

Multi-view 3D Fusion Echocardiography Using a Novel Transducer and Respiratory Tracking Technique: First Results in Humans

Tyler Lamb, Marina Choy, Abhilash Hareendranathan, Kumaradevan Punithakumar, Pierre Boulanger, Michelle Noga, Harald Becher. Alberta Mazankowski Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada

Background

- Despite the many advances to 3D echocardiography (3DE), limitations exist such as i) relatively poor field-of-view (FOV) compared to 2D echocardiography (2DE) and ii) relatively poor endocardial border definition (EBD) compared to 2DE
- Poor EBD is largely explained by weakly reflected signals owing to non-perpendicular angles of insonation relative to important surfaces like the LV EBD
- Multi-view 3D Fusion Echocardiography combines 3DE datasets from different acoustic windows that contain partially redundant but complementary information
- In preclinical studies, M3DFE results in improved contrast, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and EBD However, two important challenges face M3DFE:
 A clinically feasible method of spatially aligning datasets does not
- exist
- 2. There is no consensus on the best method to fuse datasets

Purpose of study: Address these challenges through:

- 1. Developing a quantitative respiratory tracking technique which aids in spatial alignment of datasets
- 2. Testing a promising fusion method called wavelet decomposition

Figure 1: Steps Required to create M3DFE dataset

Figure 2: Components of our M3DFE setup. Top row – Optical tracking device. Middle Row – Transducer with mount and markers (left). Note these markers are depicted in red in figures 1 and 4;, Chest markers (right). Bottom Row – Relationship between components

Methods

- Subjects: 11 Healthy Volunteers Recruited
- Materials: Siemens Acuson SC2000 scanner, 4Z1c transducer
- Real-time 3D recordings used in this study
- Subjective parameters: Spatial alignment (yes/no), Endocardial Border Definition (three level scale of 0-2)
- Objective parameters: Contrast, contrast-to-noise and signal-to-noise ratios, field-of-view

Figure 3: Study Design

Quantitative respiratory tracking screening procedure:

- Optical tracking of chest markers during 3DE recordings
- For M3DFE datasets: mean chest marker difference must be <1.5mm otherwise the M3DFE dataset is excluded

Figure 4: Left – Multi-planar reconstruction of M3DFE Dataset. Right – 3D display of Transducers and Chest Markers

Results

	Contrast	CNR	SNR	EBD	
	%Diff. in Means	%Diff. in Means	%Diff. in Means	%Diff. in Means	
Unmoving Transducer:	-0.9%	+57%	+65%	+24%	
M3DFE (AVG) – SSA	p = 0.55	p < 0.0001	p = 0.00001	p = 0.0004	
Unmoving Transducer:	+4.1%	+44%	+50%	+30%	
M3DFE (WAV) – SSA	p = 0.06	p < 0.00001	p < 0. 000001	p < 0.00001	
Unmoving Transducer:	+4.9%	+12%	+18%	+14%	Standard
M3DFE (WAV) – M3DFE (AVG)	p = 0.02	p = 0.25	p = 0.14	p = 0.03	
Moving Transducer: NSA	-9.4%	+65%	+75%	13%	Januari
M3DFE (AVG) – SSA	p = 0.43	p = 0.01	p = 0.005	p = 0.054	Apical 3D
Moving Transducer: NSA	+0.9%	+32%	+42%	25%	7 (51001 02
M3DFE (WAV) – SSA	p = 0.49	p = 0.03	p = 0.006	p = 0.0002	
Moving Transducer: NSA	+8.6%	-12%	-1.4%	+16%	
M3DFE (WAV) – M3DFE (AVG)	p = 0.10	p = 0.43	p = 0.50	p = 0.02	
Moving Transducer: AP	-24%	+17%	+28%	+4%	
M3DFE (AVG) – SSA	p = 0.99	p = 0.27	p = 0.12	p = 0.39	
Moving Transducer: AP	+0.6%	+41%	+55%	+35%	
M3DFE (WAV) – SSA	p = 0.50	p = 0.009	p < 0.001	p = 0.00001	
Moving Transducer: AP	+24%	+31%	+42%	+32%	
M3DFE (WAV) – M3DFE (AVG)	p = 0.0001	p = 0.07	p = 0.03	p < 0.0001	

Table 1: Results of one-tailed ANOVA test with Tukey Honest Significant Difference post-hoc correction at end-systole. Statistically significant results which reject the null hypothesis are highlighted in green. M3DFE = Multi-view 3D Fusion Echocardiography, SSA = Single Standard Fused by Apical 3DE, AVG = fusion by voxel averaging, WAV = fusion by wavelet decomposition, NSA = non-standard apical protocol, AP = apical-parasternal protocol, CNR = contrast-to-noise ratio, SNR = signal-to-noise ratio, EBD = endocardial border definition.

	Contrast	CNR	SNR	EBD	
	%Diff. in Means	%Diff. in Means	%Diff. in Means	%Diff. in Means	
Unmoving Transducer:	-4.9%	+42%	+52%	+27%	
M3DFE (AVG) – SSA	p = 0.98	p = 0.008	p < 0.001	p < 0.0001	
Unmoving Transducer:	-0.8%	+31%	+41%	+30%	
M3DFE (WAV) – SSA	p = 0.45	p = 0.005	p = 0.0001	p < 0. 000001	Fused by
Unmoving Transducer:	+4.1%	+2.5%	+9.8%	+10%	1
M3DFE (WAV) – M3DFE (AVG)	p = 0.046	p = 0.49	p = 0.36	p = 0.07	Wavelet
Moving Transducer: NSA	-8.2%	+40%	+45%	+18%	
M3DFE (AVG) – SSA	p = 0.99	p = 0.00072	p < 0.001	p = 0.002	
Moving Transducer: NSA	-1.4%	+32%	+41%	+22%	
M3DFE (WAV) – SSA	p = 0.45	p = 0.0002	p < 0.0001	p < 0.0001	
Moving Transducer: NSA	+6.9%	+5.0%	+14%	+8.1%	
M3DFE (WAV) – M3DFE (AVG)	p = 0.03	p = 0.43	p = 0.20	p = 0.12	
Moving Transducer: AP	-18%	+34%	+42%	+4.8%	
M3DFE (AVG) – SSA	p = 0.99	p = 0.01	p < 0.001	p = 0.35	
Moving Transducer: AP	-3.1%	+32%	+47%	+29%	
M3DFE (WAV) – SSA	p = 0.38	p = 0.003	p < 0.00001	p = 0.0001	
Moving Transducer: AP	+16%	+8.4%	+24%	+26%	
M3DFE (WAV) – M3DFE (AVG)	p < 0.001	p = 0.38	p = 0.04	p < 0.001	

Table 2: Results of one-tailed ANOVA test with Tukey Honest Significant Difference post-hoc correction at <u>end-diastole</u>. Statistical significant results which reject the null hypothesis results are highlighted in green. M3DFE = Multi-view 3D Fusion Echocardiography, SSA Single Standard Apical 3DE, AVG = fusion by voxel averaging, WAV = fusion by wavelet decomposition, NSA = non-standard apical protocol AP-PS = apical-parasternal protocol, CNR = contrast-to-noise ratio, SNR = signal-to-noise ratio, EBD = endocardial border definition.

Figure 5: Example case comparing standard apical 3DE with fusion by voxel averaging and wavelet decomposition

Results continued

- Field-of-view enhanced in all protocols, most prominently in apical-parasternal protocol (mean increase = 47%)
- >97% of M3DFE datasets passing the quantitative screening procedure were subjectively aligned and suitable for diagnostic purpose as judged by two echocardiographers (TL +HB)
- Results were generally supportive of the superiority of the wavelet decomposition fusion method

Discussion

Two major challenges facing M3DFE addressed:

- 1. Creation of a clinically feasible and effective spatial alignment protocol using quantitative optical tracking of chest markers
- 2. Wavelet decomposition is probably superior to voxel averaging and should be considered for use in future clinical studies

Limitations

- Small sample size **BUT** 1686 segments analyzed
- Healthy volunteers with good acoustic access/apical windows <u>BUT</u> benefits of M3DFE may actually be exaggerated in those with poor apical windows, structural heart disease (including large LV's)
- Whether results will translate into improvements in clinically useful measurements such as LV quantification remains uncertain <u>BUT</u> we expect enhanced reproducibility and accuracy compared to CMR, contrast 2DE

 further validation of this hypothesis is required

Conclusions

- Our novel quantitative screening technique based on optical tracking of chest markers provides an efficient and clinically feasible method of performing spatial alignment in M3DFE
- Fusion by wavelet decomposition is generally superior to fusion by voxel averaging

