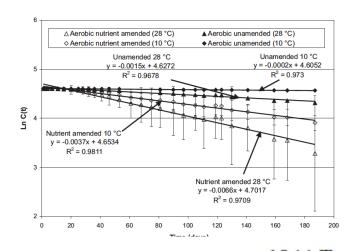
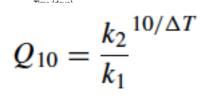


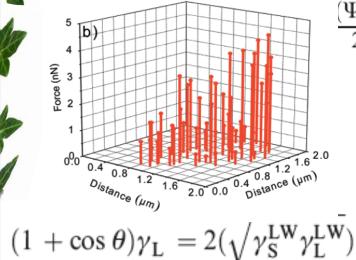
How to play nicely and make new friends:

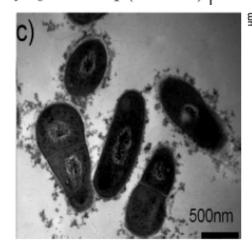
a Biologist's perspective on inter-disciplinary collaborations

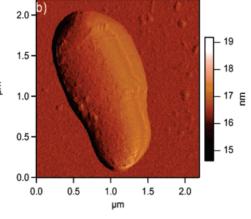

Julia Foght
Professor, Biological Sciences

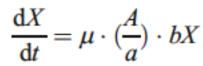
Or, to put it another way....

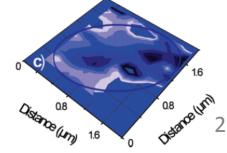



$$Q_{d, ext{max}} pprox rac{D_{ ext{eff}} A C_{ ext{sol}} x_{HC}}{L}$$

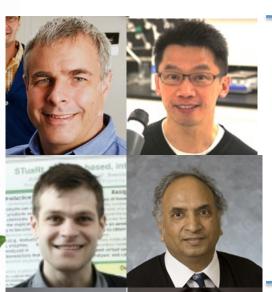



$$F_{\rm e} = 4\pi\varepsilon\varepsilon_0(\kappa a) \left(\frac{kT}{ze}\right)^2 \psi_{\rm t}\psi_{\rm s} \left[\frac{\exp(-\kappa ah)}{1 + \exp(-\kappa ah)} - \right]$$





$$\frac{(\Psi_{\rm t} - \Psi_{\rm s})^2}{2\Psi_{\rm t}\Psi_{\rm s}} \frac{\exp(-2\kappa ah)}{1 - \exp(-2\kappa ah)}$$



Petroleum Microbiology

Chemical

Environmental

Mechanical

Why you should cultivate inter-disciplinary 'play dates' (what's in it for you AND your students)

Intellectually stimulating

What can we do together?

- **★** Collaborate on research and publications
 - journal choice?
- **★**Co-supervise grad students
 - course options?
- ★ Sit on grad committees and examinations
 - expectations?
- ★Give or host guest seminars or lectures
 - your place or their theirs?

What benefits can you expect?

(besides someone new to listen to you whine)

- Interdisciplinary environment for your students (NSERC ②)
- Source of external examiners for PhD theses
- Change in your perspective: 'parallax'
 - a sounding board for research data
- New technical expertise in your lab
- Access to new funding sources
- Access to new audiences and journals

Teaching projects

Professor helps pioneer new teaching tool

By Richard Cairney March 13, 2012

Print

Share

Obstacles to be aware of

- We speak different languages:
 - true technical terms vs. jargon
 - same word means different things
- We have different approaches (research "cultures")
 - equations vs. 'squishy' science
 - quantitative vs. qualitative/descriptive
 - biological controls

More potential obstacles

- We have different tolerances of 'error' and variation
 - ± 10% is pretty good for biology
 - replication vs. certainty
- We have different timelines
 - biology often takes much longer to do
- We all fear sounding stupid
 - -GET OVER IT!

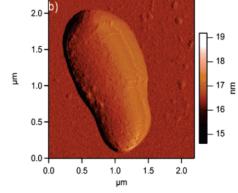
OK, you've convinced me: where do I start?

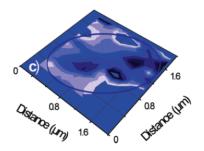
Talk to colleagues who already collaborate outside Engineering

Attend seminars on campus that sound relevant – or interesting

Go to inter-disciplinary sessions at conferences

Do a literature search on Web of Science for key words plus UAlberta address

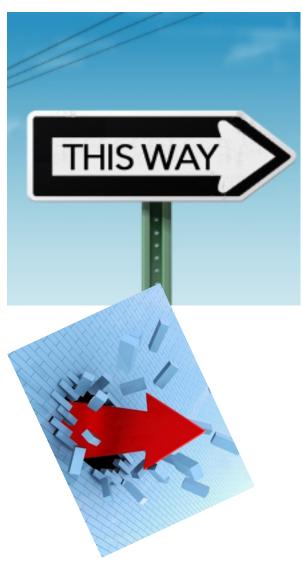

Make some 'cold calls'



Don't be afraid to:

- say "I don't understand: please explain it again."
- explain yourself again in a simpler way, maybe in words or pictures rather than equations

$$F_{e} = 4\pi\varepsilon\varepsilon_{0}(\kappa a)\left(\frac{kT}{ze}\right)^{2}\psi_{t}\psi_{s}\left[\frac{\exp(-\kappa ah)}{1 + \exp(-\kappa ah)} - \frac{(\Psi_{t} - \Psi_{s})^{2}}{2\Psi_{t}\Psi_{s}} \frac{\exp(-2\kappa ah)}{1 - \exp(-2\kappa ah)}\right]$$



So..... what are you waiting for?

