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Matt’s background

PhD in AI in 2008

Since then:
Postdoc
Prof. at liberal arts college
Prof. at research university
2.5 years with Borealis AI – applied + fundamental research

Now: UofA CS + Amii + AI-Redefined
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Reinforcement Learning

Reinforcement Learning @ RBC

Identifying good problems



Machine Learning

Supervised Unsupervised Reinforcement Learning

Environment

Agent

Action RewardState



Reinforcement Learning (RL)

No labels: agent never told right or wrong

Agent interacts with environment 
(simulator or real world)

Typically can gather data, possibly at cost, 
by interacting with environment

Learns via exploring vs. exploiting

Environment

Agent

Action RewardState



RL Goals

Learn to maximize real-valued reward signal

• With maximal final performance
• With little data
• Reducing human effort
• Discovering novel solutions
• Handling non-stationary environments



RL Applications
(Un)Supervised learning performs well for many real-world applications

AlphaGO

Dota Robotics

Data Center Cooling

Stock Trading

1. RL is mature
2. You should know 

if/where it applies

Fusion: Tokamak 
Plasmas



https://www.youtube.com/watch?v=OJw4HTWvGdY

https://www.youtube.com/watch?v=OJw4HTWvGdY


Example 1: Flappy Bird

Transition function: Controlled by game

Action?

Reward?

State representation?

http://sarvagyavaish.github.io/FlappyBirdRL/

http://sarvagyavaish.github.io/FlappyBirdRL/


Example 2: Water Treatment

Drayton Valley

ISL Adapt, UofA, and Amii

No ground truth
Raw water from North Saskatchewan River
State: Sensors added to filtration plant
Actions: Changes like chemicals, backwash cleaning, etc.
Reward: Environmental and fiscal benefits

bit.ly/3ouscLO

Developed @ UofA

https://bit.ly/3ouscLO
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Example 3: Aiden
Optimal Order Execution

State: Info about stock & market

Actions: Do nothing, buy/sell a little, buy/sell a lot

Rewards: Based on VWAP (Volume-weighted average price)

Transition function: Stock market (real or simulated data)

https://www.borealisai.com/en/applying-ai/aiden/
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Rewards

1) VWAP: Volume-weighted average price

∑𝑃𝑟𝑖𝑐𝑒 × 𝑉𝑜𝑙𝑢𝑚𝑒
∑𝑉𝑜𝑙𝑢𝑚𝑒

Better than just the average price
Other benchmarks possible (e.g., arrival price)

2) Complete desired trade
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Actions

Know what direction you’re going
Do nothing, buy/sell a little, buy/sell a lot

Discrete vs. continuous?
How much freedom?
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State

Core trade secrets
Not included in patent filings
Researchers only knew some of them

Necessary & Sufficient?

Memory?
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Learning

Policy gradient method: PPO

Trust region with clipping and/or KL-divergence penalty

Simulator first

Worked surprisingly well
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Deployment and Acceptance

Small project, early Borealis AI employee
Fully backed by Foteini Agrafioti
Got Capital Markets on board
Some politics, of course
Deployment (i.e., 1st rodeo)
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Marketing

Add-on benefits
You could imagine that many clients were very excited
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Explainability

Trust: Customer / User / Manager
What went wrong?
Debugging
Marketing / Sales

Can you improve performance using explainability?
Active area of research
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Other (Known) RL Applications

Portfolio optimization
Pricing options & financial derivatives

I believe there’s many more opportunities
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Sample Cost

Fully Virtual vs. Approximate Simulator available vs. No Simulator

Balancing exploration vs. exploitation continuously, with real world costs
Training could be too slow to be useful (non-stationarity)
If can parallelize, can be OK, but need simulator
Trade off hyperparameter tuning, neural architecture search
How many independent training runs?
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Initial Performance

How bad are random actions?

What is the cost of exploring?

Can you use an existing agent or a human?
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Safety Constraints

Maximizes expected return
o E.g., number of points in an Atari game
o Does not enforce “what not to do” (critical states)
o Could lead to unintended behaviors
o May not correctly factor in risk

Could use action filter
Might have access to safe policy
Add specific constraints
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Large Action Spaces

Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition: Dietterich, 1999

Larger action space require more exploration
o Continuous action spaces
o Movie recommender agent: action space of size = number of movies
o Subsets of actions (e.g., movie genre) could help: hierarchical actions
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Reward Function

Can be difficult to define
o Additional rewards can help for faster learning
o But… might discover high reward policy without doing the intended task! 
o High-scoring, counter-intuitive behaviors

MDP reward
o Expert elicitation?
o User preferences?
o Shaping reward from expert?
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Partial Observability, Non-Stationarity

Partially Observable MDP (POMDP) introduces additional complexity
o Agent gets observations, not true state 
o DQN uses frame-stacking to handle POMDPs
o DQN + RNN obtains similar performance

Changes in the environment (state and/or reward distribution) over time
→ Sudden jumps vs. concept drift
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Explainability / Interpretability

Explainability for failure cases
→ Helpful for debugging

Helps to build trust with users / encourage adoption
Might learn new strategies from the agent
→ AlphaGo learned unseen strategies in Go
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RL Strengths
Agent can autonomously learn to maximize rewards

Programmer just specifies goals

Often much less work than directly programming

Can achieve superhuman performance

Can handle unanticipated changes in the environment



RL Weaknesses
Agent maximizes reward whether it’s what you actually wanted or not!

Can require lots of computation and/or interaction with the real world
→ Interacting with real world can have cost: time, money, wear, etc.

Solutions are often black box 
→ Explainability is not well understood (yet)

Initial performance could be very poor
OpenAI Five uses 180 years of gameplay data each 
day across tens of thousands of simultaneous games, 
consuming 128,000 CPU cores and 256 GPUs



Summary: Targeting a Good RL Task

How expensive are failures (e.g., from exploration or early 
performance)?

What improvement can we expect over state of the art?

Are there second-order effects (e.g., marketing)?

How difficult will it be to set up an environment where an agent can get 
the data it needs and execute actions?

Can I first tackle an abstract version of the task to understand how 
difficult it is?
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Conclusion: Lots of Opportunities!

RL is awesome

Lot’s of (free) resources to learn more

Identifying good problems can be non-trivial

http://irll.ca

http://irll.ca/

