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Lesson 1: The SIS Model of Disease Transmission 

Gerda de Vries & John S. Macnab 

 
 

This is the final step before the students can begin working on the West Nile 

model. What we would like to accomplish here is to show how a simple model of disease 

transmission can be developed from a basic understanding of the derivative, and show 

how it relates to the logistic equation. 

Imagine a closed population, where individuals neither leave nor arrive and the 

birth and death rates are zero. This is, roughly, what a school might be like over the 

course of a single semester. Let N be the size of this population. 

Now suppose that one person in this population is infected with an infections non-

fatal disease, such as a cold. We wish to describe the spread of the disease through the 

population. To do this, we divide the population into two groups: 

Susceptibles: These are the healthy individuals. 

Infectives: These are the people who currently carrying the disease and are capable of 

infecting the susceptibles. 

Let S(t) be the number of susceptibles in the population at time t. 

Let I(t) be the number of infectives in the population at time t. 

The model is called SIS because susceptibles become infectives then recover and become 

susceptibles again. 

SIS   

By our original assumption that the population is closed, we have )()( tItSN  . 
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Questions:  

1. What can we say about the signs of S(t) and I(t)?  

2. How would we interpret the signs of 
dt

dS
 and 

dt

dI
? 

 

We can make a diagram of the changes in S and I. The boxes represent variables 

and the arrows show population changes as the product of variables and parameters. 

S(t) I(t)

γI

βIS

 

The diagram indicates that infectives recover at a constant per-capita rate of γ, so 

that at any given time, the number of infectives that recover (and become susceptible 

again) is γI. 

To become infected, a susceptible must come into contact with an infective. By 

the fundamental counting principle, the number of interactions between S and I is 

proportional to their product, assuming that individuals are randomly interacting. So we 

get the number of infections at any given time given by βIS. We call β the infectivity of 

the disease. 

Question: Consider two diseases. One has β=0.1 and the other has β=0.05. In biological 

terms, what is the difference between the two diseases? 
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Answer: The disease with β=0.1 is more contagious. 

 

Question: Suppose a drug is given to infectives so that they recover more quickly than 

they otherwise would. What effect would this have on γ? 

Answer: If γ is larger, then infectives that are recovering in greater numbers than the 

same sized pool would recover otherwise. It must be the case that they are recovering 

more quickly. Therefore, the drug increases the value of γ. 

 

Now, let’s translate the diagram into equations. 

IIS
dt

dS
   because the rate of change of susceptibles is the per-capita rate of 

healing minus the per-capita rate of infection. 

IIS
dt

dI
   

We see that the rate of change of susceptibles is the negative of the rate of change of the 

infectives. 

Question: Why? 

Answer: Recall that N, the total population, is assumed to be constant. 

dt

dI

dt

dS

dt

dI

dt

dS

dt

dI

dt

dS

dt

dN

ISN









0
 

 

We will now reduce the two differential equation to one, by using the fact that N=S+I. 
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Question: Do you recognize this equation? 

Answer: It is not obvious, but it is the logistic equation. 

 

We can rearrange the equation as follows.  

 

 

  I
N

I
N

dt

dI

IIN
dt

dI

IIN
dt

dI



































1

2

 

 

This looks worse than it is. Make the substitutions of   Nr  and 


 


N
K , then 

we simply get 

I
K

I
r

dt

dI








 1 , which is the logistic equation. 

Interpretation. 

The question now is: What does this mean in a biological system? Consider two 

cases separately. Look at the phase-line plots when 0N  and when .0N  
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Case 1: 0N  

This case looks exactly like the solution to the logistic equation in the previous lesson. 

 

As we saw before, this has the solution: 
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The conclusion is that when 0N , there will always be 










N

N
 

infectives in the population. 

Recall that β is the rate of infection and γ is the rate of recovery. It turns out that 

the number of people infected depends on their ratio.  
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Case 2: 0N  

This results in Case 1’s phase-line graph being reflected in the vertical axis: 

 

In this phase-line graph we notice two things. First, in the biological application 

0I  because it counts the number of members of the population that are infected. 

Second, for the part of the domain that applies, I is always decreasing because 0
dt

dI
. 

The time-domain graph, then, looks something like this. 
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In this case, the number of infectives approaches zero. That is, the disease will 

eventually be eliminated from the population. 

 

Question: In light of these graphs, what strategies might be adopted to eliminate the 

disease from the population? 

Answer: Just as we would expect, anything that either slows down the rate of 

transmission, such as vaccination or bacterial control would help, as would medications 

or practices that speed up the rate of recovery. What is critical is that their ratio change: 

once N



 the disease will be eliminated. 

 

Conclusion (and introduction to R0) 

From the phase line analysis, we found that the disease is endemic (it persists in 

the population) if 0N , and that the disease is eliminated from the population if 

0N . 

 

We can rewrite the inequalities as follows: 

1

0















N

N

N

 

and, of course 

10 





N
N . 

This allows us to note the factor that is crucial to the spread or control of the disease. 
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Let R0 be called the basic reproduction ratio of the disease. 



N
R 0  

If 00 R , then the disease is endemic to the population. 

If 00 R , then the disease is eliminated from the population. 

Observations: 


N
R 0  

 N  is the rate at which a single infective introduced into a susceptible population 

of size N makes infectious contact. This comes from the term IS  in the 

differential equations, with I=1 and S=N.  

 


1
 is the expected length of time that an infective person remains infectious. 

Thus, 


N
 is the expected number of infectious contacts made by an infective. 

Thus, if Ro>1, then the disease will remain in the population, and if Ro<1, the disease will 

die out. 

 

Students are now ready for the West Nile module.  

 


