

festival of teaching and learning

Hackathons to support teamwork and project-based learning in a capstone software-engineering course

Eleni Stroulia¹, Gokce Akcayir², Carrie Demmans Epp²

¹Dept. of Computing Science, University of Alberta, ² EdTeKLA Research Group, Dept. of Computing Science, University of Alberta

What is a hackathon?

A common extracurricular activity where people can learn about software development by challenging themselves to complete a project in a short period of time.

The Course

CMPUT 401 - Software Process and Product Management

- Capstone course
- Team-based projects
- Service-learning software development for clients

The course needed

An on-boarding process where students can rehearse their teamwork and software development skills

To meet this need

We used a hackathon including tutorials at the beginning of the term on a weekend

To refine the hackathon design

We examined the first two iterations

Methods

Research design: Action-research

The process

Iteration 1 Winter 2019 15 students

Iteration 2
Fall 2019
43 students

Hackathon schedule

	Friday	Saturday	Sunday
9 am – 12 pm		Tutorials/ Working on projects	Working on projects
12 pm – 4 pm		Tutorials/ Working on projects	Presentations
4 pm – 9 pm	Tutorial s		

Changes made in second iteration

- Exclusive to those registered in the course
- Students formed their own teams
- The venue was changed

Didn't change

- TA support
- Presentations at the end of the event

Data collection and analysis

- Observation and a debrief form
- o Likert scale
- o open-ended questions
- Descriptive statistics and thematic analysis

Results

Iteration 1 Tutorials

- Challenging due to range in student backgrounds
- Some felt the tutorials did not target their current level or were not interesting
- Some from junior courses found it "difficult to keep up with the tutorials"

Teamwork Experience

- Most were pleased
- Some didn't contribute due to limited knowledge: "I only wished I knew more about front end developing so that I could help"

Iteration 2

Tutorials

- More than 75% felt they "gained new knowledge from the tutorials"
- The tutorials took longer than the scheduled time to
 - o answer student questions
 - o solve problems students encountered
- Students said
- o "the tutorials are helpful for building web application during the hackathon"
- o "I enjoyed the tutorials"

Teamwork Experience

Most students were positive:

- "We all got along well, and did not have any difficulty working together"
- "We did great in collaboration"

Comparison & Synthesis

- Most changes received positive feedback:
 - restricting the event to only 401 students
 - mitigated the background and experience differences,
 - facilitated the appropriate sharing of tasks among team members
 - none of the teams experienced dropout in iteration 2
- The venue change may have negatively impacted student experiences in Iteration 2 due to limited comfortable workspace for groups.

Conclusion

The findings of the study showed hackathons...

- support the early identification of possible issues related to
- o collaboration,
- o development processes, and
- o technical work.

- enable instructors to
- o observe
- o deliver early feedback
- o set expectations for the term