

RATIONALE

- Previous investigations have demonstrated a greater bradycardic response to apnea after exposure to acute and chronic hypoxia (versus normoxic responses). (1, 2)
- Hypoxia and hypercapnia elicit similar sympathetic, cardiovascular, and ventilatory responses during free breathing. (3)

We sought to investigate if:

• Hypercapnia elicits a similarly enhanced bradycardic response as hypoxia during apnea.

We hypothesized that apneas after breathing hypercapnia would cause an augmented bradycardic response compared to apneas conducted during normocapnia.

METHODS

- Heart rate (3-lead ECG), blood pressure, end tidal partial pressures of O₂ & CO_2 , ventilation, and oxygen saturation were measured continuously.
- There were no differences in responses to apnea in males and females; therefore, data for males and females are pooled.

Figure 1. Experimental protocol. Apnea durations are approximates and participants were asked to hold their breath until volitional failure. Note: participants completed two additional conditions (hypoxia and hypercapnic hypoxia) as part of a larger project; only data from the hypercapnic condition are presented on this poster.

and heart rate (HR) during a hypercaphic apnea.

Table 1. Participant demographics.

	Males (n = 13)	Female
Age (years)	23 ± 2	23
Height (cm)	178 ± 8	165
Weight (kg)	76 ± 14	65
BMI (kg/m²)	24 ± 3	24

Data are presented as mean \pm SD. * *P* < 0.05 vs. males.

Heart Rate Response to End-Expiratory Apnea During Hypercapnia

Desmond Young, Ben O'Croinin, Lauren Maier, Craig Steinback Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada

10 min Recovery

es (n = 12) 23 ± 3 $55\pm5^*$ \pm 11* 4 ± 4

RESULTS

Table 2. Baseline values for the minute prior to each apnea (n = 25).				
	Normocapnia	Hypercapnia	Р	
HR (bpm)	70 ± 9	73 ± 10	0.006	
MAP (mmHg)	88 ± 5	92 ± 6	<0.001	
SBP (mmHg)	115 ± 7	121 ± 10	<0.001	
DBP (mmHg)	74 ± 6	77 ± 6	<0.001	
P _{ET} CO ₂ (torr)	40 ± 3	46 ± 4	<0.001	
P _{ET} O ₂ (torr)	91 ± 5	90 ± 5	0.004	
SpO ₂ (%)	98 ± 1	98 ± 1	0.027	
VE (L/min)	13 ± 4	22 ± 7	<0.001	

Data are presented as mean \pm SD. *HR* heart rate, *MAP* mean arterial pressure, SBP systolic blood pressure, DBP diastolic blood pressure, P_{FT}CO₂ end-tidal carbon dioxide, P_{ET}O₂ end-tidal oxygen, SpO₂ arterial oxygen saturation, VE minute ventilation. Statistical significance is set at *P* < 0.05 (*bolded*).

Table 3. Apnea duration and cardiovascular values during apneas (n = 25).					
	Normocapnia	Hypercapnia	Р		
Apnea Duration (s)	23 ± 8	19 ± 7	<0.001		
ΔHR (bpm)	-11 ± 15	-14 ± 14	0.069		
ΔMAP (mmHg)	23 ± 10	21 ± 8	0.395		

Data are presented as mean \pm SD. ΔHR change in heart rate from baseline to nadir during apnea, ΔMAP change in mean arterial pressure from baseline to peak during apnea. Statistical significance is set at *P* < 0.05 (*bolded*).

Cardiac Cycle

Figure 3. Mean (± SD) change in heart rate during the final 10 cardiac cycles of apnea after hypercapnia (diamonds) and normocapnia (circles) relative to the resting heart rate averaged from 1 minute preceding each respective apnea (n = 25). The nadir is the mean response of each participant's single lowest beat during the final 10 cardiac cycles of each apnea. No statistically significant differences between conditions during any beat.

FUNDING

This study was funded by an NSERC Discovery grant (CDS).

Figure 4. Ventilatory response to normocapnia and hypercapnia (n = 25). Hypercapnia elicited a greater ventilatory response (P < 0.001) than normocapnia.

Figure 5. Relationship between the ventilatory response to hypercapnia and the subsequent heart rate response to apnea. Linear regression model suggests there is no relationship (r = -0.324, P = 0.114, n = 25). The y-axis depicts the difference in the change in heart rate from baseline to nadir between hypercapnia and normocapnia (note: a negative value indicates a greater bradycardic response during hypercapnia). The x-axis depicts the difference in ventilation between hypercapnia and normocapnia (note: a positive value indicates a greater ventilatory response during hypercapnia). Shaded area represents the 95% CI of the regression curve.

INTERPRETATIONS

- during hypoxia. (1)

REFERENCES

- Physiological Reports, 2021.
- altitude natives. Journal of Applied Physiology, 2018.
- function. American Journal of Physiology, 2009.

• Our data demonstrate that hypercapnia does not augment the bradycardic response to apnea; this response differs from that seen

• An absence of statistically significant bradycardia suggests that cardiovagal output is not increased during hypercaphia.

• No individual predictions can be made about the heart rate response to apnea based on the preceding ventilatory response to hypercapnia.

(1) Busch et al., Short-term hypoxia does not promote arrhythmia during voluntary apnea.

(2) Busch et al., Chemoreflex mediated arrhythmia during apnea at 5,050 m in low- but not high-

(3) Steinback et al., Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic

Desmond Young

BScKIN Student Faculty of Kinesiology, Sport, and Recreation **University of Alberta** Edmonton, Alberta, Canada, T6G 2E1 dayoung@ualberta.ca