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ABSTRACT
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1 Introduction

In this paper we use online-price data from the Billion Prices Project founded by Alberto Cav-

allo and Roberto Rigobon, (http://www.thebillionpricesproject.com), to examine implications from

state-dependent pricing models on the distribution of the number of simultaneously repricing firms.

State-dependent models of repricing often produce complementarity in repricing.1 In the case of

a continuum of firms, often adopted in this literature, this complementarity affects the stationary

rate of firms that adjust prices but with a finite number of firms, this complementarity implies that

in response to an idiosyncratic shock to a single firm’s cost of adjusting prices (Calvo shock) or to

the cost of production (technology), firms that are sufficiently close to a price-adjustment threshold

should also adjust prices in the same direction, causing an avalanche of repricings.

In Nirei and Scheinkman (2021), henceforth NS, the authors propose a rather conventional state-

dependent model, except for considering a large number, n, of firms. Firms face a fixed “menu cost”

for price adjustment but may benefit from an idiosyncratic Calvo shock that allows for zero-cost

price adjustment. There are no aggregate shocks. To avoid the proliferation of state variables,

NS assume that agents in the finite n model use the optimal policy from the limit continuum

version. NS show that, in a stationary equilibrium, as n → ∞, the distribution of the number of

firms that adjust prices in response to a Calvo shock to the cost of price adjustment of a single

firm, conditional on the relative price charged by that firm, converges to a Generalized Poisson

Distribution, henceforth GPD, a two parameter distribution over the non-negative integers.2 They

also show that the coefficient of dispersion (variance/mean) of the GPD equals 1
(1−θ)2 , where θ < 1

equals the limit as n→∞ of the expectation (under the stationary distribution of the continuum

model) of the number of firms that adjust prices, conditional on a firm adjusting its price by paying

the menu-cost. This “reproduction number” θ characterizes the complementarity in repricing in

the limit continuum model and is, in particular, independent of the firm that initially received the

Calvo shock. As θ → 1 the coefficient of dispersion diverges to ∞.

The application of these results to actual data faces at least three obstacles. First, even if

observing the number of products repriced in individual avalanches, a researcher cannot identify

1For example, Caplin and Spulber (1987), Dotsey et al. (1999), and Golosov and Lucas (2007).
2A random variable with values in the non-negative integers has a GPD with parameters θ0 > 0 and θ > 0 if for

each integer x ≥ 0, Px = θ0(θ0 + θx)x−1e−θ0−θx/x! (Consul and Famoye, 2006, Chapter 9).
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the firm that received the Calvo shock and thus is unable to condition on the relative price charged

by that firm. In fact, NS show that the unconditional distribution of avalanches also converges

as n → ∞ but to a distribution in the more general class of Lagrangian probability distributions

treated in Consul and Famoye (2006). NS also show that the coefficient of dispersion of the limit

Lagrangian probability distribution exceeds 1
(1−θ)2 . Second, one observes histories of successive

price-adjustments, instead of independent avalanches started by Calvo shocks with firms’ prices

sampled from the stationary distribution. Third, data is only available after aggregation in a finite

time interval—daily in the case of the Billion Prices Project—and the number of Calvo shocks in

any particular day is not observable. To examine these departures, NS simulate histories of suc-

cessive price-adjustments using calibrated parameter values. The calibrated model is richer than

the original theoretical model, since it allows for idiosyncratic technology shocks.3 The presence

of technology shocks gives rise to the possibility of price cuts, even in an equilibrium with a con-

stant positive inflation rate. NS choose parameter values so that the stationary equilibrium for

the limit continuum model reproduces the average inflation observed in the US in 1988–2005, the

observed volatility of inflation at this average inflation and targets from Golosov and Lucas (2007)

and Nakamura and Steinsson (2008). One target that NS are not able to match is the average size

of price cuts estimated by Nakamura and Steinsson (2008) (10.5%). For this reason, and since in

each avalanche caused by a Calvo shock all price changes have the same sign, NS concentrate on

avalanches of price increases. Using the theoretical formula for θ, NS show that for the calibrated

values of the parameters, one obtains a θ surprisingly close to 1, indicating a high degree of com-

plementarity in repricings and predicting a high coefficient of dispersion (variance/mean) of the

size of price-increase avalanches. In addition, the distribution of individual avalanches from the

simulation is very close to a GPD so that neither the impossibility of controlling for the relative

price of the firm that initializes the avalanche nor the lack of independence across avalanches seems

to cause the observed distribution to be far from the GPD class.4

A simulation in NS shows that the aggregation of the number of repricings at the daily frequency

impacts the shape of the distribution for small avalanches but has little effect on the estimated θ

3The online appendix to Nirei and Scheinkman (2021) contains the necessary theoretical propositions concerning
the generalized model.

4The simulation of histories in NS leads to an estimate θh that exceeds the θ obtained from the calibrated model.
NS document that this is the result of time-variation of the distribution of prices caused by the avalanches. θh

produces a measure of complementarity of price adjustments that takes into account the dynamics.
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when compared to the estimate of θ from individual avalanches. The invariance of θ to aggregation

is suggested by the fact that the sum of n independent random variables Xi, each with a GPD with

parameters (θi0, θ) is again a GDP with parameters (
∑

i θ
i
0, θ) (Consul and Famoye, 2006, Theorem

9.1). Thus the numerical results in NS indicate that the variation on the number of daily Calvo

shocks and the dependence of successive avalanches within the same day, while affecting the fit of

the GPD in the range of small total avalanches, do not much impact the estimated value of θ.5

The theoretical results and simulations in NS thus establish new testable implications for state

dependent models and in particular for the effect of complementarity on price adjustments.6 In this

paper we examine daily avalanches of price increases in the Billion-Prices data for series from five

countries: Argentina, Brazil, Chile, Colombia, and the US (2 series). Our dataset was first used by

Cavallo (2018a). We fit GPD’s to the data on positive price-change avalanches using two different

methods. First, we use moment estimation formulae provided in Consul and Famoye (2006) to

estimate the two parameters of the GPD. Second, we assume that the underlying distribution of

the daily data follows a GPD with θ ≤ 1 and use non-linear least squares (NLS). We get a very

good fit for all the datasets that we examine (see Figure 1).

The fit using the NLS method generally performs substantially better than when using moments—

the normalized root mean square with NLS is on average 1/4 of the NRMSE obtained with moment

estimation. However the estimated θ’s are quite close to each other and close to one. These esti-

mates of θ indicate that complementarity plays a major role in repricing.

For robustness we perform a chi-square test, which fails to reject the null hypothesis that the

data on the avalanche sizes is distributed as a GPD. We also report in an online appendix that very

similar results hold for avalanches of price cuts, which in particular indicates that complementarity

plays an important role in price cuts.

5The simulations show that for days in which the total number of repricings is small, on average, a large fraction
of the total is generated by the daily Calvo shocks, whereas for days with total repricings that exceed the median, the
average contribution of Calvo shocks to the total daily avalanche is negligible. This suggests that θ, which depends
on the tail of the distribution of avalanches, should be hardly affected.

6In models which include also aggregate shocks, the distribution of avalanches would be determined also by
the arrival of aggregate shocks and this “background noise” may affect the functional form of the distribution of
avalanches.
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2 Literature Review

Early empirical contributions on menu-cost models focus on estimating the average size and fre-

quency of price changes (Bils and Klenow (2004); Nakamura and Steinsson (2008); Klenow and

Kryvtsov (2008); Gagnon (2009)). Golosov and Lucas (2007) renewed interest on selection effects

of menu-cost pricing models, and led to empirical and theoretical papers that discuss the distribu-

tion of price changes (Midrigan (2011); Alvarez and Lippi (2014); Alvarez et al. (2016)). Employing

the Billion-Prices data, Cavallo (2018a) found a lack of very small price changes, suggesting a role

for menu costs or observation costs, as argued by Alvarez et al. (2016).

Online retailer data for Latin American supermarkets in Brazil, Chile, Colombia, Argentina,

and Venezuela has been used in Cavallo (2013). This paper has a very distinct goal from ours,

namely to construct inflation indices from prices collected from online retailers and compare them

to official inflation estimates. The data we use was previously used in Cavallo (2018a) to study the

impact of measurement bias on common price stickiness statistics.

3 Data and Results

3.1 Data description

We obtain online price data from the Billion Prices Project.7 We use daily price data for five

countries—USA, Brazil, Argentina, Chile and Colombia that were previously used in Cavallo

(2018a).8 Each unique product in the dataset carries an individual product ID. We use price

statistics at the product level.

The Billion Price Project dataset contains several different price variables. We work with

“nsfullprice,” which fills missing prices by carrying forward (up to 5 months), and excludes sales

prices.9 We apply the same filters as Cavallo (2018a). We restrict our data to products that have

at least 100 days of price observations. Table 1 shows the date intervals, the total number of

observations, the number of individual products, the number of product categories, and statistics

on price changes such as the proportion of price movements that are positive and the median change

7See: Billion Prices Project.
8Data can be found at: Harvard Dataverse.
9Sales occurrence is defined using the v-shaped sale algorithm described in Nakamura and Steinsson (2008).
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in log prices conditional on a price increase.

Table 1 shows considerable variation between the four data series. The US supermarket data

has more positive price changes than the US department store data. The size of price increase is

also higher in the US supermarket series. On average, countries from Latin America have higher

proportions of positive price changes. However, the size of price change is smaller than in the US.

For all estimation exercises, we subtract one from the daily positive price series, since the

theoretical results concern avalanches following a Calvo shock. This is only an approximation

because we cannot count the actual number of Calvo shocks in a day.

3.2 Estimates for θ

Recall that a r.v. X is said to have a GPD with parameters θ0 > 0 and θ > 0 if X is non-negative

valued and if Px(θ0, θ) denotes the probability that the r.v. X takes a value x, then

Px(θ0, θ) = θ0(θ0 + θx)x−1e−θ0−θx/x!, x = 0, 1, 2, . . .

In our case, the r.v. X is the count of how many products had a positive price change on a given

day. The probability mass function (pmf) Px is the probability of observing a day in which exactly

x products experience positive price changes. We utilize two methods to produce estimates of the

parameters of the GPD described above. Consul and Famoye (2006) describe a moment estimation

method that utilizes the sample mean (x̄) and the sample variance (s2) to determine values of θ

and θ0.

θ = 1−
√
x̄

s2
(1)

θ0 =

√
x̄3

s2
(2)

Table 2 presents moment estimates for θ and θ0 for the six data series with standard errors

based on the formulae provided in Consul and Famoye (2006).

As an alternative we present estimates using non-linear least squares. We compute the counter-

cumulative distribution—the count of how many days in the data have x or more positive price

changes. We then minimize the distance between the log of the counter-cumulative of the data and
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the log of the counter-cumulative of GPDs with θ ≤ 1. The fit is rather good especially taking into

consideration that GPDs are defined by only two parameters.

We present point estimates and standard errors in Table 3. Although, as expected, NLS fits

better than the estimates using moments (see Table 4), the estimates of the crucial parameter of

interest, θ, are quite close.10 Figure 1 shows the plots for the logarithm of the counter-cumulative

function of the data (in red) and the estimated GPD (in blue).

For robustness, we also apply a chi-square goodness-of-fit test to compare observed frequencies

in the data to the probability mass function P̂ jx generated using the parameters fitted by NLS to the

counter-cumulative distribution for data set j. Again, due to computational limitations we restrict

ourselves to a maximum avalanche size of 142. Since simulations in NS show that GPDs do not fit

well in the range where the number of total price-changes in a day is small, we perform a goodness

of fit test for days in which the total number of avalanches falls in the interval [qj , 142], where qj

defines the first tercile of the distribution of the number of daily avalanches in datas series j. The

null hypothesis is thus H0 : data in series j is distributed as GPD for x ∈ [qj , 142]. Let N j equal

to the number of days in which the number of positive repricings is in the interval [qj , 142]. Let

Q̂jx := P̂ jx∑142
y=qj

P̂ jy
, the conditional probability implied by our estimate of P̂ j . Our chi-square statistics

is defined as:

χ2 =
142∑
x=qj

(Ojx −N jQ̂jx)2

N jQ̂jx
, (3)

where Ojx is the observed number of days in which exactly x positive repricings occurred in series

j. The number of degrees of freedom is 142 − qj . Table 5 displays p-values associated with the

chi-square tests and shows that we fail to reject the null at the 5% level.

Although NS did not attempt to match the average size of price decreases, they were able to

match the frequency of price decreases measured by Nakamura and Steinsson (2008). Table A1 in

the online appendix gives estimates for θ that shows that the implied reproduction numbers for

avalanches of price cuts are also close to unity. Figure A1 shows that the Billion-Prices data exhibit

avalanches of price decreases that also approximate a GPD for values of daily avalanches that are

10However the differences in estimates are statistically significant. Part of the difference arises for computational
reasons. The GPD requires calculating a term that is proportional to the inverse of the factorial of the avalanche
size. We are computationally limited to 142! ∼ 2.6e+245. However all data series have a substantial number of days
with a total number of positive price changes that exceeds 142, ranging from 4% for USA-2 to 33% for Brazil. Notice
that the discrepancy in the estimates of θ for Brazil is the highest, albeit of only 3%.
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not too small. A chi-square test also fails to reject the null that the distribution of the number of

avalanches of price cuts is a GPD.

4 Conclusion

Nirei and Scheinkman (2021) proposed an equilibrium model of price adjustments with menu-costs

and a finite number n of firms. In the model all price changes must be ignited by a Calvo shock

and conditional on ` << n firms repricing, the probability of another firm repricing increases with

`. This complementarity is characterized by a “reproduction number”—the expected number of

firms that reprice in response to repricing by a single firm that did not benefit from a Calvo shock,

as n → ∞. The reproduction number θ < 1 is a characteristic of the mean field approximation

with a continuum of firms. In addition, they show that conditional on the relative price of the

firm receiving an initial Calvo shock, the distribution of the number of total repricings converges

in distribution, as n → ∞, to a Generalized Poisson Distribution, a two parameter distribution

over the non-negative integers. Application of these results to actual data faces at least three

difficulties. First, a researcher cannot identify the firm that received the Calvo shock and thus

cannot condition on the relative price charged by that firm. Second, one observes histories of

price adjustments, instead of independent avalanches of price changes, started by Calvo shocks.

Third, data is only available after aggregation in a finite time interval—daily in the case of the

Billion Prices Project—and the number of Calvo shocks in any particular day is not observable.

Simulations in Nirei and Scheinkman (2021) with parameter values to reproduce the US experience

in 1988-2005 show that the first problem causes minor departures from a GPD. However the use

of histories instead of i.i.d. observations yields a larger estimate of θ that also accounts for the

dynamics. Aggregation at daily levels produces a distribution that approximates a GPD except

when the number of total daily repricings is small, when, on average, Calvo shocks are responsible

for a large fraction of the total avalanches. Furthermore, the estimates of θ are hardly affected.

In this paper we examined daily avalanches of price increases in Billion-Prices data that was

first used by Cavallo (2018a). We consider six series from five countries: Argentina, Brazil, Chile,

Colombia, and the US (2 series). Estimates of θ are consistently close to unity, indicating that

complementarity plays an important role in price adjustments and large dispersion (variance/mean)
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in the number of daily price increases. In addition, the empirical distribution of daily avalanches of

price increases is remarkably close to GPDs, especially considering the fact that the GPD is fully

determined by two parameters.
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Table 1. Data overview
USA-1 USA-2 Argentina Brazil Chile Colombia

Initial date 2008-05-08 2008-03-18 2007-10-07 2007-10-10 2007-10-24 2007-11-13
Final date 2010-07-31 2010-07-31 2010-08-13 2010-08-01 2010-08-13 2010-08-01
Observations 12,037,687 13,554,672 15,019,074 12,401,805 13,651,502 4,737,481
Unique products 21,230 50,004 23,506 19,933 20,600 8,045
Categories 26 32 74 72 72 59
Positive price changes (%) 54.50 34.74 80.69 59.71 58.54 58.02
Median log price increase 0.178 0.117 0.061 0.051 0.075 0.055

USA-1 is US supermarket. USA-2 is US department store. For all other countries the data is on supermarkets.
Log price increase is calculated conditional on a positive price change. All prices are non-sale prices for
products with at least 100 days of observations.

Table 2. Moment estimation for avalanches of price increases
Simulation USA-1 USA-2 Argentina Brazil Chile Colombia

θ 0.895 0.968 0.901 0.964 0.979 0.912 0.880
(1.1e-06) (0.0006) (0.0010) (0.0005) (0.0004) (0.0014) (0.0014)

θ0 3.99 4.106 3.447 4.607 3.700 8.402 7.095
(1.0e-05) (0.0194) (0.0104) (0.0154) (0.0186) (0.0175) (0.0126)

Standard errors are in brackets. All statistics calculated using formulae in Consul
and Famoye (2006).

Table 3. NLS estimates for avalanches of price increases
Simulation USA-1 USA-2 Argentina Brazil Chile Colombia

θ 0.882 0.959 0.881 0.939 0.944 0.931 0.873
(1.6e-06) (2.5e-05) (4.9e-05) (5.9e-05) (9.7e-05) (7.7e-05) (4.9e-05)

θ0 4.019 5.655 3.755 8.665 9.757 7.940 7.771
(7.4e-05) (0.001) (0.002) (0.004) (0.006) (0.005) (0.003)

Standard errors in brackets.

Table 4. NMRSE Comparison
USA-1 USA-2 Argentina Brazil Chile Colombia

Moment Estimation 0.219 0.146 0.325 0.455 0.105 0.087
NLS 0.026 0.101 0.049 0.069 0.078 0.098

The normalization is the mean.

Table 5. NLS goodness of fit p-values
USA-1 USA-2 Argentina Brazil Chile Colombia

0.783 0.716 0.271 0.157 0.414 0.091

p-values reported from chi-square test. Observations from
first tercile of avalanche sizes qj to 142. qj values: 25, 9,
44, 61, 36 and 23 respectively.
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Figure 1. Log counter-cumulative fit of price increases using NLS
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Log counter-cumulative fit—US supermarket (top left), US department store (top right), Argentina supermarket

(center left), Brazil supermarket (center right), Chile supermarket (bottom left) and Colombia supermarket (bottom

right).
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A Online Appendix

Table A1. θ estimates for avalanches of price-cuts
Moment Estimation NLS

Simulation π = 0.03 0.853 0.850
USA-1 0.922 0.960
USA-2 0.924 0.905
Argentina 0.971 0.860
Brazil 0.968 0.935
Chile 0.920 0.891
Colombia 0.854 0.846

USA-1 is US supermarket. USA-2 is US department
store. For all other countries the data is on super-
markets.

Table A2. NLS goodness of fit p-values for price-cuts
USA-1 USA-2 Argentina Brazil Chile Colombia

0.494 0.376 0.255 0.065 0.381 0.059

p-values reported from chi-square test. Observations from
first tercile of avalanche sizes to 142.
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Figure A1. Log counter-cumulative fit of price-cuts using NLS
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Log counter-cumulative fit—US supermarket (top left), US department store (top right), Argentina supermarket

(center left), Brazil supermarket (center right), Chile supermarket (bottom left) and Colombia supermarket (bottom

right).
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