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Abstract

In a simple extension of the Diamond and Dybvig (1983) environment, we compare three

regimes: an explicitly modeled privately funded deposit insurance scheme, an ex-ante funded

liquidity insurance scheme, and runs preventing bank contracts without any insurance. It is

shown that when the probability of runs is low, both insurance schemes are superior to runs

preventing contracts; and in this case, the deposit insurance scheme is socially desirable as

long as asset liquidation costs are not excessively high. When liquidation costs are high, the

liquidity insurance scheme outperforms the other two regimes. And when the probability of

runs is high, the arrangement with runs preventing bank contracts is the best among the three

regimes. We also show that when depositors are sufficiently risk averse, the deposit insurance

scheme is socially the most desirable among the three regimes.
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1 Introduction

Following the collapse of Silicon Valley Bank and Signature Bank in March of 2023, the heads of

the U.S. Treasury, Federal Reserve and Federal Deposit Insurance Corporation (FDIC) stated in

a joint press release that in the rescue of these financial institutions “no losses will be borne by

the taxpayer” (Federal Reserve Board, March 12, 2023). Separately, President Joe Biden assured

the public: “Let me repeat that: No losses will be borne by the taxpayers” (New York Times,

March 13, 2023). These steps seem to be taken to prevent a reaction similar to the public outcry

following the bank bailout of 2008 (e.g., Los Angeles Times, September 26, 2008). Given the

apparent sensitivity of both society and government to the issue of using the public purse to rescue

financial institutions, it would be of interest to explore privately funded solutions to the problem.

In this paper, we analyze three distinct privately funded approaches to mitigating the phenomenon

of bank runs–deposit insurance (DI) scheme, liquidity insurance (LI) scheme and run preventing

contracts (RPC)–and examine the specific conditions under which each of these solutions proves

most effective. These approaches align with three historical banking frameworks, each representing

a different strategy for managing financial stability and preventing bank runs.

The root of any bank run is intimately connected to the economic function of banks. After

inspecting the asset and liability sides of bank balance sheets one quickly comes to the following

observation: bank assets are illiquid while liabilities are extremely liquid – demand deposits allow

depositors to withdraw funds at any time. This liquidity transformation is viewed as one of the key

missions of modern banks. But it is not without risks. On the one hand, it allows banks to pool

resources from retail depositors and finance long-term projects with high returns. On the other,

the liquidity mismatch is a root of banks’ problems: they are vulnerable to the possibility of a bank

run. During such an event, many depositors rush to the bank to withdraw deposits at once, and

the suddenly large number of withdrawals force banks to liquidate their long-term assets at fire sale

prices. When the liquidation value of assets is not enough to cover the value of deposits demanded

by bank customers, banks have to go bankrupt and some depositors may lose their deposits. Bank

runs can be particularly harmful when banks in trouble do not have a solvency problem. In such a

case a bank run is entirely expectations-driven and a healthy institution is unnecessarily destroyed:

depositors with no need for cash at the time suddenly rush to withdraw only because they believe

other depositors will do the same.

Bank runs can cause severe financial damage to the affected depositors and banks. Moreover,

bank runs can destabilize the entire banking system since runs can be contagious. As argued in

the seminal work by Diamond and Dybvig (1983) – DD hereafter – “in a panic with many bank

failures, there is a disruption of the monetary system and a reduction in production.” And DD

propose the use of deposit insurance to address the problem of bank runs. It has been widely

recognized for some time that deposit insurance (DI) plays a crucial role in maintaining depositor

confidence, and as a result, it has become a widely adopted solution. For example, in 2013, around
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85% of high-income countries and 60% of upper-middle-income ones had explicit DI, with the total

number of countries with this arrangement reaching 112 (see Demirgüç-Kunt et al. 2015).

The type of DI that DD propose and analyse is government deposit insurance funded through

taxation. In the case of a run, the government can tax early withdrawers and plow the collected

resources back to the bank in such a manner that no depositor has an incentive to run. Thus,

the government-funded deposit insurance scheme eliminates bank runs as a possible equilibrium.

Despite the clear advantage of government-funded deposit insurance in terms of credibility as it is

backed by the government’s ability to tax, in most countries deposit insurance is privately funded by

participating banks. As described in Demirgüç-Kunt et al. (2015), which provides a comprehensive

global database of DI arrangements as of 2013, around 77% of all DI schemes around the world

and 91% of DI schemes in high-income countries are privately funded. Furthermore, most DI

schemes are ex-ante funded (as opposed to the ex-post funded DI proposed in DD), i.e. they have

a fund built by insurance premiums paid by banks on a scheduled basis. For example, according to

IADI (2018), between 2008 and 2014, the percentage of DI schemes with ex-ante funding increased

from 83% to 90%. Although some privately funded DI programs have either implicit or explicit

government support in the form of a backstop, it is usually not in the form of taxation but rather

takes a form of lines of credit or issuance of bonds or loans guaranteed by the government. In

addition, many OECD countries do not have such backstops.1

It is important to explicitly model ex-ante privately funded DI programs given how prevalent

they are around the world. Despite the vast literature on bank runs and related remedies, only

few papers model privately funded deposit insurance. Dávila and Goldstein (2023) model deposit

insurance as a scheme financed by government through taxation as in DD; and they study an

extension of the model where the deposit insurance fund is financed by bank contributions, as

in our model. However, they treat bank contracts as a primitive of the model to simplify the

analysis. Oosthuizen and Zalla (2022) extend the model of Dávila and Goldstein (2023) to embed

it in an infinite-horizon framework. In the current paper, we modify the environment in Cooper

and Ross (1998), which is an extension of DD that accounts for the positive costs associated

with liquidating assets. Unlike Dávila and Goldstein (2023) and Oosthuizen and Zalla (2022), we

do not have taxpayers in the model and assume that the DI fund is sufficient to cover all the

losses involved. And the DI fund is built ex ante by contributions from participating banks. The

combined contributions from banks are only sufficient to reimburse depositors of distressed financial

institutions who cannot recover their deposits due to their bank’s failure. The DI is incomplete

in that all depositors receive the amount promised to the early type.2 As in DD, a bank run is

an equilibrium in the baseline model without DI. This implies that once the private DI scheme is

1This includes Canada, Finland, France, Germany, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzer-
land. See Demirgüç-Kunt et al. (2015).

2Most DI schemes exhibit some sort of incompleteness. For example, FDIC in the U.S. imposes a $250,000 cap
on deposit insurance.
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introduced, depositors are protected but bank runs are still possible because of incompleteness of

the DI. We assume that a portion of banks will encounter a run, requiring them to sell off their

assets to pay depositors. As in Cooper and Ross (1998), liquidation is costly; when a troubled

bank runs out of resources it declares bankruptcy, and the DI scheme pays the remaining bank

customers. The feature of our model that allows bank runs and bank failures in the presence of

a DI scheme is consistent with occasional bank runs in countries with DI. For instance, between

March and May of 2023, there were bank runs at Silicon Valley Bank, Signature Bank and First

Republic Bank, all U.S. institutions, as well as Credit Suisse, a bank located in Switzerland (New

York Times, May 1, 2023 and April 24, 2023). Earlier examples in the U.S. include the failure

of Continental Illinois in 1984, a bank holiday in the state of Ohio in 1985 in the wake of a run

on Home State Savings Bank, and the collapse of Washington Mutual in 2008; a run on Northern

Rock in 2007 in the U.K. was a harbinger of the upcoming global financial crisis (see FDIC 1997;

Bosworth et al. 1985; New York Times, May 1, 2023; and Shin 2009 respectively).

In a bank run, DI protects depositors but not banks: the DI authority steps in only after a bank

failure. To further understand the circumstances under which the DI scheme is socially desirable,

we introduce another privately funded insurance scheme that we dub ‘liquidity insurance’. As

in the case of DI, liquidity insurance (LI) is ex-ante funded by contributions from participating

banks. In contrast to deposit insurance, LI safeguards financial institutions by providing them

with liquidity support, backed by collateral, during times of distress. The LI payout is sufficient

to deter bank runs because banks do not have to liquidate assets at all, which keeps those who

plan to withdraw late from running on their bank. As a result, by shielding banks, the LI scheme

also protects depositors, making DI unnecessary.3 The role of a lender of last resort (LLR) is

sometimes referred to as “liquidity insurance”. In fact, historically, institutions other than central

banks played the role of LLR. For example, the Suffolk Bank played such a role during the Panic of

1837 and its aftermath. Thus, our second regime may be viewed as a privately arranged alternative

to the LLR function of central banks.4,5 The LI regime in our paper is also somewhat related to

mutual liquidity risk insurance in Calomiris et al. (2015), in which there exists interbank liquidity

assistance among banks but banks impose on each other minimum cash requirements enforced by a

clearing house.6 However, in our model, all extra liquidity is held at a central location (the liquidity

insurance authority).

One useful framework for conceptualizing the LI regime is to compare it to historical clear-

inghouses. In the United States, between 1853 and 1913, clearinghouses were private associations

3Banks usually fail due to reasons other than bank runs. And the role of DI in such cases is essential. In our
simple model, DI exists only to protect depositors in the case of a run, which, in turn, is the only reason banks fail.
Thus in our context, LI replaces the role of DI only in this capacity.

4Central banks, the modern day LLRs, usually lend against collateral. So does the LI authority in this paper.
5Repullo (2000) and Kahn and Santos (2005) also consider the possibility of the role of LLR being played by the

DI provider.
6See Sleet and Smith (2000) on the interplay between LLR and DI and Santos (2006) for a review of literature on

this issue.
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composed of member banks, providing critical emergency liquidity to their members during finan-

cial panics, backed by collateral (Jaremski, 2015; Kroszner, 2000). These institutions played a

pivotal role in stabilizing the financial system during periods of distress. The LI scheme proposed

in our analysis can be viewed as an evolved or ’strengthened’ version of these historical clearing-

houses. Unlike traditional clearinghouses, which primarily offered liquidity support, the LI regime

is designed to effectively prevent bank runs altogether. This preventative capability significantly

extends beyond the historical role of clearinghouses, which managed liquidity crises but did not

necessarily eliminate the risk of bank runs. By ensuring that banks have access to necessary liq-

uidity before a crisis escalates into a run, the LI regime provides a more robust safety net for the

banking sector.

The final regime that we analyze as a solution to bank runs does not involve any form of

insurance. Each bank offers a runs preventing contract (RPC), according to which the bank puts

aside enough liquidity to be able to stave off a run; it is a form of self-insurance. The RPC scheme is

somewhat related to the literature on narrow banking, which supports the 100% reserve requirement

for banks (see Cochrane 2014 and Rodriguez Mendizábal 2020). This solution to financial fragility

has been criticized on many grounds (see, e.g., Diamond and Dybvig 1986 and Wallace 1988). For

example, Wallace (1988) views the idea of narrow banking as “synonymous with preventing banks

from carrying out their main function.” Unlike the 100% reserve requirement, the RPC promises

the early withdrawers a relatively low amount that allows a bank to both keep a sufficient amount of

liquidity (but not 100% of deposits) to survive an event in which all depositors decide to withdraw

early, and to make loans (in the model, to invest in a productive technology). Although the RPC

scheme completely eliminates bank runs, there is an opportunity cost of ‘idle’ liquidity. In addition,

banks (collectively) do not take advantage of aggregate information on the probability of runs.

In summary, the three banking regimes analyzed in our study can be conceptualized as follows:

• RPC regime: This system exemplifies a laissez-faire banking model, reminiscent of the U.S.

free banking era. Rolnick and Weber (1984) provide a detailed historical account of this era,

highlighting its minimal regulatory intervention and the high degree of autonomy afforded to

banks. In this regime, we assume that banks adopt a highly conservative investment strategy,

aiming to prevent and withstand any potential bank runs.

• LI regime: This regime is analogous to the function of clearinghouses in the U.S., as described

earlier. These institutions historically provided emergency liquidity to member banks during

financial panics, backed by collateral. The LI regime in our analysis represents an enhanced

version of these clearinghouses, designed to more effectively prevent bank runs through proac-

tive liquidity support.

• DI regime: This regime mirrors the modern framework of deposit insurance schemes, exem-

plified by the Federal Deposit Insurance Corporation (FDIC) in the United States. For a
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comprehensive overview of the impact and mechanics of such schemes, see Demirgüç-Kunt

et al. (2015). These schemes are designed to protect depositors by insuring their deposits

against bank failures, thereby promoting financial stability and reducing the likelihood of

bank runs.

Each of these regimes offers a distinct approach to banking regulation and support, reflecting

different historical contexts and policy objectives.

In our analysis of these three regimes, we first establish that when the probability of bank runs

α is large, it is best for a bank to self insure using the RPC; and conversely, when α is small, it is

socially desirable to have either DI or LI. The intuition behind this result is as follows. When α

is large, the cost of funding an insurance scheme (DI or LI) is large and outweighs the cost of self

insurance under the RPC, which does not depend on α. Similar reasoning explains the advantages

of the insurance schemes when α is small: banks put aside too much liquidity under the RPC, which

is not socially desirable. Putting it differently, banks in the RPC regime do not take advantage of

the low probability of runs, which is better handled by an insurance scheme.

Next, for relatively small values of α, we demonstrate that LI outperforms DI when the cost

of liquidation τ is high. A key observation here is that the allocation of resources under LI does

not depend on τ : no liquidation happens under this regime. When τ increases, the burden of

liquidation in the DI scheme becomes too high, which makes LI a superior choice.

One notable finding of our study indicates that the DI scheme is socially preferable over the

other two schemes when both the probability of bank runs α and the liquidation costs τ are low.

The superiority of DI over the RPC follows from the first result above. When comparing DI with

LI, we have to take into account two forces. On the one hand, there are liquidation costs that some

banks have to bear in the DI case since the probability of having a bank run is positive (and it is

zero in the case of the LI scheme since bank runs are eliminated); on the other, banks pay lower

insurance premiums in the DI scheme than they do under the LI scheme. When liquidation costs are

low, the latter effect outweighs the former leading us to the conclusion that the DI scheme is socially

preferable to LI. In addition, our numerical analysis extends this result further by demonstrating

superiority of DI for modest values of α and low-to-medium levels of τ .

The remaining of the paper is organized as follows. Section 2 presents the model and main

arrangements we consider in the paper. Section 3 presents the main results for a general utility

function. Section 4 considers the CRRA utility function and presents new insights. Section 5

presents two extensions of the main model. Section 6 summarizes and concludes. Proofs are in the

Appendix.
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2 Model

We study an environment closely related to that introduced by Cooper and Ross (1998), which is a

version of the model pioneered by DD. Consider an economy with a continuum of agents of measure

one who live for three periods, t = 0, 1, 2. There is also a continuum of banks of measure one. An

agent can prefer to consume in either period 1 (they are called the early type) or period 2 (the late

type). Agents’ types are not known in period 0 and only revealed in period 1. However, it is known

that a fraction π of agents will be the early type and the complementary fraction 1 − π the late

type. Each agent is endowed with one unit of goods in period t = 0. There are two technologies in

the economy. The first, called storage, takes one unit of goods in period t and returns one unit in

period t + 1, t = 0, 1. The second, called the productive technology, takes one unit in t = 0 and

returns R units in t = 2, where R > 1. If the process in this technology is disrupted in t = 1, one

obtains only 1− τ units for each unit invested in t = 0, where 0 ≤ τ ≤ 1. Here τ is interpreted as

the liquidation cost of long-term assets. In DD this cost was assumed to be zero.

In period t = 0, each agent deposits their endowment into a bank. The utility of consumption

is u(ci), where c1 and c2 denote consumption in t = 1 by the early type and in t = 2 by the late

type respectively. We assume that function u(·) is increasing and strictly concave with u′(0) =∞
and u(0) = −∞.7

We will make the following assumption for the rest of the paper.

Assumption 1. The coefficient of relative risk aversion is greater than unity everywhere:

−u′′(c) · c/u′(c) > 1 for any c ≥ 0 .

Assumption 1 is needed to make sure that the first-best allocation, the solution to problem

(1)–(2) below, entails existence of a bank run equilibrium. Intuitively, more risk averse agents want

higher levels of consumption smoothing across two possible type realizations, and under Assumption

1, the consumption level c1 becomes so close to c2 that it exceeds unity: c1 > 1; and this implies

that a bank will have insufficient resources to satisfy depositors’ demand if everyone panics in period

t = 1.8 This, in turn, justifies the need for deposit insurance, as in Diamond and Dybvig (1983).

Throughout the paper we assume, similar to Cooper and Ross (1998), that with probability α

a bank run occurs at a given bank; since there is a mass one of banks, the fraction of banks that

experience a bank run is also α.

2.1 The first-best allocation

Facing uncertainty regarding their type, each agent who chooses to invest on their own, maximizes

an expected utility subject to technology constraints. However, DD have shown that a better

7For example, the CRRA function u(c) = c1−η/(1 − η), η > 1 satisfies these conditions.
8Diamond and Dybvig (1983) use this assumption to show existence of a bank-run equilibrium in the case τ = 0.

We keep the assumption as it helps in the case τ > 0 too. See Ennis and Keister (2009) for a useful discussion on
this issue.
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arrangement, in fact the social optimum, can be attained by pooling resources and offering insurance

against the uncertainty of type realization. The related social planner’s problem is

max [π u(c1) + (1− π)u(c2)], (1)

s.t. π c1 = 1− i and (1− π) c2 = iR .

The two constraints above can be combined to yield

πc1 +
1− π
R

c2 = 1 . (2)

The first-order condition is u′(c1) = Ru′(c2). It is easy to show that the solution satisfies c1 < c2.

Let us denote this first-best allocation as (cf1 , c
f
2).

The first-best allocation can be decentralized by a bank contract whereby agents deposit their

endowments to a bank and the bank promises cf1 to those who claim early consumption and cf2
to those who claim late consumption. DD have shown that 1 < cf1 < cf2 < R if the coefficient of

relative risk aversion is greater than unity everywhere (Assumption 1 above). The implication of

this is that in this environment there exists an equilibrium called a ‘bank run’ in which all late

types claim to be early types. In such a case, a bank will run out resources to satisfy depositors’

demand because the total amount of resources is 1 − τi, which is less than the total amount they

have to pay out: c1 > 1. To address this issue, Diamond and Dybvig propose a government deposit

insurance funded by taxation.

2.2 Privately funded deposit insurance

We consider arrangements alternative to government-funded deposit insurance. As pointed out in

the introduction, most DI schemes are ex-ante privately funded programs. For example, in the

EU, none of the DI schemes are government funded and only few are funded jointly between the

government and private actors (IMF 2013). Two alternative insurance schemes funded privately

by bank ex-ante contributions are studied in this paper. The idea behind the first one, deposit

insurance (DI), is that the total bank contributions to the DI fund should be enough to pay out

depositors at troubled banks. Banks that experience bank runs will liquidate their assets to pay

depositors; when they run out of resources they go bankrupt and the DI authority steps in, which

pays the remaining bank customers.9 The DI is incomplete in that everyone is paid an amount c1,

which is promised to those who withdraw early, in period 1. At troubled banks, the late depositors

panic and thus get only the amount of c1 at t = 1.10 We will first consider the social planner’s

problem for this arrangement and then explain how it can be decentralized.

9As in Diamond and Dybvig (1983) and Cooper and Ross (1998), we assume sequential servicing whereby all
depositors withdrawing in period t = 1 line up in a queue and are paid the promised amount of c1 until the bank
runs out of resources. There is another approach to this, in which troubled banks know at the beginning of t = 1
that they will fail, and they pay out every customer a reduced amount so that everyone is paid (and paid the same
amnount). See, e.g., Allen and Gale (1998) and Dávila and Goldstein (2023) for this line of modeling.

10They then save it until t = 2 using the storage technology, at which time they consume the goods.
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The social planner’s problem for the DI scheme is as follows:11

max
c1,c2,i1,i2

{
(1− α)

[
π u(c1) + (1− π)u(c2)

]
+ αu(c1)

}
(3)

s.t.

π c1 ≤ 1− i1 − i2 , (4)

(1− π) c2 ≤ R i1 , (5)

c1 ≤ 1− τ i1 +
1− α
α

i2 . (6)

Here ci denotes the consumption amount promised by a bank to those who withdraw in period

i = 1, 2; i1 denotes the bank’s investment into the productive technology, and i2 is the amount

the bank contributes to the DI fund. Note that we assume that each bank services a measure one

of depositors.

Eq. (3) has two terms. The first represents the utility of depositors at banks with no troubles

(their fraction is 1−α). And the second term represents the utility of depositors at troubled banks

(their proportion is α). The second term looks different because all customers of troubled banks

consume the same amount, c1.
12 Constraint (4) refers to the payments to the early depositors at a

healthy bank. Since only fraction π of depositors are the early type, the total amount the bank has

to pay at t = 1 is what remains after it collects deposits, the total amount of which is 1, and invests

an amount i1 into the productive technology and makes a payment i2 into the DI scheme. Eq. (5)

refers to the payments to the late depositors at healthy banks. Eq. (6) refers to the payments to

all depositors at a troubled bank. The left-hand side of it can be written as 1 · c1, which states

that all (i.e., the fraction 1 of) the depositors of the bank withdraw at t = 1 and receive c1. The

troubled bank liquidates all its assets and pays c1 to some depositors until it runs out of all funds,

after which it goes bankrupt. The DI scheme pays out the remaining bank depositors. Since the

total amount collected from all banks by the DI authority is i2, the scheme will pay the amount

i2/α to each troubled bank’s customers. The total amount paid to the depositors of a troubled

bank is (1− i1− i2) + (1− τ)i1 + i2/α, where the first term represents the amount left in the bank

after investing into the productive technology and making a contribution into the DI scheme; the

second term is the amount received by the bank after liquidating long-term assets; and the third

term is the amount paid by the DI scheme. When we collect the like terms we obtain what appears

on the right-hand side of (6).

The allocation obtained as the solution to the social planner’s problem (3)–(6) can be decen-

tralized as a bank contract. This contract, that we refer to as the DI scheme, does not save the

banking system from bank runs. They will happen, but depositor will be protected (to the extent

that every depositor claiming to be the early type receives c1).

11All four variables c1, c2, i1, i2 here and elsewhere are nonnegative. For simplicity, we omit these constraints
throughout the paper.

12It follows from discussion above that (i) the early type at healthy banks receive c1 at t = 1; (i) all depositors at
troubled banks (both the early and late types) receive c1 at t = 1.
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The reason for existence of bank runs under the DI regime can be explained by considering, for a

moment, a slightly modified version of our model where the deposit insurance authority compensates

depositors an amount slightly less than c1, specifically c1 − ε. The shortfall in compensation, ε,

could be interpreted in two ways. (i) Depositors might fear a delay in receiving their insured

deposits. The discomfort and uncertainty associated with waiting for these payments, especially

during financial distress, can act as a psychological burden. This apprehension might prompt

depositors to prefer withdrawing their deposits directly from the bank, rather than waiting for the

DI authority to process and pay out the insurance claim. (ii) Deposit insurance schemes typically

do not cover all types of deposits or amounts fully. For instance, the Federal Deposit Insurance

Corporation (FDIC) in the U.S. insures deposits up to a limit of $250,000 per depositor, per insured

bank, for each account ownership category. Therefore, ε can also represent the uninsured portion

of deposits that exceeds the coverage limit. Depositors with amounts above the insured limit might

be motivated to withdraw their funds to avoid potential losses above this threshold.

For the purpose of analytical simplicity and to focus on the core dynamics at play, we consider a

limiting scenario where ε approaches zero. In this theoretical construct, the differential between the

insured amount and the full deposit value becomes negligible. However, even this infinitesimally

small ε can trigger a bank run.

2.3 Privately funded liquidity insurance

The second regime we consider is liquidity insurance (LI). It takes the form of a centralized ar-

rangement whereby participating banks make contributions in period t = 0 and make claims in

period t = 1 if they are in trouble. To access funds from the liquidity insurance fund, a bank must

provide collateral. For simplicity, we assume that the bank will use all of its assets for this purpose.

These assets will be returned to the banks in period t = 2.13 The amount of collected liquidity will

be sufficient to stem any possible panic. Thus we consider the following social planner’s problem:

max
c1,c2,i1,i2

{
π u(c1) + (1− π)u(c2)

}
(7)

s.t.

π c1 ≤ 1− i1 − i2 , (8)

(1− π) c2 ≤ R i1 , (9)

c1 ≤ 1− i1 +
1− α
α

i2 . (10)

Note that unlike in (3), the social planner maximizes πu(c1) + (1− π)u(c2). This is because the LI

scheme provides liquidity to banks to the extent that there will be no bank runs and the second

13The liquidity insurance regime is somewhat related to interbank lending. Even when loans are secured, the
interbank market can freeze and stop functioning as it happened during the 2007-2009 global financial crisis. See
Allen et al. (2009) and Acharya et al. (2012) for theoretical analysis as to why the interbank market may loose its
efficiency during crises. The secured lending in the LI regime proposed in our paper is an attempt to overcome some
difficulties that the interbank market may experience during a financial crisis.
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term in (3) disappears. And the term in (6) associated with liquidation costs of long-term assets

disappears for the same reason, and as a result we obtain (10) instead. Note also that condition

(10) prevents runs since banks will have enough resources to pay c1, and thus there will be no

liquidation of assets during a run. The LI scheme collects presumably larger bank contributions.

These additional funds could have been used in the productive activity. This opportunity cost

of larger DI premiums is traded-off against the upside of preventing runs. Our LI scheme is

partly related to interbank market liquidity insurance (see, e.g., Castiglionesi and Wagner 2013).

Interbank lending is one of the most important source of liquidity in the financial system. Unlike the

LI scheme in this paper, most interbank lending is carried out in pairwise transactions between two

financial institutions. Interbank loans may be both uncollateralized and collateralized; however,

during financial crises banks stop using the former and reduce the use of the latter (see, e.g., Engler

and Steffen 2016). The LI scheme is an attempt to overcome these type of difficulties during a

financial panic.

To maintain analytical tractability in our model, we do not explicitly incorporate moral hazard.

Nevertheless, we acknowledge its significance and account for its effects indirectly. Consider for a

moment an environment similar to ours but featuring a broader array of productive technologies

with varying risk levels (see, e.g., Cooper and Ross 2002). In this scenario, assume that monitoring

the performance of a bank’s portfolio is costly. Under such conditions, both insurance schemes–DI

and LI–would likely induce moral hazard, prompting banks to adopt riskier behaviors than they

would in the absence of such schemes.

In the DI framework, all troubled banks would be liquidated, their assets seized by the DI au-

thority, and their depositors would be compensated. In the LI framework, however, troubled banks

would be rescued regardless of whether their problems stem from insolvency or mere liquidity issues.

This distinction introduces an additional layer of moral hazard in the LI framework compared to

the DI framework.

To account for the costs associated with this heightened moral hazard under the LI scheme,

we assume that the premiums collected by the LI authority are never returned to the contributing

banks. Although not explicitly modeled, one may think of these resources being used to mitigate the

consequences of the increased moral hazard, such as covering the heightened losses from troubled

banks, managing bank failures, and/or enhancing the monitoring of bank activities. For instance, in

the United States, clearinghouses–which serve as a practical example of the LI framework–actively

monitored their member banks, auditing their balance sheets and curbing excessive risk-taking

(Jaremski, 2015).
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2.4 Runs preventing contracts

The third regime we study in this paper is the runs preventing contracts (RPC) considered by

Cooper and Ross (1998)14. No insurance is involved in this arrangement, and banks handle the

issue of bank runs on their own. Each bank offers a contract with a sufficiently low payment to

the early type that it has enough resources to stave off a run. The contract promises a payment c1

to early types so that it satisfies the no-runs condition c1 ≤ 1− τi. There will be no runs because

a bank will always have enough resources to pay everyone claiming consumption at t = 1. The

associated social planner’s problem for the RPC is formulated as follows:

max
c1,c2,i1,i2

{
π u(c1) + (1− π)u(c2)

}
(11)

s.t.

π c1 ≤ 1− i1 − i2 , (12)

(1− π) c2 ≤ R i1 + i2 , (13)

c1 ≤ 1− i1τ . (14)

Unlike in the two insurance problems above, variable i2 in this problem represents additional

liquidity a bank puts aside for the late type in addition to the investment i1 into the productive

technology.15 Note that this regime, because of the lack of interbank coordination, does not use

aggregate information on the fraction of troubled banks, α. As in the case of LI, there is a certain

trade-off: additional funds are kept out of productive activity to prevent runs; but the upside is

elimination of bank runs.

2.5 Reformulation of the three problems

As in Diamond and Dybvig (1983), the solution allocation from each of the three social planner

problems above can be decentralized as bank contracts whereby a bank accepts deposits from agents

at t = 0 and promises to pay c1 to those who claim consumption at t = 1 and c2 to those who wait

till t = 2.

In this paper we compare strengths and weaknesses of the three approaches above, namely:

(i) the DI scheme (3)–(6); the LI scheme (7)–(10); and the runs preventing contracts, or RPC,

described in (11)–(14). For a given regime, we would like to identify circumstances under which it

would be the best choice for society.

To simplify analysis, it will be useful to eliminate variables i1 and i2 in these three problems

and keep only the two consumption variables. The resulting problems will allow us to use two-

dimensional graphical analysis. We first turn to the DI problem (3)–(6). It can be shown that the

feasible set of bundles (c1, c2) satisfying (4)-(6) is represented by the area under the broken line

14We use the same abbreviation, RPC, as Cooper and Ross (1998).
15This may be viewed as a form of self insurance.
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CAB in Fig. 1. More formally, the problem can be described as follows:16

max
c1,c2

{[
α+ (1− α)π

]
u(c1) + (1− α)(1− π)u(c2)

}
, (15)

s.t.[
(1− α)π + α

]
c1 +

1− π
R

[
ατ + 1− α

]
c2 ≤ 1 , (16)

πc1 +
1− π
R

c2 ≤ 1 . (17)

(The details are in the proof of Proposition 1 below.) Constraints (16) and (17) are represented in

Fig. 1 by segments AB and CA respectively. The coordinates of point A = ((1−τ)/(1−πτ), R/(1−
πτ)) are found by jointly solving equations (16) and (17). The coordinates of points B and L can

be found by plugging c2 = 0 or c1 = 0 into eq. (16). Similarly, one can use eq. (17) for finding

the coordinates of points K and C. It can also be verified that point (1, R) lies on segment CK by

plugging its coordinates into (17). We denote the solution to problem (15)-(17) as (cd1, c
d
2).

Figure 1: Private DI
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Segments AB and CA represent eqs. (16) and (17) respectively.

For some of our results we will need the following assumption.

Assumption 2.

R >
ατ + 1− α

1− α
. (18)

16For convenience, we have rearranged terms in (3).
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Let us provide a comment on the assumption. Define

δ =
R(1− α)

ατ + 1− α
, (19)

where the expression for δ is found by plugging c1 = 1 into (16). Segment AB in Fig. 1 representing

constraint (16) goes through point (1, δ). Assumption 2 is equivalent to δ > 1 and requires that

AB lies above AD. It is satisfied when α and/or τ are relatively small (or, alternatively, when R

is relatively large).

This assumption will help us narrow down the location of the solution to the DI problem.

Proposition 1. Let Assumption 2 hold. Then the two constraints (16) and (17) describe the set

of feasible allocations for the social planner’s problem (3)–(6). And the solution to this problem

satisfies this condition:

1 < cd1 < cd2 < δ , (20)

where δ is as in (19).

The proposition implies that the solution lies within segment AB in Fig. 1, i.e. the relevant

constraint is (16) and not (17). Furthermore, the solution (cd1, c
d
2) lies above the 45-degree line

going through the origin and point D; and it is below the horizontal line c2 = δ, where δ is as in

(19). In Fig. 2, the solution (cd1, c
d
2) should lie between points G and H on segment AB. The proof

of the Proposition is found in Appendix A.1.

For the LI problem, the feasible set of (c1, c2) bundles that satisfy constraints (8)–(10) can be

shown to be represented as the area under line CB in Fig. 2. More formally, this problem can be

restated as follows:17

max
c1,c2

[
πu(c1) + (1− π)u(c2)

]
(21)

s.t.[
(1− α)π + α

]
c1 +

1− π
R

c2 ≤ 1. (22)

It can be easily seen that the frontier of the feasible set for this problem lies strictly below the

frontier for the DI problem (15)–(17), i.e. CB lies below CAB (see Fig. 2). We denote the solution

to problem (21)-(22) as (cl1, c
l
2).

18

And finally, the feasible set of bundles (c1, c2) for the RPC problem can be described by three

17We show in Appendix A.2 that all three constraints (8)–(10) must bind. Then we obtain constraint (22) by
simply eliminating i1 and i2.

18One can narrow down the location of (cl1, c
l
2) on segment CB. More precisely, it can be shown that

π
π+(1−π)α < cl1 < cl2 < R.
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Figure 2: DI, LI and RPC
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The solution to the DI problem lies between points G and H on segment AB. The frontier of the feasible set for the

liquidity insurance problem lies strictly below the frontier for the DI problem, i.e. CB lies below AB.

new constraints; and the problem itself can be restated as follows:19

max
c1,c2

[
πu(c1) + (1− π)u(c2)

]
(23)

s.t.[
π +

R− 1

τ

]
c1 + (1− π)c2 ≤ 1 +

R− 1

τ
, (24)

πc1 +
1− π
R

c2 ≤ 1 , c1 ≤ 1 . (25)

Let the solution to this problem be denoted by (cn1 , c
n
2 ).

The feasible set satisfying constraints (24)–(25) is shown in Fig. 2 as the area under the

broken line CADE. In particular, constraint (24) represents segment AD whereas constraints (25)

represent segments CA and DE. Note that this set is a subset of the feasible set for the DI problem,

which lies below the broken line CAB. It will be useful to remember the following on the actual

location of the solutions to the RPC problem and the DI problem: (i) as Cooper and Ross (1998)

demonstrate, the relevant constraint for the RPC problem is segment AD (the solution is always

inside AD or at point A); in other words, eq. (24) is the relevant constraint; (ii) our Proposition

1 states that the solution to the DI problem lies strictly within AB (and more precisely, between

19See Appendix A.3 for derivations.
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points G and H).

3 Comparison of the three regimes

Let Vd denote the optimal value of the expected utility in the DI problem (15)–(17). Similarly, let

Vl denote the optimal value of the expected utility in the LI problem (21)–(22) and Vn the optimal

value in the RPC problem (23)–(25).

3.1 The role of the proportion of troubled banks α

We will argue in this section that when the probability of bank runs, α, is small, both insurance

arrangements are socially preferable to the RPC. It is quite reasonable to assume that α is small.

For example, in many OECD countries, the ratio of the size of DI fund to covered deposits is less

than 1%.20 Dávila and Goldstein (2023) discuss in some detail various estimates of historical bank

failure probabilities and choose the value of 2.5% in their quantitative analysis.

We will need the following critical value for α:

α∗ =
R− 1

R− 1 + τ
. (26)

This is the value of α at which segment AB in Fig. 1 goes through point D and thus the relevant

constraint lines for the DI and RPC problems will coincide.21 Note that in this extreme case δ = 1,

where δ is as in (19). For given values of R and τ , Assumption 2 holds for α ∈ [0, α∗), and it does

not hold for α ∈ [α∗, 1].

Proposition 2. There exist threshold values α̂i ∈ (0, α∗) such that Vi > Vn for α < α̂i and Vn > Vi

for α > α̂i, where i = d, l.

The proposition states that the DI scheme delivers a better deal than the RPC when the probability

of bank runs α is small (when α < α̂d), and the reverse is true for large values of α (when α > α̂d). A

similar threshold level, αl, exists for the LI problem. Intuitively, the DI and LI insurance premiums

increase as α goes up, and at some point the RPC, which may be viewed as self-insurance, becomes

a more attractive option.

Note that Vn does not depend on α at all. The idea of the proof for the DI case is to demonstrate

that Vd is a decreasing function of α and show that at the two extremes we have opposite inequalities:

Vd > Vn when α = 0 and Vn > Vd when α = α∗. A similar argument applies to the case of the LI

scheme. A detailed proof is in the Appendix.

Both insurance problems yield a higher expected utility than the RPC when α is small. Intu-

itively, it can be easily seen from Fig. 1. As α approaches 0, point B approaches point K; then

20E.g., it is 0.32% in Belgium and Canada, 0.73% in Denmark, 0.21% in France and 0.37% in Germany (see
Demirgüç-Kunt et al. 2015).

21We will show that in this case both solutions lie within segment AD and thus segment DB is irrelevant for the
DI problem.
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both segments AB and CB (the relevant constraints for the DI and LI problems respectively) move

away from segment AD and approach segment CK represented by the resource constraint (17).

Proposition 2 states that Vd > Vn in this case. And also note that Vl = Vd when α = 0 since both

the expected utility and constraints are the same for both problems. Therefore, for small values of

α, we have both Vd > Vn and Vl > Vn. In other words, it is best to have an insurance scheme when

α is small. However, we are unable to say anything definite about the comparison between Vd and

Vl for the case of small α. The complication arises from the fact mentioned above: Vl = Vd when

α = 0. Later in section 4, for the CRRA family of utility functions, we will be able to demonstrate

that Vd > Vl when both α and τ are small (see Proposition 6). Our numerical analysis in subsection

4.2 extends this result to the case when α is moderate and τ is not excessively large.

3.2 The role of the liquidation cost τ

Now let us explore the role of the liquidation cost τ . We can establish some results at the two

extreme values of τ : when it is 0 and when it is 1.

Proposition 3. Let Assumption 2 hold for τ = 1. If the liquidation cost τ = 1 or near 1, then Vl

is larger than both Vd and Vn.

Thus, in this case the LI scheme provides the best solution among the three regimes. Let us

understand the intuition behind this result. There are two forces to keep in mind when comparing

Vl and Vd. On the one hand, there are liquidation costs that some banks have to bear in the DI

case (and there are none in the case of the LI scheme); on the other, banks pay lower insurance

premiums than they do under the LI scheme. When liquidation costs are high, the former effect

outweighs the latter, which results in Vl > Vd. More technically, when τ = 1, point A coincides with

C and the relevant constraints for the DI and LI problems are the same, namely segment AB = CB

(see Fig. 3). Note that the LI problem and DI problem maximize the expected utility functions

U = π u(c1) + (1− π)u(c2) and Ud = [α+ (1− α)π]u(c1) + (1− π)(1− α)u(c2) respectively, and

that U puts more weight on the utility of the patient type, u(c2) than Ud does. Since the solution

to the DI problem (cd1, c
d
2) exhibits cd1 < cd2, we have V l > V d.

To understand the intuition behind Vl > Vn, note that Vl does not depend on the liquidation

cost (τ is not present in (7)–(10)) whereas Vn does. As liquidation costs increase, banks in the

RPC regime have to decrease consumption of the early type, c1, in order to maintain the no-runs

condition c1 < 1−τi. In the limiting case τ = 1, this adjustment becomes too large. In pursuing the

RPC, banks engage in self-insurance and (collectively) do not take advantage of the fact that only

a fraction of banks experience runs. In contrast, under the LI scheme, the aggregate information

on α is taken into account but no adjustment to allocation takes place as τ changes.

Note that the above comparison between Vl and Vn reveals a very important point: Vl depends

on α but not on τ whereas Vn does depend on τ but not on α. These are relative strengths and
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Figure 3: The Role of Liquidation Costs I
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When the liquidation cost τ = 1, point A coincides with C and the relevant constraints for the DI and LI problems

are the same, namely segment AB = CB.

weaknesses of the LI scheme and the RPC. Finally note that Vd depends on both α and τ . Thus,

unlike in the other two problems, the social planner in problem (3)–(6) takes into account both the

information on the fraction of failing banks throughout the economy, α, and liquidation costs, τ ,

and strikes some balance between relative strengths and weaknesses of the other two approaches.

Now let us turn to the other extreme and assume that the liquidation cost τ = 0, i.e. at t = 1

it is costless to get back any amount of investment into the productive technology made in period

t = 0. In this case, the upper bound for the thethreshold levels α̂d and α̂l in Proposition 2 found

in (26) yields too large a number: α∗ = 1. We can provide a tighter upper bound:22

ᾱ =
π[u′(1)−Ru′(R)]

πu′(1) + (1− π)Ru′(R)
. (27)

Note that ᾱ > 0 because, as DD show, under Assumption 1, u′(1) − Ru′(R) > 0. And it is clear

that ᾱ < 1.

Proposition 4. Suppose the liquidation cost τ = 0 or near 0 and α ≥ ᾱ. Then Vn is larger than

both Vd and Vl.

The intuition behind this result is as follows. When τ = 0, there is no cost of liquidation

that banks under the RPC would otherwise bear. And when the probability of bank failure α is

22See Appendix A.6 for details on how to obtain ᾱ.
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large, i.e. α > ᾱ where ᾱ is explained below, the cost of contribution by banks to the common

fund under the other two regimes outweighs the benefits when compared with the RPC. More

technically, let U and Ud denote the expected utility functions U = π u(c1) + (1 − π)u(c2) and

Ud = [α+(1−α)π]u(c1)+(1−π)(1−α)u(c2) and let F d denote the feasible set for the DI problem.

If U∗ and U∗d denote the optimal utility levels obtained at the solutions to the maximization of U

subject to F d and maximization of Ud subject to F d respectively, we can claim that U∗ > U∗d . This

is because u(cd1) < u(cd2) according to Proposition 1, and U puts more weight on the utility of the

late type, u(c2), than Ud does. The slope ᾱ is such that the indifference curve of U is tangent to

segment AB in Fig. 4 at point A = (1, R). For levels of α greater than ᾱ, point A will be a corner

solution to the problem maxU s.t. Fd. And since point A is common to both Fd and the feasible

set of the RPC problem, we conclude that Vn > Vd. A similar argument can be used for proof of

Vn > Vd. A detailed proof is found in the Appendix.

Figure 4: The Role of Liquidation Costs II
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When the liquidation cost τ = 0 and α = ᾱ, the indifference curve of U is tangent to AB at point A.
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4 The CRRA utility function

In this section we consider a specific, the constant relative risk aversion (CRRA), family of utility

functions:

u(c) =
c1−η

1− η
, η > 1 . (28)

(Note that since η > 1, Assumption 1 is satisfied.) This specification allows us to obtain results

that go beyond what we were able to do in the general case in Section 3.

4.1 Cases when DI is dominant

We now consider two special cases when the DI scheme is superior to the LI and RPC regimes.

Proposition 5. Suppose τ < 1. Let Assumption 2 hold. Then Vd is larger than both Vn and Vl if

η is large enough, i.e. there exists η̂ such that Vd(η) > Vn(η) and Vd(η) > Vl(η) for η > η̂.23

Thus, when agents are very risk averse, the DI is socially preferable over both the LI scheme

and the RPC. The intuition behind this result is as follows. As agents become more risk averse, i.e.

as η increases, they want more consumption smoothing across the two possible type realizations.

Thus, in the limit, as η → ∞, the solution to any of the three social planner’s problems exhibits

the same feature: c1 = c2. Thus, in this limiting case, the solution for each problem is located

at the intersection of the 45-degree line and the relevant constraint. In Fig. 2, points G,F and

D represent the solutions to the DI, LI and RPC problems respectively. Because segment AB is

always located above segment CB and point D, we conclude that point G will always be located

strictly above points F and D. Thus, the same conclusion can be made for large enough values

of η. In other words, for large enough η, we have both cd1 and cd2 being greater than ci1 and ci2 for

i = l, n. Since each Vi is a weighted average of u(c1) and u(c2), we conclude that Vd is greater than

both Vl and Vn.

From the above, the reason for the dominance of the DI regime is that the relevant constraint

for the DI problem, segment AB, lies above the relevant constraints for the LI and RPC problems,

segments CB and AD respectively. And that fact follows from the inherent advantage of the DI

scheme: the collective amount of premiums collected, i.e. the size of the DI fund, is smaller than

that in the LI scheme and the collective amount of liquidity banks put aside for self-insurance

purposes in the RPC case. Thus, the banking system under the DI regime puts more resources into

the productive technology.

Proposition 6. Suppose
1

1− α
< R ≤ 2. (29)

Then Vd > Vl for small values of α and τ .

23In fact, the assumption τ < 1 is not needed for Vd(η) > Vn(η).
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Proposition 2 established that when the probability of bank runs, α, is low, both Vd and Vl are

greater than Vn. However, it says nothing as to which of the two regimes, the DI or LI, dominates

the other. The comparison is tough due to the fact that Vd = Vl when α = 0. Proposition 6 fills

this gap. The the proof of Proposition 6 inspects the derivatives of Vd(α) and Vl(α) with respect

to α at α = 0. It turns out that when condition (29) holds, we can establish that V ′d(0) > V ′l (0)

when τ = 0. This means that Vd > Vl for small positive values of α. By continuity, the same is

true for small positive values of τ and α.

Thus, for a CRRA utility function, there are two cases when Vd is larger than Vl and Vn:

(i) when both α and τ are small. Indeed, from Proposition 2 it follows that when the probability

of runs α is small, the DI dominates the RPC. And it follows from Proposition 6 that the DI

dominates the LI when the probability of runs α and liquidation cost τ are small.

(ii) when α is small and η is large. Here again, the inequality Vd > Vn follows from Proposition

2. And Proposition 5 implies the inequality Vd > Vl.

4.2 Numerical analysis

Our numerical analysis reveals more than the theoretical results as many of our propositions assume

sufficient, but not ‘necessary and sufficient’, conditions for the results. For example, Vd > Vl can

hold even when condition (29) does not hold. The role of the liquidation cost τ and the probability

of bank runs α as well as their interplay with the remaining parameters can be seen in Fig. 5.

The value of π, the proportion of early consumers, is 0.5 throughout the figure. This is consistent

with other studies that use versions of the Diamond and Dybvig (1983) model. For example, Li

(2017) considers several values of π ranging between 0.2 and 0.85; and Sultanum (2014) uses a

symmetric distribution of values for π centered around 0.5. We consider four possible combinations

of the remaining parameters η and R. We pick two values for the rate of return R, 1.5 and 1.2,

which are the values chosen by Li (2017) and Sultanum (2014) respectively. And we pick two values

for the coefficient of relative risk aversion η: 2.0 and 4.0. Elminejad et al. (2022) analyze 92 studies

and report that common calibration values for η vary between 2.5 and 10 but other values such as

1 and 20 appear often too. Li (2017) uses the values of 3 and 8, and Sultanum (2014) uses 3.

The coefficient of relative risk aversion η equals 2.0 in the left two diagrams and 4.0 in the right

two diagrams. Similarly, the rate of return R equals 1.5 in the top two diagrams and 1.2 in the

bottom two. In each of the four diagrams, each of the three areas represents combinations of α and

τ for which a particular regime dominates the other two. As one can easily see, for small values of

α and τ the DI scheme is the dominant regime. And the RPC dominates when α is large. When

α is relatively small and τ is large, the LI scheme is the dominant regime. An increase in η pushes

up the boundary between the DI and LI dominance areas. This is consistent with Proposition 5,

according to which, when other parameters are fixed, the DI starts dominating the LI as η → ∞.
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Figure 5: CRRA utility function u(c) = c1−η

1−η

(a) π = 0.5, η = 2.0, R = 1.5 (b) π = 0.5, η = 4.0, R = 1.5

(c) π = 0.5, η = 2.0, R = 1.2 (d) π = 0.5, η = 4.0, R = 1.2

Each of the three areas represents dominance of a particular regime. Assumption 2 holds in the area to the left of

the dashed line.
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And finally, the effect of an increase in R is a bit more complex; it pushes the boundary between

the DI and RPC dominance areas to the right; it also pushes the boundary between the DI and LI

dominance areas down.

The dashed line represents all combinations of (α, τ) that satisfy R = (ατ + 1 − α)/(1 − α)

for a given value of R (where R = 1.5 or R = 1.2). Thus, all (α, τ)-combinations to the left of

that line satisfy condition (18), i.e. Assumption 2. For given values of R and τ , the value of α

of the corresponding point on the dashed line is computed as α∗ in eq. (26). Let us consider, for

example, diagram (a) in Fig. 6, where R = 1.5, and pick τ = 0.4. Then the corresponding point

on the dashed line is (0.556, 0.4), where the value α = 0.556 is computed as α∗ in eq. (26). The

corresponding point on the solid line separating the DI and RPC areas is (0.286, 0.4), where the

value α = 0.286 is α̂d in Proposition 2. And as is stated in Proposition 2, indeed α̂d ∈ (0, α∗) since

0 < 0.286 < 0.556. Alternatively, if we pick τ = 0.9, the corresponding point on the dashed line

is (0.357, 0.9); here α∗ = 0.357 is found using eq. (26). The corresponding point on the solid line

separating the LI and RPC areas is (0.323, 0.9), where the value α = 0.323 is α̂l in Proposition 2.

And as is stated in Proposition 2, indeed α̂l ∈ (0, α∗) since 0 < 0.323 < 0.357.

According to FDIC (2024), the proportion of insured deposits fluctuated between 54% and 61%

from 2013 to 2023, with an average of approximately 58.9%.24 If we interpret the parameter π in

our model as the proportion of insured deposits, it is prudent to consider values of π ranging from

0.5 to 0.6 in our analysis. To this end, Fig. 6 presents the results of our numerical exercise using

π = 0.6, which also serves as a robustness check. As evident from the comparison between Figures

5 and 6, the change in results is minimal, suggesting that our findings are robust to variations in

the proportion of insured deposits within this range.

We would like to conclude this section by mentioning values for the probability of runs α and

cost of liquidation τ used in two recent studies. Dávila and Goldstein (2023) use α = 0.025. Granja

et al. (2017) report the average loss incurred by FDIC from selling a failed bank to be 28%, which

can be used as the value of the liquidation cost τ . A quick inspection of Fig. 5 leads us to a

conclusion that the combination (α, τ) = (0.025, 0.28) lies in the DI dominance area in all four

cases. This finding is robust to the choice of the other three parameters, π, η and R.

5 Extensions

We will present two extensions in this sections.

24In response to the global financial crisis of 2007-2009, FDIC implemented the Transaction Account Guarantee
Program. This program was initially in effect from October 2008 to December 2010 and was subsequently extended
through December 2012 by the Dodd-Frank Act. Upon the program’s expiration in January 2013, there was a notable
increase in the proportion of uninsured deposits. (See, e.g., Bao et al. 2015.) This makes 2013 a logical starting
point, as it marks the return to more typical deposit insurance conditions.
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Figure 6: CRRA utility function u(c) = c1−η

1−η

(a) π = 0.6, η = 2.0, R = 1.5 (b) π = 0.6, η = 4.0, R = 1.5

(c) π = 0.6, η = 2.0, R = 1.2 (d) π = 0.6, η = 4.0, R = 1.2

Each of the three areas represents dominance of a particular regime. Assumption 2 holds in the area to the left of

the dashed line.
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5.1 Government intervention

As mentioned in the introduction, most deposit insurance schemes are privately funded and main-

tain an explicit ex-ante fund. Our model assumes that such a fund is sufficient to cover all potential

losses the banking system may incur. However, if an unusually large shock hits the financial sys-

tem, a DI fund may exhaust its resources. For instance, the DI fund balance of the Federal Deposit

Insurance Corporation (FDIC) in the U.S. went negative twice in its history: during the savings

and loan crisis of the late 1980s and early 1990s, and amid the global financial crisis of 2007-2009

(see, e.g., Chart 2 in Ellis 2013 and Fig. 5.1 in FDIC 2017). It appears that the most catastrophic

risks in the financial industry are ultimately covered by the government. For example, the total

cost of the savings and loan crisis to taxpayers amounted to $132 billion (see Table 3 in GAO 1996).

In this section, we explore the possibility of government intervention when the insurance fund is

depleted.

We consider a scenario where the fraction of banks experiencing a run unexpectedly exceeds α,

the level the DI authority is prepared to cover. In such a case, government intervention becomes

necessary, and we assume that taxation is employed to ensure every depositor withdrawing at t = 1

receives cd1 before tax.25 We will also examine government intervention in the case of liquidity

insurance (LI). Notably, no intervention is required in the run-proof contract (RPC) regime, as its

arrangement does not depend on α. We will then compare the performance of these three regimes.

Consider a zero-probability event (from the ex-anter perspective) in which the actual fraction

of troubled banks is α̃ = κα whith κ > 1; if κα > 1, then we set α̃ = 1. 26 In this scenario, the

DI authority will be unable to fulfill its obligations and fall short of providing every depositor of

every troubled bank the promised amount cd1. The LI authority in the case of liquidity insurance

will face a similar challenge.

The DI case

Let us examine the events in detail to understand the consumption profile of agents. At time t = 1,

troubled banks pay out cd1 to depositors until exhausting their resources. Subsequently, the DI

authority services them sequentially: their depositors will get cd1 from the DI fund. And when the

DI fund is exhausted, the realization of α̃ is revealed and the government intervenes. It applies a

proportional tax on depositors who receive a positive amount from their bank. The tax collection

should be just sufficient to pay the amount c̃1
d, which is the after-tax consumption of those who

collected cd1 from their bank, to those who received nothing.

25Reminder: (cd1, c
d
2) and (cl1, c

l
2) denote the solutions to the DI and LI problems in the main case, i.e. the problems

(15)-(17) and (21)-(22) respectively.
26The assumption that the ex-ante probability of such an event is zero implies that this event is unexpected.

Therefore, the behavior of agents in this economy up to this zero-probability event will be according to our previous
analysis above. Another way to think about a zero-probability event is to imagine a small-probability event, and
then let that probability go to zero. For game-theoretic considerations of zero-probability events see, e.g., Myerson
(1986) and citations therein.
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To determine the tax rate and after-tax consumption levels, we need to find the pre-tax con-

sumption profile of depositors. Before the government taxation, there will be three groups of

depositors with different amounts received from banks: (i) zero; (ii) cd1; and (iii) cd2 ( promised

to be paid at t = 2). Let us calculate the number of depositors in each of these three groups by

examining three categories of banks:

(a) Healthy banks, numbering 1− α̃. Their depositors consist of

• (1− α̃)π customers (early type) who receive cd1;

• (1− α̃)(1− π) customers (late type) who receive cd2.

(b) “Lucky” troubled banks whose customers are serviced by the DI authority; there are α of

them. All their customers receive cd1.

(c) “Unlucky” troubled banks whose customers are not serviced by the DI authority; their number

is α̃−α. Each such bank services xd1 < 1 customers before running out of resources (xd1 to be

determined below). Their depositors consist of

• xd1 · (α̃− α) customers who receive cd1;

• (1− xd1) · (α̃− α) customers who receive nothing.

Thus, we have the following numbers for the three groups of depositors:

(i) Nd
1 = (1− xd1) · (α̃− α) depositors receive nothing;

(ii) Nd
2 = [(1− α̃)π + α+ xd1 · (α̃− α)] depositors receive cd1;

(iii) Nd
3 = [(1− α̃)(1− π)] depositors receive cd2.

To determine the proportional tax rate, µd, we have two equations:

c̃1
d = (1− µd) · cd1 , (30)

Nd
1 · c̃1d = Nd

2 · µd · cd1 +Nd
3 · µd · cd2 · (1− τ) . (31)

Eq. (30) shows the after-tax consumption for those who received cd1. Eq. (31) states that the

aggregate after-tax payment to those who received zero should equal the tax collections from

groups (ii) and (iii) of depositors who received the before-tax amounts of cd1 and cd2 respectively.

The tax payment of the late type at healthy banks is implemented through liquidation of assets by

their banks as taxes are collected at t = 1 and the late types receive their payments from banks at

t = 2. The multiplier (1− τ) in (31) reflects this fact.

From these two equations we can derive the tax rate µd and after-tax consumptions:

µd =
Nd

1 c
d
1

Nd
1 c
d
1 +Nd

2 c
d
1 +Nd

3 c
d
2(1− τ)

, (32)

c̃1
d = (1− µd) · cd1 , c̃2

d = (1− µd) · cd2 . (33)
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Finally, let us determine xd1, the number of depositors at unlucky banks who receive cd1. Each

unlucky bank has the following resources to pay out before failure: 1− id1 − id2 of liquid assets and

id1(1 − τ) received after liquidating its long-term assets (see eqs. (4)-(6)). Together, this amounts

to 1− τid1 − id2. Since each of the first xd1 depositors at such banks receives cd1, we have

xd1 =
1− τid1 − id2

cd1
. (34)

Let us show that both id1 and id2 are functions of (cd1, c
d
2). From the proof of Proposition 1 in

Appendix A.1 we know that both (4) and (5) bind. Solving for i1 and i2 yields

id1 =
(1− π)cd2

R
, id2 = 1− (1− π)cd2

R
− πcd1 . (35)

From eqs. (34) and (35) we conclude that xd1 is a function of cd1 and cd2: xd1 = xd1(cd1, c
d
2). Therefore,

the tax rate µd and after-tax consumptions c̃1
d and c̃2

d as well asNd
1 , N

d
2 , N

d
3 are functions of (cd1, c

d
2).

This allows us to compute the welfare level Ṽd associated with this case, i.e. when DI is combined

with government backstop in the form of taxation:

Ṽd(c
d
1, c

d
2) = (Nd

1 +Nd
2 ) · u(c̃1

d) +N3 · u(c̃2
d) . (36)

The LI case

At time t = 1, troubled banks pay out cl1 to depositors the amount until exhausting their resources.

They are then serviced by the LI authority sequentially: each troubled bank receives the promised

amount from the LI fund until the fund is exhausted. The troubled banks that received resources

from the LI authority will pay their depositors the promised amounts. Once the LI fund runs out of

resources, the realization of α̃ is revealed, and the government intervenes. It applies a proportional

tax on depositors who receive a positive amount from their bank. The tax collection should be just

sufficient to pay the amount c̃1
l, which is the after-tax consumption of those who collected cl1 from

their bank, to those who received nothing.

Although the computation of the tax rate and consumption levels in this case is similar to the

DI regime, a small difference leads to somewhat different calculations. First, let us note that the

depositors of “lucky” troubled banks will receive the same amounts as those at healthy banks. Each

lucky bank receives the promised amount from the LI fund and thus does not have to liquidate

long-term assets. This allows the bank to pay the early types the amount cl1 at t = 1 and the late

types the amount cl2 at t = 2. The outcomes at the unlucky troubled and healthy banks are similar

to those in the DI case.

The formulae for the numbers of depositors in the three groups (those receiving before tax the

amounts of zero, cl1 and cl2) are as follows:

(i) N l
1 = (1− xl1) · (α̃− α) depositors receive nothing;

(ii) N l
2 = [(1− α̃)π + απ + xd1 · (α̃− α)] depositors receive cl1;

(iii) N l
3 = [α(1− π) + (1− α̃)(1− π)] depositors receive cl2.
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The remaining expressions for µl, c̃1
l, c̃2

l, xl1, i
l
1, i

l
2 are identical to those in the DI case, except

for the superscripts. In particular, we have the following formulae for µl, the proportional tax rate,

and xl1, the number of depositors at unlucky banks who receive cl1:

µl =
N l

1c
l
1

N l
1c
l
1 +N l

2c
l
1 +N l

3c
l
2(1− τ)

, (37)

xl1 =
1− τil1 − il2

cl1
. (38)

Eqs. (37) and (38) reveal a crucial distinction between the LI case under the main scenario

(where the proportion of troubled banks is α, as expected) and the case when that proportion

is unexpectedly large (α̃). In the former, banks do not liquidate assets, whereas in the latter,

the unlucky troubled banks do liquidate all of their long-term assets to pay cl1 to their depositors

(as reflected in (38)). Moreover, all other banks liquidate part of their long-term assets due to

government taxation of their late-type depositors (as shown in (37)). These liquidations result in

a welfare loss that was not present in the LI case in the main scenario.

This analysis leads us to the following expression for the welfare level Ṽl associated with the

case when LI is combined with a government backstop in the form of taxation:

Ṽl(c
l
1, c

l
2) = (N l

1 +N l
2) · u(c̃1

l) +N3 · u(c̃2
l) . (39)

The RPC case

The arrangements under the RPC regime do not depend on the probability of runs α. Therefore,

there will be no changes in computing Vn.

Comparison

Similar to the main case in subsection 4.2, we assume the CRRA utility function c1−η/(1−η), η > 1.

The choice of κ is related to the issue of how large an unexpected shock to the DI fund may be.

In 1989, the U.S. Congress instituted a target size for the DI fund: the ratio of the fund size to

estimated insured deposits, called the Designated Reserve Ratio (DRR), had to be at least 1.25%.

The Dodd-Frank Act increased that minimum ratio to 1.35%. Since 2011, FDIC has set a long-term

goal for DRR to be 2%. An FDIC study revealed that if FDIC had followed the 2% target for DI

fund, its balance would have not turned negative during the two episodes in the late 1980s-early

1990s and during the global financial crisis of 2007-2009. Since the pre-crisis ratio in both episodes

was around 1.25%, we choose κ = 2%/1.25% = 1.6. We then compare the three regimes using the

same parameter values as in Fig. 5. The results are presented in Fig. 7.

Two key differences are evident when comparing Fig. 5 and Fig. 7. First, we no longer observe

the dominance of the LI regime for very high liquidation costs (τ) when the probability of bank runs

(α) is relatively low. Instead, the LI regime shares this advantage with the DI regime. This can be

attributed to the fact that when the LI fund is sufficient to cover all instances of bank troubles (as
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Figure 7: CRRA utility function u(c) = c1−η

1−η ; α̃ = κα = 1.6α

(a) π = 0.5, η = 2.0, R = 1.5 (b) π = 0.5, η = 4.0, R = 1.5

(c) π = 0.5, η = 2.0, R = 1.2 (d) π = 0.5, η = 4.0, R = 1.2

Each of the three areas represents dominance of a particular regime.
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shown in Fig. 5), banks avoid liquidation costs, which are invariably present under the DI regime.

However, when an unexpectedly large proportion of banks face difficulties, the LI fund becomes

depleted, forcing unlucky troubled banks to liquidate all of their assets. Moreover, the remaining

banks must liquidate a portion of their assets to pay taxes on behalf of their late depositors. For

high liquidation costs (τ) and moderate probabilities of bank runs (α), these liquidation-associated

costs appear excessive, resulting in the dominance of DI over LI. Second, Fig. 7 demonstrates that

the insurance regimes (DI or LI) dominate the RPC regime over a narrower range of α compared

to Fig. 5. This can be attributed to welfare losses caused by the unexpectedly large proportion of

troubled banks (60% larger in Fig. 7). Nevertheless, both figures consistently show the dominance

of the DI regime in the lower left corner and the LI regime in the upper left corner. It’s worth

noting that, as in Fig. 5, the combination (α, τ) = (0.025, 0.28) falls within the DI dominance area

in all four cases depicted in Fig. 7. These values of α = 0.025 and τ = 0.28 are consistent with the

findings of Dávila and Goldstein (2023) and Granja et al. (2017), respectively.

5.2 On moral hazard

TBA

6 Conclusion

We have explicitly modeled ex-ante privately funded deposit insurance in a simple extension of the

classic model in Diamond and Dybvig (1983). Two related private solutions to liquidity problem

during a bank run are studied, liquidity insurance and runs preventing contracts. We find that

when the probability of bank runs and liquidation costs are low, the DI scheme welfare dominates

the other two regimes. In the case of CRRA utility function, we have shown that for realistic values

of parameter values the DI regime is socially preferable among the three arrangements. We also

find circumstances under which the other two regimes are dominant. There are several avenues

along which this model can be extended further. We do not study moral hazard in this paper and

intend to incorporate it in the future. It might also be of interest to explore other, more general

incomplete privately funded deposit insurance schemes. In addition, one can study privately funded

deposit insurance in a richer environment where banks fail for reasons other than bank runs.

Our study was, in part, motivated by the reluctance of the government to use taxpayers’ money

to rescue banks in March-April 2023, which, in turn, is driven by a significant public outcry against

the bank bailout of 2008. There is no lack of private-market initiatives to tackle the vulnerability

of the financial sector. The bank runs of 2023 in the U.S. indicate that the portions of deposits that

were not insured are what led to the departure of funds from banks (i.e., those beyond the threshold

of $250,000 cap). However, the private sector has devised a workaround to address this issue. Close

to 3,000 regional banks participate in a network of “reciprocal deposit” swaps operated by IntraFi,
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which allows a bank to divide a large deposit into smaller pieces, under $250,000 each, and deposit

them into other participating banks (The Economist, April 15, 2023). If all large depositors used

this service, the recent bank turmoil may have been avoided. Another example is the injection

of $30 billion into First Republic Bank by 11 largest U.S. financial institutions in March 2023 27

(New York Times, March 16, 2023). However, a key difference between these examples and the two

insurance schemes in this paper is that our deposit insurance and liquidity insurance programs are

mandatory for banks. Our hope is that this study will contribute to the exploration of privately

funded solutions to address the issue of financial fragility and provide a better understanding of

their limitations.

Appendix

A.1 Proof of Proposition 1

Proof. Let us show that the area under the broken line CAB in Fig. 1 is the feasible set for the

social planner’s problem (3)–(6). It is sufficient to characterize the frontier of this set only. At the

frontier, (5) always binds. And at least one of the two remaining constraints, (4) or (6) should

bind. Consider these three cases.

• If we assume that all three constraints bind, then elimination of i1 and i2 leads to (16), which

is line AB.

• Suppose (4) does not bind and (6) does. Then we can slightly increase i2 so that (4) still does

not bind but (6) becomes an inequality with the right-hand side being larger. Then we could

increase c1 without violating either inequality. But this violates our assumption that we are

at the frontier of the feasible set.

• Suppose (6) does not bind and (4) does. Then it must be the case that i2 = 0; otherwise

we could could slightly decrease i2 so that (4) becomes an inequality and (6) is still an

inequality, in which case we could slightly increase c1 without violating either constraint,

which is impossible at the frontier. Then, if we impose i2 = 0 and eliminate i1 by using two

binding constraints (4) and (5), we obtain (17), which is line CA.

Let us now prove (20). Recall the definition of δ in (19): δ = R(1 − α)/(ατ + 1 − α). By

Assumption 2, δ > 1. Note that for a point (c1, c2) on line (16), if c1 = 1 then c2 = δ. Thus, the

bundle (1, δ) lies on segment AB in Fig. 1 since 1 > (1− τ)/(1− πτ).

27Although this effort was, in part, coordinated by the Treasury Secretary Janet Yellen.
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We will argue that the optimal point lies to the right of point (1, δ) on AB. Indeed,28

δ · u′(δ) = 1 · u′(1) +

∫ δ

1

∂

∂c

[
c · u′(c)

]
dc

= u′(1) +

∫ δ

1

[
u′(c) + c · u′′(c)

]
dc < u′(1).

The last inequality follows from [u′(c) + c · u′′(c)] < 0, which is a consequence of Assumption 1 and

u′(c) > 0. We conclude that

δ · u′(δ) < u′(1). (A.1)

If expected utility (3) is indeed maximized on segment AB, i.e. the indifference curve is tangent

to line (16), then the usual optimality condition yields

u′(c1) =
R(1− α)

ατ + 1− α
u′(c2) = δ · u′(c2) . (A.2)

Note that the bundle (1, δ) does not satisfy (A.2) due to (A.1). Since u′(c) is a decreasing function,

and constraint trades off c1 and c2, the solution to the optimality condition (A.2) is when c1 > 1

(and necessarily c2 < δ). Finally, c1 < c2 because δ > 1. Thus, 1 < c1 < c2 < δ.

A.2 Derivation of constraint (22)

It is sufficient to characterize the frontier of the feasible set. There are two possibilities below.

(a) If all constraints (8)–(10) bind, then by eliminating i1 and i2 we obtain (22).

(b) Suppose at least one of the constraints (8)–(10) does not bind. Constraint (9) must bind:

otherwise, since c2 enters only this constraint among the three constraints, we could always

increase c2 without violating the other two, and this would increase utility level. Given that

(9) binds, it is impossible for both (8) and (10) not to bind: we could then slightly increase

c1. Thus, there are only two possibilities: either (i) only (8) does not bind, or (ii) only (10)

does not bind. We consider these possibilities separately.

(i) Suppose only (8) does not bind. Then we can slightly increase i2 so that (8) still does

not bind; then (10) becomes a strict inequality. We then can slightly increase c1, which

contradicts the assumption that we are at the frontier of the feasible set.

(ii) Suppose only (10) does not bind. Then we can slightly decrease i2 so that (10) still does

not bind; then (8) becomes a strict inequality. Since we then could slightly increase c1,

which would contradict the assumption of being at the frontier of the feasible set, we

conclude that it must be the case that i2 cannot be decreased, i.e. i2 = 0. In such a

case, (8) and (10) become

πc1 = 1− i1 ,

c1 < 1− i1 ,
28The argument below to prove (A.1) borrows from Diamond and Dybvig (1983).
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which is a contradiction since πc1 ≤ π.

A.3 Derivation of constraints (24) and (25)

Constraint (24) is obtained (as equality) when all three constraints (12)–(14) bind; the first con-

straint in (25) is obtained (as equality) when only (12) and (13) bind and i2 = 0; the second

constraint in (25) is obtained (as equality) when only (14) binds and i1 = 0. It can be shown that

these cases exhaust all possibilities at the frontier of the feasible set described by (12)-(14).

A.4 Proof of Proposition 2

Proof. Recall that we use Vd, Vl and Vn to denote the optimal values of expected utility in the DI,

LI, and RPC problems respectively. Let Vd(α) and Vl(α) denote values of Vd and Vl associated with

α; and note that Vn does not depend on α.

Step 1. Let us show that both Vd(α) and Vl(α) decrease in α. We will use the Envelope Theorem.

Consider the DI problem (15)–(17). According to Proposition 1, only constraint (16) binds. Then

the Lagrangian associated with this problem is

Ld =
[
α+ (1− α)π

]
· u(c1) + (1− α)(1− π) · u(c2)

+λ

{[
α+ (1− α)π

]
c1 +

1− π
R

[
ατ + 1− α

]
c2

}
. (A.3)

Let xd = (cd1, c
d
2, λ

d) be the critical point of Ld and (cd1, c
d
2) solves problem (15)–(17). According to

the Envelope Theorem,
∂Vd
∂α

=
∂Ld
∂α

∣∣∣
x=xd

. (A.4)

Then
∂Vd
∂α

=
∂Ld
∂α

∣∣∣
x=xd

= (1− π) · u(cd1)− (1− π) · u(cd2)

+λd
{
−(1− π) · cd1 −

1− π
R

(τ − 1) · cd2
}

= (1− π)

{[
u(cd1)− u(cd2)

]
+ λd

[
−cd1 +

1− τ
R

cd2

]}
. (A.5)

We want to demonstrate that the expression in (A.5) is negative. Since 1 − π > 0, λd > 0 and

[u(cd1) − u(cd2)] < 0 (because cd1 < cd2), it suffices to show that [−cd1 + ((1 − τ)/R) cd2 < 0, which is

equivalent to demonstrating
cd2
cd1
<

R

1− τ
. (A.6)

Proposition 1 implies that
cd2
cd1
<

R(1− α)

ατ + 1− α
. (A.7)

Since the right-hand side of (A.7) is smaller than that of (A.6), we have proven (A.6) and thus

shown that ∂Vd/∂α < 0.
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Similarly, the Lagrangian for the LI problem (21)–(22) is

Ll = π · u(c1) + (1− π) · u(c2) + λl
{

1−
[
α+ (1− α)π

]
c1 −

1− π
R

c2

}
, (A.8)

and
∂Vl
∂α

=
∂Ll
∂α

∣∣∣
x=xl

= −λl(1− π) · cl1 < 0 .

Thus, indeed both Vd(α) and Vl(α) are decreasing in α.

Step 2. Let us show that Vd(0) > Vn and Vl(0) > Vn. When α = 0, both the DI problem and the

LI problem become problem (1)–(2), the solution for which, as Diamond and Dybvig (1983) have

shown, satisfies 1 < c1 < c2 < R. In terms of Fig. 1, it means that the solution lies on segment

AK and strictly to the right from point (1, R). Since this is strictly outside of the feasible set

for the RPC problem (which is the area below the CADE broken line), we have Vd(0) > Vn and

Vl(0) > Vn.

Step 3. Let us show that Vn > Vd(α
∗). We will do it in two stages.

(i) Let us show that Vd(α
∗) = u(1). Proposition 1 states that 1 < c1 < c2 < δ, where δ as in

(19). As α → α∗ from below, point (1, δ) in Fig. 1 approaches point D = (1, 1), i.e. δ → 1.

Thus, at α = α∗ we have c1 = c2 = 1. Then indeed Vd(α
∗) = u(1).

(ii) We know from Cooper and Ross (1998) that the solution to the RPC problem lies within

AD. Let us show that point D = (1, 1) is not optimal for the RPC problem. The marginal

rate of substitution (MRS) is

MRS(c1, c2) =
π u′(c1)

(1− π)u′(c2)
,

and MRS(1, 1) = π/(1− π). However, the slope of AD, as seen from eq. (24), is (πτ +R −
1)/[τ(1−π)], which is greater than π/(1−π).29 Thus, the indifference curve at (1, 1) is flatter

than the constraint, and thus the optimal point is to the left from (1, 1).

Since the value of Vn would be u(1) if the optimal point were (1, 1), we conclude that Vn > u(1) =

Vd(α
∗).

The proof for Vn > Vl(α
∗) is simpler. When α = α∗ and lines AB and AD coinside, segment

CB, which is the constraint line for the LI problem, lies strictly below both segment AD and its

continuation to the right. Since the solution to the RPC problem always lies either within segment

AD or at point A, the utility level for the solution to the RPC problem must be higher than that

for the LI problem; thus, Vn > Vl(α
∗).

Step 4. Since Vd(0) > Vn, Vd(α
∗) < Vn, and V (α) is continuous and decreasing in α, there must

exist α̂d ∈ (0, α∗) such that Vd(α) > Vn for α < α̂d and Vd(α) < Vn for α > α̂d. We can use the

same argument for existence of α̂l ∈ (0, α∗) in the case of Vl.

29We ignore the signs of all slopes throughout the paper, i.e. we deal with their absolute values.
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A.5 Proof of Proposition 3

The following argument is used in both this proof and the proof of Proposition 4 below. For

notational simplicity, let F d denote the feasible set for the DI problem described by constraints

(16)–(17). Consider these two utility functions:

Ud(c1, c2) =
[
α+ (1− α)π

]
u(c1) + (1− π)(1− α)u(c2) ,

U(c1, c2) = π u(c1) + (1− π)u(c2) .

The first one, Ud, is of course, the expected utility function in the DI problem (15)–(17). And the

second, U , is the social welfare function that appears in both the LI problem (21)–(22) and the

RPC problem (23)–(25). Consider the following two problems:

maxUd s.t. (c1, c2) ∈ F d , (A.9)

maxU s.t. (c1, c2) ∈ F d . (A.10)

Let the optimal values of these utility functions in the two problems above be denoted by U∗d and

U∗ respectively. Then we claim that for α > 0,

U∗ > U∗d . (A.11)

To prove it, let (cd1, c
d
2) denote the solution to problem (A.9). From Proposition 1 we know that

cd1 < cd2, and thus u(cd1) < u(cd2). Then we have

U∗ ≥ U(cd1, c
d
2) > Ud(c

d
1, c

d
2) = U∗d ,

where the second inequality follows from the fact that U puts a greater weight on u(c2) than Ud

does.

Now we turn to the proof of Proposition 3.

Proof. Refer to Fig. 2. As τ → 1, point A approaches point C. At τ = 1, segment CA collapses to

point C. Segment CB, which is segment AB at τ = 1, goes above (1, 1) since δ = [R(1−α)/(ατ +

1 − α)] > 1 by Assumption 2. Thus, segment AB=CB lies above AD = CD (see Fig. 3). Now

we consider two separate comparisons.

(i) Since in the RPC problem and LI problem we maximize the same expected utility πu(c1) +

(1− π)u(c2), but the constraint for the LI problem (segment CB) lies strictly above that for

the RPC problem (segment CD), we have Vl > Vn.

(ii) Note that the relevant constraints for the LI problem and DI problem coincide (segment AB).

Then, we are dealing with the two problems above, (A.9) and (A.10). Using eq. (A.11), we

conclude that Vl > Vd.

By continuity, both inequalities hold for τ that are near 1.
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A.6 Proof of Proposition 4

Proof. Consider the RPC problem (23)–(24). We know that when τ = 0, (cn1 , c
n
2 ) = (1, R) (see

Cooper and Ross 1998). It is based on the fact that under Assumption 1, the first-best allocation

is such that 1 < c1 < c2 < R. Then using the curvature of indifference curves one can quickly

conclude that the solution to the RPC problem when τ = 0 is the corner solution (1, R).

We now compare the slope S of the relevant constraint in the DI problem, segment AB in Fig.

1 described by eq. (16), with the marginal rate of substitution (or MRS) at point (1, R) of the

expected utility U = π u(c1) + (1 − π)u(c2) that is maximized in the RPC problem. It is easy to

see that

MRS(1, R) =
πu′(1)

(1− π)u′(R)
, (A.12)

S =
[α+ (1− α)π]R

(1− π)[ατ + 1− α]
. (A.13)

As α increases from 0 to α∗ from (26), the slope S of segment AB increase from the slope of line

CA to the slope of segment AD. The reason why (1, R) is the solution to the RPC problem (in

fact, it is a corner solution) is that MRS(1, R) is between these two extreme slope values. Thus

there must exists α ∈ (0, α∗) such that MRS(1, R) = S. (This situation is depicted in Fig. 4.) Let

us denote such value of α by ᾱ (to be found below).

For notational simplicity, let F d denote the feasible set for the DI problem described by con-

straints (16)–(17) and represented by the area under the broken line CAB in Fig. 1.

For values of α > ᾱ, maximization of the expected utility U = π u(c1) + (1 − π)u(c2) subject

to F d yields point (1, R) as a solution because the indifference curve of U going through (1, R)

will always be above segment AB except point A. Now we refer to problems (A.9) and (A.10) and

inequality (A.11). It is clear that

U∗ = U(1, R) > U∗d = Vd .

Since we established at the beginning that (cn1 , c
n
2 ) = (1, R), we have Vn = U∗ > Vd. Thus, Vn > Vd

for α > ᾱ.

Now note that when α > ᾱ, segment CB, which is strictly below segment AB, will always

be below the indifference curve of U that goes through point (1, R) because segment AB is below

that indifference curve. Since both the RPC problem and LI problem maximize the same expected

utility, we conclude that Vn > Vl for α > ᾱ.

Let us now find ᾱ. It can be done by equating MRS(1, R) and S from eq. (A.12) and (A.13)

respectively and solving for α. This yields

ᾱ =
π[u′(1)−Ru′(R)]

(1− π)Ru′(R) + πu′(1)
,

which is eq. (27).
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A.7 CRRA: Solving the three social planner’s problems

We provide here solutions to the following three social planner’s problems introduced in Section 2:

the DI problem (15)–(16), the LI problem (21)–(22), and RPC problem (23)–(24). Note that the

general problem below,

max
c1,c2

[
a · c

1−η
1

1− η
+ b · c

1−η
2

1− η

]
(A.14)

s.t. m · c1 + n · c2 = d (A.15)

has this solution:

c1 =
d · θ

m · θ + n
, c2 =

d

m · θ + n
, where θ =

( n · a
m · b

)1/η
. (A.16)

Using this notation, the solutions to problems (15)–(16), (21)–(22), and (23)–(24), denoted by

(cd1, c
d
2), (cl1, c

l
2), and (cn1 , c

n
2 ) respectively, can be expressed as

ci1 =
θi

miθi + ni
, ci2 =

1

miθi + ni
, i = d, l, n , (A.17)

where

md = ml = α+ (1− α)π , mn =
πτ +R− 1

τ +R− 1
, (A.18)

nd =
1− π
R

(ατ + 1− α) , nl =
1− π
R

, nn =
τ(1− π)

τ +R− 1
, (A.19)

θd =

[
ατ + 1− α
(1− α)R

]1/η
, θl =

[
π

[α+ (1− α)π]R

]1/η
, θn =

[
τπ

τπ +R− 1

]1/η
. (A.20)

A.8 Proof of Proposition 5

Proof. Refer to the solutions to the three social planner’s problems obtained in Appendix A.7. Note

that θd < 1 by Assumption 2, and clearly, θl < 1 , θn < 1. Therefore, in all three cases i = d, l, n,

we have (i) ci1 < ci2 since ci1 = θi · ci2 , ; (ii) ci1, c
i
2 → 1/(mi + ni) as η →∞ since θi → 1.

• Case Vd vs. Vl. Since md = ml, and nd < nl (recall that τ < 1), we have cl1 < cl2 < cd1 < cd2 for

large η. Since each Vi is a weighted average of u(ci1) and u(ci2), we can conclude that Vl < Vd.

• Case Vd vs. Vn. We have

mn + nn =
πτ +R− 1

τ +R− 1
+

τ(1− π)

τ +R− 1
= 1,

and thus cn1 , c
n
2 → 1/(mn + nn) = 1. Next,

md + nd = (1− α)π + α+
1− π
R

(ατ + 1− α) < (1− α)π + α+ (1− π)(1− α) = 1,

where the inequality follows from Assumption 2. Therefore, as η → ∞, the consumption

levels cd1, c
d
2 converge to 1/(md + nd), a number larger than 1. Thus, cn1 < cn2 < cd1 < cd2 for

large η. Since each Vi is a weighted average of u(ci1) and u(ci2), we can conclude that Vn < Vd.
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A.9 Proof of Proposition 6

Proof. We will examine the behavior of the utility difference ∆V = Vd−Vl. Treating Vi as functions

of α, we want to establish ∆V (α) > 0 for small α > 0. We know that Vd = Vl when α = 0 because,

in this case, both problems maximize the same utility function subject to the same constraint. We

first set τ = 0. Let us show that

V ′d(0) > V ′l (0). (A.21)

This will ascertain that Vd(α) > Vl(α) for small α > 0. By continuity, the same will hold for small

τ > 0.

Let us find V ′i (α). Using the framework of (A.14)–(A.15),

Vi(α) = ai
(ci1)

1−η

1− η
+ bi

(ci2)
1−η

1− η
, (A.22)

where ad = (1− α)π + α, bd = (1− α)(1− π), al = π, bl = 1− π and cij are as in (A.17)–(A.20).

Then differentiating Vi(α) and evaluating them at α = 0 yields this:

V ′d(0) = −(1− π) Ωη−1
[

Φ− 1

η − 1
−− 1

ηΩ2R
Q

]
, (A.23)

V ′l (0) = −(1− π) Ωη−1Φ , (A.24)

Q = −πΦR−1/η (Φ η + η τ − η − τ) + Φ (η π − τ π − η) + η (1− π) (1− τ) , (A.25)

Ω =
πR(η−1)/η + 1− π

R
, (A.26)

Φ = R(η−1)/η. (A.27)

Therefore the derivative of the utility difference at α = 0 is

∆V ′ ≡ V ′d(0)− V ′l (0) = (1− π)Ωη−1
[
−Φ− 1

η − 1
+

1

ηΩ2R
Q+ Φ

]
.

We need to prove ∆V ′ > 0, which, from the equation above, is equivalent to
(η − 2)Φ + 1

η − 1
> − Q

ηΩ2R
.

We first explore the case τ = 0. Evaluating Q at τ = 0 and using it in the inequality above and

rearranging terms yields

R
(η − 2)Φ + 1

(η − 1)(Φ− 1)
>
πΦR−1/η + 1− π

Ω2
. (A.28)

The right-hand side of (A.28) depends on π whereas the left does not. We want to find the maximum

value of the right-hand side when π varies inside [0, 1] and make sure (A.28) holds with that value.

Therefore we introduce function

f(π) =
πΦR−1/η + 1− π

Ω2
.

It can be shown that f ′(π) = A/Ω3 where

A = −(ΦR−1/η − 1)
Φ− 1

R
· π +

1

R
(ΦR−1/η − 2Φ + 1).

Since ΦR−1/η − 2Φ + 1 < Φ− 2Φ + 1 = −Φ + 1 < 0, we conclude that f ′(0) < 0. Since A is linear

in π, it can change sign at most once. Thus, maxπ∈[0,1] f(π) is attained at π = 0 or π = 1. Since
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f(0) = R2 > R = f(1), we conclude that the maximum value of the right-hand side of (A.28) as a

function of π is R2. Inserting this value into (A.28) yields
(η − 2)Φ + 1

(η − 1)(Φ− 1)
> R,

which becomes

(η − 1)[Φ− (Φ− 1)R]− (Φ− 1) > 0. (A.29)

Since this should hold for any η > 1, we need to show that the function F (η) = (η − 1)[Φ − (Φ −
1)R]− (Φ− 1) > 0 for η > 1. Note that F (1) = 0, and thus it suffices to show that F ′(η) > 0 for

η > 1, i.e.

F ′(η) = R

{
R−1/η

[
1−R− lnR · (η − 1)(R− 1) + 1

η2

]
+ 1

}
> 0.

This is equivalent to showing that the function

G(η) = −R1/η +R− 1 + lnR · (η − 1)(R− 1) + 1

η2
< 0, η > 1. (A.30)

Let us find its derivative:

G′(η) =
lnR

η3

[
η (R1/η −R+ 1) + 2R− 4

]
.

It will be useful to introduce another function, H(η), as follows:

H(η) = η (R1/η −R+ 1) + 2R− 4. (A.31)

It is clear that G′(η) > 0 iff H(η) > 0. Let us demonstrate the following properties of function

G.

1. G(1) < 0. [Indeed, G(1) = −1 + lnR < 0 since R ≤ 2.]

2. limη→∞G(η) = R− 2 ≤ 0. [It is easy to establish.]

3. For large values of η, G(η) is an increasing function.

[Let us show it by arguing that H(η) > 0 for large η. Suppose first that R < 2.

Denote ρ = limη→∞(R1/η−R+1) = 2−R > 0. Then the term η(R1/η−R+1) > ρη

grows at least linearly with respect to η and clearly H(η) > 0 for η > (4− 2R)/ρ.

Now suppose R = 2. Then

lim
η→∞

H(η) = lim
η→∞

21/η − 1

1/η
= lim

x→0

2x − 1

x
= lim

x→0

eln 2·x − 1

x
= ln 2 > 0.

Therefore, H(η) > 0 for large values of η.]

4. As η →∞, function G(η) approaches its asymptotic value, which is nonpositive, from below,

i.e. staying negative. [This follows from properties 2 and 3 above.]

The rest of the proof is by contradiction. Suppose that G(η) > 0 for some η > 1. This together

with property 4 leads us to a conclusion that there are two values η1 and η2 with 1 < η1 < η2 such

that
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(a) η1 is a local maximum of G with G(η1) > 0 and G′(η1) = 0;

(b) η2 is a local minimum of G with G(η2) < 0 and G′(η2) = 0.

Consider first η1. From G′(η1) = 0 it follows that H(η1) = 0 and thus R1/η1 −R+ 1 = (4− 2R)/η1.

Plug this into the expression for G(η) in (A.30):

G(η1) = −R1/η1 +R− 1 + lnR · (η1 − 1)(R− 1) + 1

η21

=
2R− 4

η1
+ lnR · (η1 − 1)(R− 1) + 1

η21
=

1

η1

(
2R− 4 + lnR · (η1 − 1)(R− 1) + 1

η1

)
> 0.

Thus,

2R− 4 + lnR · (η1 − 1)(R− 1) + 1

η1
> 0. (A.32)

The function g(η) = (η−1)(R−1)+1
η , η ≥ 1, is decreasing for R < 2; and g(1) = 1.

Thus (η1−1)(R−1)+1
η1

< 1. Plugging this into (A.32) yields

2R− 4 + lnR > 0. (A.33)

Now consider η2. Since G′(η2) = 0, we have H(η2) = 0. Because η2 is a local minimum, G′

changes its sign from negative to positive; so does H. Therefore, H is increasing at η = η2 and

thus H ′(η2) > 0. Using (A.31), we find

H ′(η) = R1/η −R+ 1−R1/η · lnR

η
. (A.34)

From H(η2) = 0 and (A.31) we have R1/η −R+ 1 = (4− 2R)/η. Plug this into (A.34) and use

H ′(η2) > 0 to obtain (4− 2R)/η −R1/η lnR/η > 0, which implies

4− 2R−R1/η lnR > 0. (A.35)

Note that function h(η) = R1/η lnR is decreasing, and by taking the limit η →∞ we conclude that

R1/η lnR > lnR. Combining this with (A.35) we obtain

4− 2R− lnR > 0, (A.36)

which contradicts (A.33). Thus, our assumption that G(η) > 0 for some η > 1 is incorrect;

therefore G(η) < 0 for all η > 1. This means that F ′(η) > 0 and F (η) > 0, which finally leads to

∆V ′(η) > 0, η > 1. This is a result for α = 0. By continuity, it also holds for small positive values

of α as well. Since this conclusion is true for τ = 0, by continuity it is correct for small positive

values of τ too.
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