIES OF THE DERIVATIVE
§5.1. The Lagrange Mean Value Theorem. A function f is
said to have an interior local mazimum (minimum) at c if, for some

6 >0,

fley2 f(z)  (f(e) £ f(2))

for each z € (¢ — 6,c+ 6).
Y 4

| / : '
I \ A / B i
g Fagg

,e.-——- -~

The function graphed here has an interior local maximum at

each of z,,z3,zs and an interior local minimum at zj,z4.

PROPOSITION 5.1.1. Suppose

(i) f has an interior local extremum (maximum/minimum) at c.
(i) f'(c) exists.
Then f'(c) =0.

Proor: Consider the case that f has an interior local maximum at

¢ sothat f(z) < f(¢), c—é <z <c+é. Thus

f(z) = f(c) { >0, z€(c-6c)= f'(c)20
&= <0,z €(c,c+6)=> f'(¢) <0

= f'(c) = 0.
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THEOREM 5.1.2 (ROLLE’S THEOREM). Suppose
(i) f is continuous on [a,b),
(i) f'(z) exists if z € (a,b),
(iii) f(a)= f(b).
Then f'(c) =0 for some ¢ € (a, b).

T i

H L]
I i
| :
A L} v
i R @ &

PROOF: First consider the case that f(a) = f(z) = f(b) if
z € (a,b). Then f is constant on [a,b] so that f'(c) = 0 for each
c € (a,b).

Next suppose f(zq9) > f(a) = f(b), for some zq € (a,b). Then
Weierstrass’ Theorem (page 60) shows that, since f is continuous on
[a,b], f has a maximum value f(c). Moreover
c € (a,b), since f(c) 2 f(zo) > f(a) = f(b). Thus f has an in-
terior local maximum at ¢ and, since f'(c) exists, f'(¢) = 0 by
Proposition 5.1.1.

Finally, if f(z¢) < f(a) = f(b), f has an interior minimum at
some ¢ and again f'(¢) =0.

O

THEOREM 5.1.3 (LAGRANGE MEAN VALUE THEOREM). Suppose
(i) f is continuous on [a, b If /"77
(i) f(z) exists if z € (a,b). r

Then f'(c) = {8=L) for

PO

some c¢ € (a,b).
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Geometrically, this says that, for some ¢ € (a,b), the tangent
to the graph of f at (¢, f(c)) is parallel to the chord joining (a, f(a))
to (b, £(b)).

PROOF: Consider the function ¢

e(z) = f(z) - f(a) - C(z —a), =z € [a,b)]

We may choose the constant C so that ¢(b) =0: let
C= .&E‘ﬁg}_ Then

(i) ¢ is continuous on [a,b] (why?)

(i1) ¢'(z) existsif z € (a,b) (why?)

(iii) @(a) = ¢(b) = 0.

Thus, by Rolle’s Theorem, there exists ¢ € (a,b) such that

0=¢'(c)=f'(e)-C
- 19 - 1O=1@)

O

We saw in Proposition 4.1.1, directly from the definition of the
derivative, that a constant function has the zero function as its deriva-
tive. An important consequence of the Mean Value Theorem is the
converse statement that, if the derivative is zero on some interval then

the function is constant on the interval.

COROLLARY 5.1.4. Suppose f'(z) =0 for each z € I, an interval.

Then f is constant on I.
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PROOF: Let u,v € I, u < v. Then, for some ¢ € (u,v),

f(v) = f(u) = f'(¢) =0 (Mean Value Theorem)

v—1u
so that f(v) = f(u) and f is constant on I.

O

COROLLARY 5.1.5. Suppose f'(z) = g'(z) for each z € I, an inter-

val. Then f(z) = g(z)+ k, for each z € I, where k is a constant.

PRrRoOF: Consider F(z) = f(z) — g(z).
O

A function f is said to be increasing (decreasing) on an interval

Iif
u,v €I, u<v= f(u) < f(v) (f(u) > f(v)).

The function f is strictly increasing (strictly decreasing) on I if

u,v €I, u<v=> f(u) < f(v) (f(u)= f(v)).

Clearly a function which is strictly increasing is increasing.

COROLLARY 5.1.6. Suppose f'(z) exists for each z in the interval
I. Then f is increasing (decreasing) on I <=> f'(z) >0
(£0) for each z € I.

PROOF:
“=" Let f beincreasingon I. It follows from the definition
of the derivative that, since f'(z) exists for each

zel, f'(z) > 0.
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“ &= " Conversely, suppose f'(z) >0 for each z € I.

Then, if u,v € I, u < v, there exists ¢ € (u,v) such that

ﬂ"—,),:.ﬂﬁ = f'(c) 2 0 = f(u) £ f(v) so that f is increasing on I.

The proof of the statement about f decreasing is the same.

REMARKS:

(i)

(ii)

If f'(z) > 0 (< 0) for each z € I, then the preceding proof
also shows that f is strictly increasing (strictly decreasing) on
I. However, if f is strictly increasing (strictly decreasing) on
I it does not follow that the strict inequality f'(z) > 0 (< 0)
holds for each z € I. For example, consider f(z) = z® on any
interval which contains 0.

The condition f'(z) 2 0 (< 0) is a sufficient condition that f
be increasing (decreasing). However an increasing (decreasing)
function need not be differentiable or even continuous. For ex-
ample if f(z) = [z], the greatest integer not exceeding r, then
f is increasing on every interval even though it is discontinuous

at every integer.

A function f is said to be concave up (concave down) on an in-

terval I if f' isincreasing(decreasing) on I. For example, if f(z) =

z%, then f'(z) = 3z°. JT '
This function is thus /73K .
concave down on /

il ®x
(—o0,0] since f' v

decreases there and /! |

concave up on [0, 00),
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since f' increases.

COROLLARY 5.1.7. Suppose f"(z) exists for each ¢ € I. Then f

is concave up (down) on I <= f"(z) 2 0(<0) foreach z € I.

This follows by replacing f by f' in Corollary 5.1.6. However

f may be concave up or down without f" existing at all points.

PROPOSITION 5.1.8. Suppose f is concave up on its domain, an
interval I. Then, for each a € I, the graph of f is above the tangent
line to the graph at (a, f(a)).

; Ja qofin)?
PRrROOF: The equation of the | s £ B
tangent at (a, f(a)) is : %..,)
y = f(a) + /(@) - ). L
The proposition asserts that l %
f(z) > f(a) + f'(a)(z — a), foreach a, z€l. (A)

The Mean Value Theorem shows that

f(z) = f(a) = f'(c)(z — a)

for some ¢ between a and z. Now

f'(e) £ f'(a) if z<a, since c€ (z,a)
f'lle)2 f'(a) if z>a, since c€(a,2)

In either case f(z)—f(a) = f'(c)(z—a) 2 f'(a)(z—a) and (A) holds

as asserted.

PROPOSITION 5.1.9. Suppose f is concave up on an interval I.
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Then, for each [a,b] C I, the chord joining (a, f(a)) to (b, f(b))
lies above the graph y = f(z),a<z <b.

Proor: Exercise.

b

o S
C

B

EXAMPLE 5.1.10: A rock is dropped from a height of 150 m. Deter-

mine its speed when it hits the ground.

Here we are given

s'"(t) = —g, 8'(0) =0, s(0) = 150. f
s(t) is the height of the rock
above the ground t sec. after -
it has been droppped. ";
g is the acceleration due to t
RIS =

gravity: g ~ 9.8 m/sec?.
s(0) = 150, the height when dropped
s8'(0) = 0, the rock is dropped from rest.

§"(t) = —g => §'(t) = =gt + ¢ (Corollary 5.1.5)
= §'(t) = —gt, since 0 = s'(0) = c.
= s(t) = —%gtz + k (Corollary 5.1.5)

= 3(t) = —%gf + 150 since 150 = s(0) = k.
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The time when the rock hits the ground is given by

0=s(t) = —%gtz + 150.

t=1/@.
g

The speed with which the rock hits the ground is given by

300
ls'( )I =t=gyagd T u Pl

~ 54.2 m/sec.

EXAMPLE 5.1.11: Consider the function f(z) =
f'(:)— l+= J a2

{>0, if z<0
<0, if z>0 ‘ |

) 8
T T € R

‘
'
s

{ P
-1 s

= (14 22)%(=2)+2z-2(1+ 22z
- (1+42z2)t

_23z2-1) [ >0 if [2]>
C A+ | <0, if |sl<

The function is therefore increasing on (—o0,0] and decreasing on
[0, 00).

Also f is concave up on (—o0,— 715 ] and on [\—}5 ,00) and is
concave down on [—715 , 7’5 )

Other observations useful in sketching the graph are f(z) >0
for all z : the graph is in the upper half plane f(—z) = f(z): the

function is even so the graph is symmetric about the y-axis.
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lim; o f(z) = 0 : the graph is asymptotic to the z-axis.

EXAMPLE 5.1.12: Next consider g(z) = ;f:—l . B3k 1,
Some simple observations are: g(—z) = —g(z) : this is an odd
function so the graph is antisymmetric with respect to the y-axis.
The function changes sign at z =0, %1
Jim g(z) =00, lm g(z)=-o0, ¢(0)=0 lim g(z)= oo;
in fact g(z) =z + %5, soif z>1, g(z) >z and
g(z)—z = 0(z = *o0).

e (22 =1)3z%? —2%-2z _ z*-32?
TEETTE- . @y

_32(22—3){>0, if |z| >3
(z2-1)% | <0, if |z| <3, z#+1

w, r _ (22 =1)*(42® - 6z) = (z* - 32%)2(2? - 1)2z
g (.‘.':) - (Iz g | 1)4

_2:(:.':2-}-3){)0, if -l<z<Oorz>1
" (22-13 | <0, if z<-lor0<z<1

\ i\ L 8T
b
s

FE

i

P
-

wis

l ™

<

P

e

§5.2. Local Extrema. Let f be a continuous function on its do-
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main. To determine the interior local maxima and minima of f, first

observe that these occur at critical points of f:
(i) Points ¢ such that f'(c) =0, or
(i) Points where f is not differentiable.

The behaviour of f' near a critical point may often be used to

determine the nature of the point. The first derivative test is as follows
<0, z€(c-46,¢) —
(a) f(z) :
>0, z€(c,c+9) o
= f has an interior local minimum at c¢. This follows from

the Mean Value Theorem, since

f(z) = f(e) = f'(y)(z = ¢),
for some y between z and ¢, and thus

f'(y)(z=¢c)>0 implies f(z)> f(c) if z€(c—6,c+6)

<0, z€(c-4,c) T

(b) f'(z){ i i .

C
= f has an interior local mazimum at c.

Note that in (a), (b) it is not required that f'(c) exists but only
that f is continuous at c¢. For example, (a) shows that if f(z) =

|z|, f has a local minimum at 0 even though f'(0 does not exist.

The second derivative test for local extrema is a consequence of

these observations:

F(e)=0, fe)>0(<c®)
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= f has a local minimum (maximum) at c. Since

by LEI=LAS) _ i £

z—c T —C z—c T —C

f(e) =

it follows that if f"(¢) > 0 (< 0), then g}} > 0(<0) for z close
to ¢ so that f' has the behaviour described in (a)((b)).

A word of warning: the second derivative test is a local result
only and describes the behaviour of the function near a critical point.
This is mostly irrelevant in determining global or absoluted maxima
and minima. In Example 5.1.11, f'(0) = 0, f"(0) < 0 shows f
has a local maximum at 0. However, we get more information by
considering f' alone: f(z) < f(0), for all z # 0, since f' > 0 on
(=00,0) and f' <0 on (0,00).

§5.3. Global Extremum Problems. Here we are interested in
determining the existence and location of absolute or global mazima

and minima: points ¢ such that

f(z) < f(e) (2 f(e))

for all z in the domain of f. In general the existence or otherwise of
such points is an essential part of our task. When the domain of f is
a closed interval, the Weierstrass Theorem (Theorem 3.3.4, page 60)
gives the following:

FUNDAMENTAL PRINCIPLE. If f is continuous on the closed
interval [a,b], then f has both a maximum value and a minimum
value in [a, b]. These can occur only at the following points:

(i) an end-point a or b,

(ii) a point where f' does not exist,
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(iii) a point where f'=0.

EXAMPLE 5.3.1: Determine the rectangle of largest area that can be

Ar
inscribed in a right-triangle. A = zy
£ =% (similar triangles) 4

Thus the function to be maximized is

A(z):%z(a—z), 0<z<a.

Since A is continuous on the closed interval [0,a] it has both a

maximum and a minimum value

A'(x):%(a—2x)=0=>a:=

(-] =]

Thus the global extrema can only occur at the end-points 0,a

s e
or the critical point §

z 0 a

e

| | |
| | |
el I B B
| | |
| | |

A(z) 0 0

>3

The maximum area occurs, when z = a/2, in which case y =

b/a and A = “T" . The minimum occurs at z =0 and z = a, when
A=0.

a

If the domain of the function in the extremum problem is not a

closed interval, then the approach must be modified.

EXAMPLE 5.3.2: Find the length of the longest ladder that can be
carried horizontally round a corner from a corridor of width a to a

corrider of width b.
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Here it is convenient to reformulate the problem

as: “What is the length

of the shortest ladder that

Py

touches the two outside

X
walls and the inside corner?” _u,/

In the diagram §=§- so that y=‘?"

L R

U(z) = Va2 + 22 + /b2 + 2 Ar '

2
=1/02+$2+1’b2+9_:2_
I

=(1+£~)\/02+32, z>0.

The domain of the function which we wish to minimize is (0, oc).

It it not clear at this stage whether a minimum exists.

b b T
e 2 2 . LR
?(z) = Val+z +(1+z) o
_ =b(a® + z?) + 2 + bz?
z2\/a? + z2
_ —ba? +2° { <0, if z<a??p/?
T 22Va?+ 22 | >0, if z >33
Therefore £ is 7 \

and increasing on [a?/35'/%, 0),

so that ¢ has a

a
decreasing on (0,a?/3b!/3] {
I
i
i
|
!

minimum (global) at @?/3b!/3

given by
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2/331/3 b?/3
Qa**p ) = (1 + 7] Va2 + at/3p2/3
= (a*/® + 0*/%) Va2/3 4 b2/3

- (a2f3 + b2/3)3/2-

This is the length of the longest ladder that can be carried round the

corner.

O

In this example, it was fortunate that ¢ has only one critical
point and that ¢ decreases to the left and increases to the right of
this point. Just checking the critical point(s) here would not have

been enough to show we had a global minimum.

An alternative approach could be to observe that lim;_.o4 é(z) =
lim,; .o £(z) = oo which, together with the continuity of £ on (0, o),
implies that £ has a global minimum at some ¢ € (0,00) (This is not
trivial; Problem 3.32, page 68.) Thus c is a critical point of £. Since

there is only one critical point, this gives the minimum.

EXAMPLE 5.3.3: 7

A
2
%

In the diagram, show

v
-

*
PR _.___._....7,, it
\

that the polygonal curve

I3
v

APB joining (0,a) to (1,b)

*
=)
B
i
1
>

>

through (z,0), 0<z <1,
is shortest when the angles

a, 3 are equal.
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We must minimize
Uz)=Vat+22++/(1-z)?+b2, 0<z<L

The function £ is continuous on its domain which is the closed interval
[0,1). Therefore £ has a maximum and a minimum value in [0,1]

which must occur at an end-point or a critical point

e'(z)=;-———9-'~“-’-)— 0<z<l

Vai+z2  J1-z)2+b

Observe that £(z) < 0 if z is near 0 and ¢'(z) > 0 if z
is near 1. Thus £ is decreasing near 0 and increasing near 1 so
that the minimum does not occur at an end-point. Therefore at the
minimum

B z . (1-12)
V- e Y ey

= cos a —cos f.

0={'(z

Hence, cosa =cosf, 0 < a, < 7, sothat a = as asserted.

O

An even nicer way to see the last result does not involve calculus.

Consider the point B(1,—b). Then APB and APB’' have the same

length. But APB’ is shortest when it is a straight line, in which case
a=f,

§5.4. The Cauchy Mean Value Theorem. This generalization of

the Mean Lagrange Value Theorem is as follows.

THEOREM 5.4.1. Suppose

(i) f,g are continuous on [a,b],
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(i) f'(z),¢'(z) exist if z € (a,b).
Then

f'(©)lg(b) = g(a)] = g'(c)[£(b) — f(a)]

for some c € (a,b).

PROOF: Consider ¢(z) = [f(z) — f(a)][9(b) — g(a)]
—[g(z) — 9(a)][£(b) = f(a)].

Then ¢ is continuous on [a,b], ¢'(z) exists if z € (a,b) and
@(a) = @(b) = 0. Thus, by Rolle’s Theorem, ¢'(c) = 0 for some
¢ € (a,b) which gives the result.

O

COROLLARY 5.4.2 (L’HOSPITAL'S RULE). Let f',g' exist near a
(but not necessarily at a). Suppose
(i) lim f =0 (co), limg =0 (o),
oy e P b
(i) 1:31 o= k.
Then lim £ = k.
a+ 9

Note: “lim” may be I‘EplaCEd by “Iim”, “lim”, “lim”, “lim”.
a+ a- a (= -] - 00

PRroOF: The proof in the case lﬁl f = oo, l:r_:lg = oo is quite tricky.
We prove only the case imf = 0, limg = 0 here.
a4 a+

Now f(z),g9(z) are defined and f'(z),¢'(z) exist if
z € (a,a+6g), for some &, > 0. Further (ii) implies % is defined
for z near a so we may also suppose ¢'(z) # 0, z € (a,a+ &).

Define f(a) =0, g(a) =0. Then, from (i), f,g are continuous
on [a,a+ &), g(z) # 0 if z € (a,a + &) (why?) and the Cauchy
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Mean Value Theorem gives

f(z) _ f(z) = fla) _ f'les)
g(z)  g(z)—gla) g'(cz)’

for some ¢ € (a,z).

This, together with (ii), implies

o f@) . fes)
R 9@ T )

The case when condition (i) is replaced by (i)’
limf = 0(c0), limg =0/ (c0)

may be deduced from the case of a finite point a by considering the

functions
1 1

Ft) = f(3), G(t)=9(3),

so that
F(t)=-5 (), G1)=-5d0

and

£t L = &'(3) o (3

G'(t) -#9'(3) 9@
Thus

(1) 13&1F=h£1f=0(oo), l‘i)EzG=h£Jg=0(oo)
(ii) 13;35_;1@{_,:):.

. F - . . . . L =
Hence lax_? & = k, which implies hgz & k.
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EXAMPLE 5.4.3:

1/2 1/4

limz =, —l'
z—1 z—-1 w4l

Here, let f(z) =z'/2 =24, g(z)=z-1
(i) lmz— f(z) =0, lim;—;g9(z)=0
;:“”-}:'”‘

(ll) lim;—; ﬁf’} = B . = % = % = %
Therefore lim,_.; % =1

EXAMPLE 5.4.4:

z—0 I

Let f(z)=sinz, g(z)==z
(i) limz—o f(z) =0 lim,—og(z)=0
(ii) lime—o £ = lim, o 932 =1

Hence lim,—o ¥* = 1.

We now have to admit that we cheated here! Notice that we

used the formula D sin z = cos z. But to derive this formula (Prob-

lem 4.9, page 82) we needed to know that lim;—o ’"‘z £ = 1; this limit
must be shown, strictly speaking, before we can claim to have proved

the formula D sin z = cos z.

EXAMPLE 5.4.5: Given D,z° =az°"!, if z€ IR, z > 0.

lim.":"’—c:v:;':-‘}-c.vr—1 l,maz -a
= lim ———
z—1 (z-1)2 =1 2(z-1)
. ala—-1)z°"% 1
= lim = = Ea(a -1).

This used I'Hispital’s Rule twice and the existence of each limit
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implies the existence of and its equality with the preceding one. The
special cases @ = 0, @ = 1 do not require I'Hospital’s Rule at all
since the numerator is identically zero in these two situations.

We must take care that all of the conditions of I'Hospital’s Rule
are satisfied each time we use it. There is an error in the following

repeated use of the rule. Find the error.

EXAMPLE 5.4.6:

2 _ =
HmSz 4z+1=1im6: 4=.mg=3_

z—1 2 —z =12z -1 z—1

o TG 2_
The correct answer is lim,_., 3&_73£tl = 2,

O

§5.5. Inverse Functions and Functions Defined Implicitly.
The direct proof of the formula Dz!/® = lz#~!, (Problem 4.8,

- |

page 82) and, more generally, Dz™/" = 2z , when 2 >0, m €

Z,n € IN, is a somewhat tedius exercise. The following argument is
flawed but more attractive:

1/n

y=z " 4=byP =2, when z>0.

Therefore, by the Chain Rule, ny"~'Dy = 1 and Dy = 1y}~ =
L(g}/my1=n = 1z%-1, Similarly:

m/n m

y=z < y"=z™, when z>0.

Again the chain rule shows ny”~!Dy = mz"~! sothat Dy = 2y!~"z™"! =

myB-n)gm-1 o m -1
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The difficulty with this argument for proving the formula for
Dz'/™ is that, even though we established that the n-th root function
exists, we need to know that its derivative also exists before we can
apply the chain rule to find the derivative.

In this sectin we consider the general problem of when a function

f has an inverse function g, that is when does g exist such that

y = f(z) <= g(y) = 2?7

This is equivalent to g(f(z)) = z, for all z in the domain of f and
to f(g(y)) =y for all y in the range of f. We discuss the existence,
continuity and differentiability of inverse functions.

A function f is one-to-one (1-1) if

ko= f(u) # f(v).

This is equivalent to

fu) = f(v) = u=v.

EXAMPLES 5.5.1:

27
(a) If f(z)=z%z€R
then f isnot (1-1) % J=x% i
on its domain. However,
if we restrict the domain to P e

(—m! 0]’ or [0, m) 1
or to any subset of one of these, then we do have a function

which is (1 -1).
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(b) If g(z) =7, z€ TR, z #0,

then g is (1 —1) on its domain. . k

|
|
Con we deline: 4(0) \{

in such a way that

this new function is (1 — 1) on its domain?

A function f has an inverse g <= f is (1 —1) on its domain.
The domain of f is the range of g and conversely the domain of ¢

is the range of f. Notice that g is the inverse of f <= f is the

inverse of g
y=f(z) = g(y) = =.

The inverse of f is often denoted f~!. This should not be

confused with -}-, the reciprocal of f.

If f has an inverse function g, then the graph of f, the curve

y = f(z), is the same curve as z = g(y).

p /-,!:,;A,.r’
To draw the graph of g, 'r %
the curve y = g(z), we \ ,_/7// e
/’ 5 '
swap the £ and y axes. | ]
Thus the graph of g | £
T N
|
|

is the reflection of the

graph of f in the line y = z.

EXAMPLE 5.5.2: sl I
fiz)=2c-5 zeR e iale

(a) ' g
9y)=3y+5 yeR ’ >
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2 ! “_"‘:-,,-—'-—""
®) e l// v
9w)=v¥ v=20 l’/ R
. " g
f(z)=2* =zeR ",,./f/,"';r’;x)"
i dy) =9y, yeR o -

Notice that the function g(z) = 1 (Example 5.5.1(b)) is its own

inverse function. Can you think of other functions with this property?

The sine and cosine functions do not have inverses. However, if
we restrict their domains to intervals in which they are increasing on
decreasing, the inverse functions are denoted sin~' (or arc sin) and
cos™! (or arc cos) respectively. Unless specified otherwise arc sin will

T X

denote the inverse of the function sin z, z € [~ ¥, %] and arc cos

will denote the inverse of the function cos z, z € [0, 7].

g : | v
; /"f’—f:’"' SR o ',"‘:1\.‘-'.’.1";\\
g A il
h'." // ‘ﬁ K 1: f""_"-
Z 3 J | )
o |

PROPOSITION 5.5.3. Suppose f is continuous and (1 — 1) on an
interval I. Then f is either strictly increasing or strictly decreasing

on I.

PRroOF: If f is not monotone on I, then we can find p,q,r € I, p <
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g < r such that

f(p) > f(¢) and f(r)> f(qg)

or

f(p) < f(g) and f(r) < f(q).

In either case, the Intermediate Value Theorem implies that there
exist s € (p,g), t € (g,r) such that f(s) = f(t), which would
contradict that is f (1 —1).

O

PROPOSITION 5.5.4. Suppose f is continuous and (1 — 1) on an

interval I. Then its inverse function g is also continuous on f(I) =

{f(z):z €I}

PROOF: By Proposition 5.5.3, f is strictly increasing or decreasing

and, by Corollary 3.3.6, f(I) is an interval.

A s
& T, ® 2 e 1
/ | $ Rarg)
-+~
r £ i
F - = A
M & L —— T
7
: 2 3
W e ','fc-j'f')

. 2-‘:1 ALTIT 6
- : /

P FC
We will consider only the case that f, and therefore g, is in-
creasing. Let b be an interior point of f(I), b= f(a). If ¢ > 0 is
sufficiently small that [a —e,a+¢] C I, let

6 =min{f(a+¢€)-b, b— f(a—¢)}.
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Then

ly=bl<é=> fl(a—¢€)<y< fla+e¢)
=> a - € < g(y) < a+ ¢ (gis increasing)
= g(b) — € < g(y) < g(b) +¢ (a = 9(b))

= |g(y) — 9(b)| < e.

Therefore g is continuous at b.

The one-sided continuity of ¢ at an endpoint a is proved sim-

ilarly.
O
PROPOSITION 5.5.5. Suppose f is continuous and (1 — 1) on an

interval I with inverse function g. If b= f(a) and f'(a) =0, then

g'(b) does not exist.

PROOF: Suppose f'(z), ¢'(f(z)) both exist. Then, since
g(f(z)) = z, we find from the Chain Rule,

D:g(f(z)) =1
g'(f(z)f'(z) = 1.

But, f'(a) =0, so ¢'(f(a))f'(a) =1 implies ¢'(f(a))0 = 1. There-

fore g'(f(a)) does not exist.

O

PROPOSITION 5.5.6. Suppose f is continuous and (1 — 1) on an

interval I with inverse function g. If b= f(a) and f is differentiable
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at a with f'(a) # 0, then g is differentiable at b and

b e
0= 7y
ProoF: If y#b
gy)—g(d) __z-a y = f(z)
y—b f(z) = f(a) z = g(y)

Then, by Proposition 5.5.4, if z, = g(yn), n=1,2,...,

m y, =b==p lim z,=a.
n =00 n—00

Therefore

. g(y) —g(b) _ ; T—a
o S el &~y
Hpy = L
90 = 75y

The important part of this result is that g'(d) exists if

f'(a) # 0. It is then easy to find ¢'.

EXAMPLE 5.5.7: Let f(z) = z*, z € R. Then f'(z) = 322 # 0

if z # 0. The inverse of f is g where g(z) = z!/3. The preceding

propositions tell us that g'(z) exist if z # 0 and ¢'(0) does not exist
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y=:r‘/3
y'=z
dy
2
. _=1
3y dr
dy _ 1
dr = 3y?
=%z'§, z#0

It is easy to check also that, as shown above, ¢'(0) does not

exist

gle)=0(0) gt =00 . 1

z—-0

z—-0 = z2/3

which is unbounded and so does not have a limit at z = 0.

We now have another way of deriving the formula Dz

1

z}/", then %L exists for all z # 0 in the domain.

n

y =z
ny"™~! % =1 (Chain Rule)

. T— 1
dz  ny"=1!  n(z!/n)n-1

1
= -z
n

EXAMPLE 5.5.8: D arcsin z = 71’:; , =1 < z < 1. To see this,

consider

y= arcsinz, siny=z

¥ ol ¥ 1< 2T
—— - — x 5
2_y—21 — -—
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We know j‘{- exists —1 < £ < 1 and does not exist if z = %1

(Why?). From the Chain Rule

since cos?y+sin’y =1, cos?y =1—sin’y = 1—z? implies cosy =
v1—2? . We must choose the positive square root, since 0 < cos y
i -Fg<y<¥.

the procedure we have been using here is called implicit differ-

entiation and may be used in more general situations.

EXAMPLE 5.5.4: Suppose the equation z? + y?> = 1 may be solved
for y in the form y = f(z), where f is differentiable, we may find

51:1 without ezplicitly solving the equation.

2?2+’ =1
2z+2y@-=0
dz
Howel & poio
dr Y

equivalently f'(z) = -7Gy-
We may verify this independently: z? 4+ y? = 1 has solutions

y==+v1—-1z? and

EXAMPLE 5.5.10: Find %, if it exists, given that

4z? 4+ 2zy — zy® = 14.
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If -:—} exists, then

dy 3 2 dy _
Sz+2y+2za;—y - 3zy 7 =0

%(23 =3zy®)=y* -2y -8z
dy _ vy} -2y —8z
dr =~ z(2 - 3y?)
This may be used to find the slope of the tangent to the curve deter-
mined by the equation. For example (2,-1) is a point on the curve

and the tangent at that point has slope

dy -142-16 15

d&s  Ha~3 2

Remember that in the special case of inverse functions (equa-
tions of the form f(y) = z), the existence of % was proved when
f'(y) # 0. For the general implicit differentiation we have not proved
that j‘f exists and this must be assumed. The Implicit Function
Theorem, a general result dealing with this problem will be discussed

in Advanced Calculus.
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5.1

5.2

5.3

5.5

5.5

5.6

5.7

5.8

Problems
Let f(z) = |z|, =1 £ z £ 1. Then f(-1) = f(1) = 1, but
thereisno ¢ € (—1,1) for which f’(¢) = 0. Does this contradict
Rolle’s Theorem?

Find c € (1,4) such that

flo=L8ID i gy =2

If f(z)=(z—a)™(z-0b)", a <z <b, show that the “c” of
Rolle’s Theorem divides the interval [a,d] in theratio 2 (0 <

m,n € Q).

If f(z) =pz?+qgr+r, a <z <b show that the “c” of

Lagrange's Mean Value Theorem is the midpoint of [a, b].

Show that the equation
2 +522-7=0

has exactly two real roots.

Let f(z) = —,i'-i-, z # 1. Identify these intervals where f is

increasing, decreasing, concave up and down. Sketch the graph
of f with particular attention to the asymptotic behaviour near

z = *1 and when |z]| is large.

Suppose f'(z) = &, for 2 >0 and f(1) = 1. Find f. Justify

your conclusion.

The strength of a beam of fixed length and rectangular cross-
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5.9

5.10

5.11

5.12

5.13

5.14

section is proportional to the product of the width by the square
of the depth of the cross-section. Find the proportions of the
beam of greatest strength that can be cut from a log of circular

cross-section.

Use derivatives to prove Bernoulli’s Inequality

(1+z)*>14az, if z€(-1,00U(0,0), 1<a€@

Observe that is a stronger form of the inequality which is pre-

viously proved for 1 < a € IN.

A farmer has 200m of fencing wire; find the largest rectangular

area he can enclose.

If, in #5.10, the area to be fenced is bounded on one side by a
straight river, it needs to be enclosed on three sides only. Find
the largest area that can be fenced with 200m of wire in this

case.

A body is dropped from a balloon which is rising at 1m/sec
and it reaches the ground 12 seconds later. How high was the
balloon when the body was dropped?

An athletic field with a 400m perimeter consists of a rectangle
with a semicircle at each end. Find the dimensions of the field

if the rectangular portion is to have the largest possible area.

Given a sphere of radius a, show that the right circular cylinder
of largest lateral surface area that can be inscribed in the sphere

has radius r and height h given by r = h/2 = a/V/2.
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5.15 Let f(z) ==z/(z? +1).
(a) Find f'(z).
(b) In what intervals is f increasing? decreasing?
(c) Where is f concave up? down?
(d) What is the behaviour of f when |z| is large?
(e) Sketch the graph.
(f) What are the greatest and least values of f in [-10,10]?

5.16 If a >0 and 0 <a < b, show that

a+1

ba+‘l
< b*(b - a).

-a

“(b—-a)<
G a+1
Hint: What was Lagrange’s first name?

5.17 Suppose f is differentiable on an interval I and satisfies |f'(z)| <
M for each z € I. Show that

If(z) - f(y)| < M|z —y|, foreach =z,y€l.

5.18 Show that limp—u((n+1)*=n%] =0, if a < 1.

5.19 What point on the curve y = /7 is closest to the point (1,0)?

Justify your conclusion.

5.20 Show D tan z = sec’z [tanz = 8BEZ  gsecz = —L-. Use

cosz’ cosz
#4.9].

5.21 If the equation y® —y? +24 = 2% — z can be solved in the form

y = f(z) where f is differentiable, show

322 -1
3f(z)? = 2f(z)
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5.22 Consider the functions fn, n =0,1,2, defined by

0, ifz =0
fn(2) = { z"sin(l), ifz #0.

(a) Sketch the graph of each of the functions.
(b) Which of the functions are continuous at 07

(¢) Determine whether or not f,(0) exists n =0,1,2.

5.23 Suppose f'(z) exists, a < z < b. Must f' be continuous on

(a,b) [Hint: Consider f; in #5.22].

5.24 Suppose the function L(z) satisfies L(1) =0 and

L'(z) =

8|

for each z > 0.
(a) Let f(z) = L(10z); show f'(z) =1 [Chain Rule].

(b) Let g(z) = L(z"); show g'(z) = 2.

(c) Let h(z) = L(z? +1); find h'(z).

(d) If a,b> 0, show L(ab) = L(a)+ L(b) [Consider L(az)).

5.25 Since L'(z) > 0, if z > 0, L is increasing on (0,00) and
therefore has an inverse function E (L as in #5.24).
(a) Show E'(z) = E(z), for all z in the domain of E.
(b) Show E(a)E(b) = E(a + b), for all a,b in the domain of
E.

5.26 Let f be a polynomial of degree n. Show that the equation
f(z) = 0 has at most n distinct solutions in IR. [Hint: Try

induction. What was Rolle’s first name?)
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527 If z >0, let f(z) = 522 + Az~5, where A is a positive con-
stant. Find the smallest A such that f(z) > 24 for all z > 0.

5.28 Find the rectangle of greatest area which has one side on the

z-axis and lies under the cureve y = ;,1_*,—1 .

5.29 A man in a row boat 3 km off a long straight shore wishes to
reach a point 5 km up the shore. If he can row at 2 km/hr and
walk at 4 km/hr, describe his fastest route. [Ans. Rows to a
point /3 km upshore, then walks.]

5.30 A 5 ft. fence stands 4 ft. from a high wall. Show that the
shortest ladder than can reach the wall from the ground outside
the fence has length (1 + 152575 )(1002/3 + 25)'/2,

5.31 Let f be continuous on an interval I and have a local maxi-
mum at each of two points u,v € I. Show that f has a local
minimum at some point between u and v. It cannot be as-

sumed that f has a derivative.

5.32 Suppose f'(a) > 0. Show that, for some § > 0

f(z) < f(a), if z€(a-éa)

f(z)> f(a), if z€(a,a+).
Do not assume that f'(z) exists for any z # a. [Hint: consider
,[(z)—[(c)’ z # a).

I—a

5.33 Suppose f is differentiable on (0,00) and

lim f(z), lim f'(z)
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5.34

5.35

5.36

5.37

5.38

both exist. Show that lim,_... f'(z) = 0. [Hint: Consider
fz+1) - f(2)].

Suppose
(i) f is continuous at 0,
(ii) im,—o f'(z) = a exists.

Show that f’(0) exists and equals a. [Hint: Consider &Egﬂ.]

[THE DARBOUX PROPERTY OF DERIVATIVES]. Suppose f'(z)
exists a <z <b and f'(a) =a, f'(b) = and v is a number
between a and [. Then there exists a point ¢ € (a,b) such
that f'(a) = ~.

This problem shows that derivatives, like continuous functions
have the ‘Intermediate Value Property.” However f'(z) may ex-
is6 6t ench-poinitin e inerel T B neelitot Nelontinueus
on I, as shown by the function f; in #5.22.

[Hint: If a < 4 < 3, by considering g(z) = f(z) — vz, use
g'(a) < 0 < g'(b) with #5.32 to show that ¢ has an interior

minimum at some c € (a,b).]

For each real t, let f(z) = —3z® + t’z and let m(t) denote
the minimum of f(z) over the interval 0 < z < 1. Determine

the value of m(t) for each ¢ in the interval -1 < ¢ < 1. [Be
Careful).

Use I’Hospital’s Rule to find lim;—., z—:% , where

m,n > 0. Then find the result by some other method.

Find
(a) ]iln;_.o tan 5z

tan z ?
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(b) lim,.g ianSs,

5.39 Show

(a) lims—aq LEEEF=2 = - (a>0),

(b) Limz—o(t= - L)=-1.

5.40 Find
(a) lime—o 345 (6#0),

(b) lim,_, %22

z—sin

(C) ].im,,-_..o z )

(d) limz—o z™%(1 — cos 2z — 222).

5.41 Suppose 100 < z < 121. Prove
(a) & (z —100) < /Z — 10 < (z — 100).
(b) (121 —2) <11 - /z < 35(121 = z).
[Hint: Apply the Mean Value Theorem to /z].

5.42 Show that
(a) sinz < z forall z >0,

2 .
(b) £z2<sinz, 0<z<F.

5.43 Sketch the curve y = (z — 1)(z + 1)?, locating points on the
curve which correspond to local extrema and inflection points
of the function (an inflection point is a point where the function

1 =32

changes concavity). [Ans. (-1,0) local max., (3,55) local

min., (—%,—12) inflection point.]

5.44 Show that the equation

22 - 322 +6z+6=0
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5.45

5.46

5.47

5.48

5.49

5.50

has exactly one real root and locate the interval [n,n+1) which

contains the root.

Show that for all real numbers a,b

0 e e b=

5v5

Find
(a) lim;_.n[% — ;!3_—2;]

(b) limzmeo z3(sin 2)3.

Given n real numbers a;,a;,...,a,, prove that the sum
3 y p
L = 2 3 O T n
> k=1(z — ax)? is smallest when z = z = &3 k=10k, the

arithmetic mean of a;,...,an.

Suppose f"(z) #0,0<z <1 and f(0) <0, f(1) > 1. Show

that the equation f(z) =z has exactly one root in [0,1].

A wire of length L is to be cut into two pieces. One of these
will then be bent to form a circle; the other will be bent into
the shape of a square. How should the wire be cut so that the

sum of the areas will be a minimum? a maximum?

A cylinder is generated by revolving a rectangle about the z-axis.
If the base of the rectangle lies on the z-axis and the rectangle
lies in the region between the z-axis and the curve y = 17,

find the maximum possible volume of the cylinder (if the maxi-
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mum exists).

5.51 A conical tent (without floor) is to enclose a given volume V.
Find the dimensions of the tent for which the area of canvas

used is a minimum. [Volume of cone = }nr?h, lateral area of

cone = mry/r? + h?].

5.52 Let f(z) = z°+ z; show that f has an inverse function g and

find ¢'(2).

5.53 Suppose that f(0) =0, f' exists on [0,00) and f' is increas-
ing. Show that g(z) = @ is increasing on [0,00). [Hint:
Consider g¢'(z). Show this is positive on (0,00) by applying

the Mean Value Theorem to f on the interval [0, z].

5.54 Show that the equation
4z% -5z +2=0

has exactly one real root.

5.55 Let f be a twice differentiable function. If the chord joining
two points on the graph of f intersects the graph at a third

point, show that f” =0 at some point.

5.56 Show that z2 = z sin z + cos z for exactly two real values of

I.
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5.57 Show that, irrespective of the value of b, there is at most one

5.58

5.59

5.60

point z € [—1,1] for which z® — 3z +b=0.

Fermat’s Principle states that a ray of light travels from a point

A; toa point A; in such a way as to minimize the time taken.

Suppose that A; is in a medium M, (air, say) and A; is in

a medium M, (water) and that the interface is a plane. If ¢,

is the speed of light in M; and ¢, is the speed of light in M;.

Prove Snell’s Law of Refraction

sin 91 €

sin @2 c2

where ¢;, ¢, are the angles
between the normal line to
the surface and the incident and

refracted rays respectively.

Find the dimensions of the right circular cylinder of maximum

volume that can be inscribed in a right-circular cone of base

radius R and altitude H, [Ans. r=2R/3, h = 1 H].

If air resistance is
neglected, a cannon ball
projected from 0 at time

t = 0 with muzzle velocity

vo at an angle a with the horizonal satisfies the equations

z"(t)=0, z'(0)=vocos a,
y'(t) = -9, ¥'(0)=vosin a,

~ N

z(0)=0
y(0) =0

where y(t) is the height of the projectile and z(t) is the dis-
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5.61

5.62

5.63

tance travelled along the line of fire at time ¢.

(a) Show that the projectile reaches a maximum height

2

y = v? sin? a/2g at time t = vosin a/g.

(b) Show that it returns to earth when

z =vlsin 2a/g at time ¢ =2y, sin a/g.

(c) Show that the path of the projectile is the parabola

g v§ .
Yy = M—ws—z—; :c(? sin 2a — .‘L‘).
Prove that among all right-circular cones that may be inscribed

in a sphere of radius R there is one for which the volume is

greatest. Show that this cone has volume 327 R? /81.

Let f,g be differentiable functions such that
flg=4g'f>0.

Show that between any pair of roots of the equations f(z) =0
there is a root of the equation g(z) = 0 [Hint: Consider the
sign of f' at successive roots of f(z) =0 to show that g must

change sign in between)].

Suppose

(i) f'(z) - 9(z)f(z) =0, a<z<h,
(i) g(z) >0, a <z <b,

(iii) f(a) = f(b) =0,

Show that f(z)=0,a<z <b.
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5.64

5.65

5.66

5.67

5.68

5.69

[Hint: If f(zo) > 0 for some zo € (a,b), then f has an

interior maximum. Show that this cannot occur.]

Prove
(a) Da.rccosz:vf_‘—‘,-, -l<z<1.

(b) Darctanz = z € R.

1
14+z4?
Here ‘arc tan’ is the inverse of ‘tan’ with its domain restricted

to (=%, ¥).

If pp(z) =0 is a polynomial of degree n, show that the equa-
tion pn(z) = 0 has at most n real roots. [What was Rolle’s

first name?]

(a) If f(z)=(z?—-1)", show that f(¥)(=1) = f*)(1) =0 and
f*)(z) = 0 has at least k roots z € (=1,1), k=1,2,...,n—1.
[What was Leibniz’s first name?]

(b) Show that f(™)(z) is a polynomial of degree n and that
f™(z) = 0 has exactly n real roots all of which lie in (—1,1).

Sketch the following curves. Label asymptotes, local maxima

and minima, and points of inflection

() v = e=ne=m i)y = e
e a -
(i) y = 15, (iv)iy = oG
(V)y=2%+322 -1, (vi)y = z}4(z - y)?
(vil) y = (22 — 4)? (viii)jy = z* - 23

Suppose that lim,;—.o f'(z) = A

(a) Show that lim,—.[f(z+1)— f(z)]= A

(b) Find lim;—e[f(z + B) — f(z))].

Prove Proposition 5.1.9, that if f is concave up on [a., b] then
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the chord joining (a,f(a)) to (b, f(b)) lies above the graph

y=f(z),a<z<b

5.70 Let y = f(z), —o0 < z < oo, be a smooth curve which does
not pass through 0 = (0,0). If P = (z¢,%0) is a point on the
curve which is closest to 0, show that OP is perpendicular to

the tangent to the curve at P.

5.71 Suppose f is Jf
a differentiable function \
on [—2,2] and the =3 &4 ~ /
it —
graph of its derivative \ ‘r/),_ Zhe N

f' is given in |

the diagram

(a) Where is the maximum of f located? Why?

(b) Identify those points where the minimum might be located

and justify your choice.
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VI. INTEGRATION

§6.1. The Area Problem

Let f(z) 20, a £z <£b. If we wish to determine the area of

the set 77 Y
I / i ,_f |
S={(z,y): a <z <b, USySf(I)}, l { s G
+ —
i o {~-
we realize that formulating a precise definition of what we mean by
this area is a major step towards solving the problem.
From the definition of the area of a rectangle (length x breadth)
we can easily calculate the area of a region which is the union of a
finite set of nonoverlapping rectangles. It is reasonable to require our
definition of area to satisfy
area L < area S < area U,
if L is a union of rectangles contained in S and U is a union of
rectangles which contains S.
« N\ J-"‘ "'-_*-q'
T o 3
i v o 4 ! ' ‘ ' Lo " .
i : f}","’;“ 1 i "
.. o A |
T e M e ! 1. . e
I ‘ : .
i B Fovog 4 \ > ., { STPOE S DT

If there is a unique number a satisfying
area L < a < area U

for all such rectangular union; we define a = area S.
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We also write a = f: f, the integral over [a,b] of f. Since
there are many applications of the integral besides the calculation of
areas, we omit the condition ‘ f(z) > 0’ in the formal definition of

the integral.

§6.2. The Riemann Integral. Let [a,b] be a closed interval. The

set P= {z9,21,...,Za} is a partition of [a,bd] if
a=29) <2 << 2y=b

A partition @ is a refinement of the partition P if PC Q.
Let f be a bounded function on [a,b], P = {z¢,Z1,...,Zn} &

partition of [a,b] and
m; =inf{f(z):2ic1 S 2L 2}, M;=sp{f(z)iziLz < 2}
Then

L(Psf) = ml(zl ==t ID)+m2(I2 —zl) R +mn($n - zn—-l)

U(Paf) - Ml(zl _IO)+M2(12 = 1‘1) W e Mn(xn — 3‘“_3)

are the lower sum and upper sum respectively of f with respect to

P . More concisely

L(P,f) =) mi(zi - ziz1),

U(P, f) = ZM-'(I.' - Zijm1)
e

Clearly L(P,f) S U(P,f),since m; < M;, i=1,...,n.
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LEMMA 6.2.1. Let P,Q be partitions of [a,b] with P C Q. Then

L(P, f) £ L(Q, f),
U(P, f) 2U(Q, f).

This lemma states that refinement increases lower sums and

decreases upper sums.

PRrooF: It is sufficient to prove the lemma when @ contains just

one more point than P. Let

P= {IO:II?-"azk—lsxkv--azn}a

Q= {zDsIlv'"9z§—l!gs$ks-'°vzn}'

| v f
““""o ')'i' -:'t-. :<R X_::-_ ‘5"
Then
L(P,f)=Y_ mi(zi - zi-1)
=1
"-1 m
= Z mi(zi = Ti-1) + Mi(Tk — Th=1) + z mi(zi~zi-1)
=1 i=k+1
and
L(@Q.f) \
R-1 m
= z mi(zi = zi—1) + mi(g = zk—1) + mi(zx — ) + Z mi(z; — zi-1)
=] i=k+1

where m} = inf{f(z) : zx-1 £ z < ¢}, m} = inf{f(z) : ¢ <
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z < zi}. Note that mp < m} and m; < mj. Now

L(Q, f) = L(P, f) = mi(q — Tk-1) + mi(zk — ¢) — mi(Zk — Z4-1)
> mi(g — zk-1) + mi(zi — ¢) — mi(zk — Zk-1)

=0,
so that L(P, f) < L(Q, f) as asserted. The statement about upper

sums is proved in a similar way.

PROPOSITION 6.2.2. Let P,Q be any partitions of [a,b]. Then

L(P, f) <U(Q, f)-

This proposition states that any lower sum of f is a lower bound
for the set of all upper sums and that any upper sum is an upper bound

for all the lower sums.

PRroOOF: Consider the partition PU Q. Then

PCPUQ, QCPUQ

i.e., PUQ refines both P and Q. Therefore Lemma 6.2.1 implies

L(P,f)SL(PUQ,f)SUPURQ,f) SU(Q,f).

O

We define the lower integral and upper integral of f over [a,b],
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respectively, by

/bf =sup{L(P,f): P partitions [a,b]}

]‘f= inf{U(P,f): P partitions [a,b]}.

COROLLARY 6.2.3.
b b
[t=][r
This follows immediately from Proposition 6.2.2 and the definition of
the upper and lower integrals.
DEFINITION 6.2.4. If [%f = [bf, then we say f is Riemann inte-

frefoe [

grable on [a)b] and

Equivalently, if there is a unique number a such that
L(P,f) <a < U(P,f)

for all partitions P of [a,b], then f is Riemann integrable on |[a, b

jjtf=a.

The number [ : f is called the Riemann integral of f on [a,b].

and

THEOREM 6.2.5. f: f = a & there exists partitions P, of

[a,b], n=1,2,..., such that

lim L(P,,f)=a and lim U(P,,f)=oa.
n=00 N=00
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PROOF:

“=" : Suppose f:f=a. Then
b Y
[o-Fr-
so there exist partition Qn,R, of [a,}] such that
it 1
= of L(Qn,f) SU(Ra, f) <a+ g ..

Therefore, if P, = Qn U Rn, @Qn C P, and R, C P, so that

Lemma 6.2.1 implies
1 ]
a= =< L(Pn,f) SU(Pn,f) <a+ .

The Squeeze Principle implies that the sequences {L(Py, f)}, {U(Pn, f)}

both converge to «a.

“4«" Suppose
r.Ii_r.lélol',(F’,,,f) =a and nli__ngoU(P,.,f) =,

The first of these implies [%f > a and the second implies

_"f <a.But [2f< e , and therefore
a a a

so that
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EXAMPLE 6.2.6: If f(z)=¢, a <z <b then f:f =c(b—a). To
see this let P = {a,b}. Then

so that

L(P,f)=c(b—a) U(P,f)=c(b,a) JT
|

ff=ff=c(b-a)- (

EXAMPLE 6.2.7: If f(z) =2, 0 <z <1 then [, f = }. Let

\/

={0,4,2,...,221 1} Then 73
| T
(: 1) 1 = 7y
i= = | ’-_ ‘
=——(0+1+----§-ﬂ—1)=~(—-,3-'--—1—)-E '/,'-, -
n? 2n2 l “Tn o
= i n(n + 1)
U(P",f)=z:;-;-n22:_ =(1+2+-+n)= ==

i=] =1

so that limp—oo L(Pn,f) = % and limp—oo U(Pa,f) = § and
Theorem 6.2.5 implies fol f=4i.

O

1,
EXAMPLE 6.2.8: If f(z) = { 0 ::g , ¢

exist for any interval [a,b]. Here L(P,f) =0 and U(P,f)=b—a

hen f:_f does not

for every partition P of [a,b] so that

f¢bf=0<b—a=zbf.
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As in the case of limits, it is important to determine the exis-
tence of the integral even when we cannot find its actual value. We

have the Cauchy Criterion for integrability.

THEOREM 6.2.9 (THE CAUCHY CRITERION). Suppose f is bounded
on [a,b]. Then f:f exists &= for each € > 0, there exists a par-
tition P of [a,b] such that

U(P!f)"'L(Paf)<5'

PROOF:
“ap® Hof : f exists and equals a, then the partitions P, in Theo-

rem 6.2.5 satisfy
lim [U(Paf) = L(Pa,f)] =a—a=0.

Thus, if € > 0, U(Pn, f) = L(Pa, f) < €, if n is large enough.

“&" Suppose that for each € > 0, there is a partition P such that
U(P,f) - L(P, f) <e.
Then, from the definition of the upper and lower integrals
b b
[r-[1se
a -ﬂ

for each € > 0. Thus



But }:f—f:f > 0, so that j:f:fﬁf and f:f exists.

PROPOSITION 6.2.10. Suppose a < ¢ < b. Then f: f exists <=

U A : f both exists. Moreover
b c b
/ f= f f+ / £,
a a c
when either side of this equation exists.
PROOF: Let P be a partition of [a,b] and let ¢ € P. Then if
P'=Pnlac, P"=Pnlcb

P' is a partition of [a,c] and P" is a partition of [c,b]. Furthermore

L(P,f) = L(P', f) + L(P", f)
()

U(R,f)=UP', f)+U(P", f)

and, therefore,

U(P,f) - L(P, f) = {U(P', f) = L(P', f)} + {U(P", f) = L(P", f)}.
(B)
“=": K | : f exists and € > 0 then there exists a partition

P of [a,b] such that
U(th)"L(P!f)(E'
Therefore, from (B),

U(P'af)_L(P’sf)<E’ U(.P",f)—L(P",_f)(é‘
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since both of these expressions are positive. Thus f: f and [ : 1
both exist.
“ 4= " Suppose f: f and f: f both exist. Then there exist

partitions P., Py of [a,c],[c,b] respectively n =1,2,... such that

lim L(PL, )= lim U )= [
and

b

lim L(PY, ) = lim UP" )= [ 1

Then, with P, = P, U P!, we find from A
¢ b
Jim L(Pa, ) = lim UPw )= [ £+ [ .

Thus, from Theorem 6.2.5 (p. 128), [ : f exists and equals
Lyl

PROPOSITION 6.2.11 (LINEARITY OF THE INTEGRAL OPERATION). Suppose
f: £, f:g both exist and c¢ is a constant. Then

(i) f:(f+g) exists and equals f:f +f:g

(i) f:(cf) exists and equals cf: i

PROOF: Exercise.

71 g2
PROPOSITION 6.2.12. Suppose F N N
. b 7 i \ » 1
(i) [, f exists, | S
(i) m< f(z) <M, a<z<b T, e 1{ +
A (=
Then

b
m(b—a)sj f < M(b-a).
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PRrROOF: Consider the partition P = {a,b} of [a,b]. Then

b
L(P,f) < f f <UP.f)

implies the result asserted since m(b— a) < (inf f)(b—a) = L(P, f)
and M(b—a) 2 (sup f)(b—a)="U(P,f).

O

COROLLARY 6.2.13. If 0 < f(z), a < z < b and [’ f exists then
0< [ f.

PROPOSITION 6.2.14. Suppose

(i) f:f exists,
(i) F(z)=[f, a<z<b.

Then F is continuous on [a,b].

ProoF: Let [u,v] C [a,b]. Then

|F(v) = F(u)| = |j"f-/“f|
= I/u f| (Proposition 6.2.10)

< K|v —u| (Proposition 6.2.12, m=-K,M = K)

if K = sup{|f(z)|: a £ z £ b}. This implies continuity of f on

[a, b], by the Squeeze Principle.

O

§6.3. Uniform Continuity. Recall that “f is continuous at a”

means lim;—., f(z) = f(a). Equivalently, if € > 0, there exists § > 0
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such that
|z —a| < § = |f(z) — f(a)| <e.

Note that § = é(¢,a); § depends in general not only on the choice
of ¢ but also on the point a in the domain of f which is being
considered. When the choice of § depends only on ¢ and not on
the point a in consideration we say f is unformly continuous on its

domain.

DEFINITION 6.3.1: Let f be a function with domain I. Then f is

uniformly continuous on I if, for each € > 0, there exists § > 0 with

z,y€l, |z -yl <é= |f(z) - f(y)| <e.

EXAMPLE 6.3.2: The function f(z) = z, z € IR, is uniformly con-

tinuous on IR, since [z—y|<éd=e= |f(z)- f(y)|=|z-y|<e.

O

EXAMPLE 6.3.3: The function f(z) = i, z > 0, is not uniformly

continuous on (0,00). This function is uniformly continuous on [1,0).

Consider z, = 2, yn = 3=. Then
[2n = val = 500 [f(2a) = f(ua)] =
Tn = Yn| = on’ Tn Yn)| = .
Thus, for each é > 0, there are points z,y € (0,00) such that
2-yl <8, If(z)=f()l > 1.

With € =1, I = (0,00) in Definition 6.3.1, so no § > 0 works. To
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see that f is uniformly continuous on [1,00), consider

£ - Sl =13 - 21 = L= <y s

if z,y € [1,00). Therefore |z —y| < é=¢ = |f(z) - f(y)| <e.

O

EXAMPLE 6.3.4: f(z) = z?, 0 < z < 1, is uniformly continuous in

[0,1].

1f(z) = f@)l = lz* =¢*| =l + yl |z -yl
< (l=] + lyDlz - vl

Szlz_yl if 3$y€[011]‘

Therefore z,y € [0,1], |z-y|<é= %= |f(z) - f(y)| <e.
0O

PROPOSITION 6.3.5. Suppose f is continuous on the closed interval

la,b]. Then f is uniformly continuous on |a, b).

PROOF: Let f be continuous on [a,b]. Suppose that f is not uni-
formly continuous on [a,b]. Then for some &, > 0, there exist

Zn,Yn € [a,b] such that
1
|Za = ynl < ~ and |f(zn) = f(yn)| 2 €, n=12,....

This is simply the negation of Definition 6.3.1.

Now {z.} has a subsequence {z,,} such that

lim z,, =c€ [a,b].
k—o0
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But then limi—ocoyn, = ¢ also (|zn, — yn,| < 7). Since f is con-

tinuous at ¢

0=|f(c) = fle)| = kll.ﬂ;lo |f(zny = f(yna)ls

contradicting |f(zn,) = f(¥ns)| 2 €0 > 0. This contradiction shows

f is uniformly continuous on [a, b].
O

The uniform continuity on [a,b] of any function continuous on

[a,b] has the following important consequence.
THEOREM 6.3.6. Suppose f is continuous on [a,b]. Then f:f ex-

ists.

PROOF: Since f is continuous on [a,b], Proposition 6.3.5 states f

is uniformly continuous on [a,b]. Therefore, if € > 0, thereisa § > 0

such that

zy€lad, |-yl <bé=|f(z) - fW)l < j— .

Let P = {z¢,Z1,...,Zn} be a partition of [a,b] such that

z;—2i-1<6,1=1,2,...,n, and
m; = inf{f(z) : 2i-1 Sz £ 2}, M; =sup{f(z):zi-1 £z <z}

Since f is continuous on [z;-;,z;], Theorem 3.3.4 (p. 60) shows that

there exist p;,¢; € [zi-1,zi] such that

f(pi) =mi, f(qi) = M.
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Thus

U(P,f) = L(P,f) =Y Mi(zi— ziz1) = Y_ mi(zi — ziz1)
=]

=1

= Z(M. - m,-)(:r.'.' — 3!'—1)

=]

=Y (F(g:) - £(pi)) (i = 7ie1)

=1

< Z bia(xi - zi—1) (lpi —qil < 96)

i=]
n

i > Z:(zi - Zi-1)

i=]

‘a(b-a)=e.

o

o

By the Cauchy Criterion, [ : f exists.

O

§6.4. Further Theorems on Integration. Recall that a function

f is increasing (decreasing) on an interval I if

u,v € L,u <v=> f(u) < f(v) (f(u)2 f(v)).

Note that an increasing function need not be continuous. For example,
if f(z)=1¢%, A3 <z<l n=12,... and f(0) =0, then f is
increasing on [0,1] but has infinitely many discontinuities there.

In fact, it is possible to construct an increasing function which
is discontinuous at every rational number. Nevertheless, functions
which are increasing (decreasing) share the following property with

continuous functions.

THEOREM 6.4.1. Suppose f is increasing (decreasing) on [a,b]. Then
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f: f exists.

ProOF: Exercise.

O

THEOREM 6.4.2 (THE MEAN VALUE THEOREM FOR INTEGRALS). Suppose

f 1is continuous on [a,b]. Then

"¢

f:f=f(c)(b—a) l—\\

for some ¢ € [a, b].

ProOF: From Theorem 6.3.6, f: f exists. By Proposition 6.2.12
(p. 133)

b
mb-a)< [ 1< Mb-0)

so that m < ll—af:fSM, where
m=inf{f(z):a<z<b}, M=sup{f(z):a<z<b}

But Theorem 3.3.4 (p. 60) implies m = f(p), M = f(q) for some
p,q € [a,b]. Therefore

b
1< 5= [ £<5@

and hence, from the Intermediate Value Theorem (p. 59)

f9= i [ 1

for some c € [a, b].
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NOTATION:

(i)

(i)

To make the formula

/:f=/:f+/:f (page 131)

independent of whether or not ¢ € (a,b) it is convenient to

define
f:f:-—f:f, if u<v

[f:O.

It is also convenient to use the notation f: f(z)dz for f: £

and

In addition to being suggestive of the sums which define the
integral, it is efficient. For example, the results of Examples

6.2.5-6 may be written, respectively,

b
f cdz = ¢(b— a),

1
/ zdz =
0

The specific letter used is irrelevant:

/ 'pk / " puyi / ' ft)dt = / ' Fuydu

z or t or u is a ‘dummy’ variable.

B -

THEOREM 6.4.3 (DIFFERENTIATION THEOREM). Suppose
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(i) [ f exists.
(ii) f is continuous at c € [a,b]. *
(i) F(z)=[;f,a<z<b
Then F'(c) exists and equals f(c)

PROOF:

Flc+ h)-F(c)=f:“f—j:f=[“f(z)dz.

Therefore

c+h
F(c+h) = F(c) = f(c)h = [ [f(2) - f(c)lda,

since f(c) is constant.

If € >0, there exists § > 0 such that
|z —c| < é=>|f(z) - f(c)| <€, from (ii).

Therefore |h| < &=>| [***(f(a) — f(c)ldz| < £|h|, from Proposi-
tion 6.2.12 (p. 133) with m = —¢, M = ¢, b— a = |h|. From this,
|h| < 6 = |ELtR=F) _ f(¢)| < ¢, which implies

limj o HAB=FE) _ f(¢), or

F'(c) = f(c).

O

* Note: When ¢ = a(b), (ii) should be taken as (ii)’ f is right-continuous at a
(left continuous at b). Then the conclusion should also be modified to

Dy F(a) = f(a) (D-F(b) = f(})).
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A function F is an antiderivative of f on an interval I if
F'(z) = f(z), for each z € I. If Fy is an antiderivative of f, then

F is also an antiderivative of f if and only if
F(.’L‘) = Fo(z) + C

where C is constant. Clearly F' = Fj = f if F is of this form and

conversely F' = f = Fy = F = Fy + C by Corollary 5.1.5, p. 87.

THEOREM 6.4.4 (THE FUNDAMENTAL THEOREM OF CALCULUS). Let

f be continuous on an interval I. Then a function F on I satisfies
b
F(b)—F(a):j f, forall a,bel
<= F'=f on I (ie. F is an antiderivative of f on I.)

PROOF:
“==": Since f is continuous at each z € I, it follows from

the preceding theorem that
F(z) - F(a) =/ f= F'(z)=f(z), forall zel.

“<4=": Conversely suppose F' = f on I. Consider Fy(z) =

JZ f, z € I. Again Theorem 6.4.3 implies Fj = f on I so that
F(z)=Fo(z)+C=f f+cC.
Setting z = a, we find F(a) = C, and therefore

F(z) - F(a) = [ 1
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A frequently used notation is
F(b) - F(a) = F(z)l3.
Thus, if F is an antiderivative of f on [a,b],

/ ' f(a)de = F()l.

O

EXAMPLE 6.4.5: f: zds = 22_:|z = 3(b* — a?). More generally, from
Corollary 4.3.2 (p. 75), if a € @, a # -1, f: 2%z = F7z**) =
- (b°*! — a®*1) if [a,b] is an interval in the domain of z%. Note

that 0 ¢ [a,b] if & < 0.

EXAMPLE 6.4.6: The area enclosed by an arch of the sine curve y =

sin z and the z-axis is T'f

"
f sin z dz = —cos z|g = 2.
0

EXAMPLE 6.4.7: L(z) = ff 1dt is a differentiable function,
0 < z < oo, with L'(z) = 1, L(1) = 0. Thus the function investi-

gated in Problems 5.24, 5.25 (p. 115) exists.

EXAMPLE 6.4.8: F(z) = [ (1+sin®t)dt is a differentiable function
on IR and

F'(z) = [1 +sin®(z?))2z,
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since y = F(z) = [;'(1 +sin’t)dt, u = z?, implies

e [1 4+ sin® u]2z (Chain Rule).

§6.5. Riemann Sums. Let f be a function on [a,b] and

P = {z9,z;,...,Z,} a partition of [a,b]. Expressions of the form

S(P,f)=Y_ f(zi)(z1 = zi-1), where z}€ [zi-1,24),

i=1
are Riemann sums of f with respect to P.
There are many such sums corresponding to a particular par-

tition P since there are infinitely many choices of the points z!.

Nevertheless, all the sums S(P, f) satisfy
L(P,f) < S(P, f) SU(P, f),

where L and U are upper and lower sums. In proving Theorem
6.3.6 on the integrability of continuous functions f, we saw that it

was sufficient to require that the points z; € P be close together in

order that L(P, f),U(P, f) be close to each other and hence to [ : fe
This in turn ensures that S(P, f) is close to f: s

For the partition P, let
IP) = sup{as = 2icy s #=1,...,n),

the norm of P.

PROPOSITION 6.5.1. Suppose

(i) f is continuous on |[a,b).
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(ii) P., n=1,2,... are partitions of [a,b] with
limp—oo || Pnl| = 0.

(iii) S(Pn,f), n=1,2,... are Riemann sums of f with respect
to P,.
Then

b
= [ s

In fact this proposition is true if (i) is replaced by ‘(i)' f 1
Riemann integrable on [a,b]’. We will not prove this more general

statement, however.

EXAMPLE 6.5.2: Given that = is the area of a disc of radius 1, it

follows that

lim —}—[\/n2—12+\/n2—22+---+ n’—(n-l)’]:%.

n—oo n2

7 gt
To see this, observe that {"\\ ASe
L

b ey
e

1
j \/l—zzdz=£,
0 2

I
ot
!
i
'

one quarter of the area of a circular disc of radius 1. If P, =

{0,1,2 .. 2=l n} then ||Paf|=2 and

n? ey T 0

is a Riemann sum (in fact the lower sum) of f with respect to P,.
Since limp—oo || Pal| = 0, the assertion limp—oo S(Pyn, f) = § follows

from Proposition 6.5.1.
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§6.5. The Integral as an Area. Recall that in §6.1 we introduced
the integral [ : f as the area of the region bounded by the curves
y=f(z),y=0,z=a, z=0>, when f(z) 20, a <z <b. This
interpretation must be modified if the condition of positivity of f is

omitted. For example,

In intervals where f is positive the upper and lower sums are sums
of areas of approximating rectangles. But in intervals where f is

negative the sums are the negatives of these quantities.

o T
L ‘ g
L I
Yl |
”(‘__.-L_.. i
-. ."
A e —-
e ey {
S‘-'-J t“' < « H'. '
>0 f<0
r

e

————a

Rf=J2f+[f+[f.
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We therefore may interpret f: f(z)dz to be the sum of signed
areas determined by y = f(z), y =0, z = a, z = b, with the areas
being signed positively when they are over the z-axis and negatively

when they are under the z-axis.
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Problems

|

0, 0<

o . Use the definition of the inte-
I, + 8%}
1

6.1 Let f(z) ={

gral to show [ f = 3.
62 Let fiedmd D =0 vesithe definiticn of G duiegial
& I)= 1’ 0(351' se € ae 10n O € 1INntegr.

toshow [ f=1.

6.3 From the definition of the integral, show [, z?dz = 1.

1, z=14 n=1,223,

n?
0, otherwise

6.4 Let f(z) ={ . Show [) f=0.

6.5 Suppose f: f exists. Show f: |f| exists.

[Hint: Use the triangle inequality to show

U(P,|f]) = L(P,|f]) < U(P, f) = L(P, f).

The result then follows from the Cauchy Criterion.]

6.6 Suppose f is bounded on [a,b] and continuous on (a,b]. Then
i) : f exists and is independent of the value of f at a. Thus,

for example, [ sin(1)dz exists.

6.7 Suppose f isincreasing (decreasing) on [a,b]; then [ : f exists.

Prove this statement (Theorem 6.4.1).

6.8 Use the Fundamental Theorem of Calculus to show:
(a) [f)(2z —6z* + 5)dz = 2,
(b) J2,(t=1)(t+2)dt = -2,
() J} drdu=1},
d) fy 3 Vzdz=1,
() J2,2z(z? - 1)4dz =0,
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) [ 232 - 1)%dz = -4,
Hint: Dg(z)" = ng(z)""¢'(z), 2* =z(2? -~ 1)+ =
@ )2 g de=—-%,
) f; %= 2(2— v2),
(i) J; ¥@tdt =4 - 55,
@k (=+ %)(r -1)dz =8
) I3, 5]z + 2|dz = 65,
1) J2(6-2)"3dz = 5.

6.9 Suppose f: f, exists. Show f: f? exists.

6.10 Suppose f £, f: g both exist. Show
a) [(f+a)=[f+[ g
(b) f:(cf) = cf:f (c constant)

6.11 Suppose f:’ i f:g both exist. Show f: fg exists.
[Hint: use #6.9, 6.10 to consider f:(f +9)%, f:(f -9)%.

6.12 Find f'(z) for each of the following
(@) f(z)=J7 &,
(b) f(z)=J . &,
(c) f(z) = f:’ €.
6.13 Let f(z) == ,0<z<1and P={0,%,% 3 ¢,1}.
(a) Sketch the graph of f
(b) Show that [ f differs from L(P,f) by at most & .

6.14 (a) State a result which allows you to conclude that j: o1y dz
exists.

(b) Prove that 3 < f: s dzr< 2.
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e
6.15 Show [,¥* 71’:, dz = §. [Hint: Example 5.5.8].

6.16 Show
(a) Jy zvaT+1dz = 1(2%/% - 1)
(b) [y V2T +1dz = Z(2'/% +1).

6.17 Suppose

@) [*f, [*g both exist.
(i) f(z)<g(z), if a<z <b.

Show that | : f</ : g [Hint: Corollary 6.2.12]
6.18 If [7 f(t)dt = 22(1+ z), forall z € R, find f(5), /7 /5 GwPruous
6.19 Find F'(z) if f, 'i'-ﬁ'“’ dt = F(z).

6.20 Using antiderivatives, compute the following
(a) _f:(3..1:2 - :}- +z3/?)dz
(b) y(t) if ¢ =vI+t+3F and y(3)=
) fy :am dz

2n+l -1

6.21 (a) Prove that ful(l +2z)tdz = it n=1,2,...
(b) Deduce from (a) that

n\ 1/n\ 1/n 1 /n antl L1
(0)+§(1)+§(2)+"'+n+1(n)— “ e

6.22 Let f(z)=1ix, 0<z<1.

(a) Show f is decreasing on [0,1]
(b) Let P = {0,% 35 2 1}. Write down (but do not simplify) the

upper and lower sums of f corresponding to this partition.
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(c) Show that

Oill'-‘

!
< -L<
0_‘/0 1+x4d:r

where L is the lower sum found in (b).

6.23 Let f be continuous on [a,b] and g, fg be integrable on [a, b]
with g(z) 20, a £ z £ b. Show that

/:fg=f(c)/:g

for some c € [a,b]. Note that this is the Mean Value Theorem

for integrals in the case that g(z)=1,a<z <bh

6.24 Given that D sin z = cos z, prove

_— g 3 nw
lim —(cos — +cos — + - +4+cos —)=1.
n n 2n

%, if z=2,p g integers with no
6.25 Let f(z) = common divisors, ¢ # 0
0, otherwise.
Show f: f exists and equals 0 for every interval [a,d]. Com-

pare with Example 6.2.8, page 134.

6.26 Show

n—oco ns E
J—l
Jim > Vi

i=1

muo [< A R
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