
Iverson computing competition
2015 may 26

name

school
city
grade
cs teacher

are you taking AP or IB computer science? (yes/no)

have you taken advanced level courses? (3000 level, e.g. CSE3110 iterative

algorithms I.) (yes/no/currently taking)

illegible answers will not be marked

question - - - - marks your score

1 continents 10

2 permutations 10

3 pebble game 10

4 fractions 3

total - - - - 33

Iverson exam 2015 2

Exam Format

This is a two-hour paper and pencil exam. There are four questions, each with at least one part.
Some part(s) might be easy. Solve as many parts of as many questions as you can.

Programming Language

Questions that require programming can be answered using any language (e.g. C/C++, Java,
Python, . . .) or pseudo-code. Pseudo-code should be detailed enough to allow for a near
direct translation into a programming language. Clarify your code with appropriate
comments. For full marks, a question must be correct, well-explained, and as simple as possible.

Our primary interest is in thinking skill rather than coding wizardry, so logical thinking and
systematic problem solving count for more than programming language knowledge.

Suggestions

1. You can assume that the user enters only valid input in the coding questions.

2. In somes cases, sample executions of the desired program are shown. Review the samples
carefully to make sure you understand the specifications. The samples may give hints.

3. Design your algorithm before writing any code. Use any format (pseudo-code, diagrams,
tables) or aid to assist your design plan. We may give part marks for legible rough work,
especially if your final answer is lacking. We are looking for key computing ideas, not
specific coding details, so you can invent your own “built-in” functions for subtasks such
as reading the next number, or the next character in a string, or loading an array. Make
sure to specify such functions by giving a relationship between their inputs and outputs.

4. Read all questions before deciding which ones to attempt, and in which order. Start with
the easiest parts of each question.

Iverson exam 2015 3

question 1: continents

Pixel-world is a peculiar planet. It is a flat world that is divided into a grid of square cells.
Each cells is completely covered by land or completely covered by water. Example: in the grid
below, the dark cells represent land and the light cells represent water.

A continent is a collection of land cells, say C, such that

• it is possible to walk between any two cells in C by taking horizontal or vertical steps (no
diagonal steps) and never entering a water cell.

• every land cell that can be reached in this way from a land cell in C is also in C.

The size of the continent C is the number of cells in C. Example: the grid shown above has 4
continents, with sizes 1, 4, 4, 24.

a) [2 marks] Give the number of continents in the following grid.

Solution: There are 9 continents.

Iverson exam 2015 4

b) [2 marks] Suppose, for each land cell, we already know the size of the continent that includes
that cell. These sizes are stored in an array and the array is sorted.

Example: 1, 1, 1, 2, 2 is the sorted list of these sizes for the following grid. The size 2

appears twice because it is entered into the array once for each land cell in the continent.

The list below was obtained in this way from a grid with 30 land cells. How many continents
does this grid have? Explain briefly.

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

Solution: A continent of size k will be reported k times in the list. For i ≥ 1, if we let ai denote
the number of times i appears in the list then the answer is

a1
1

+
a2
2

+
a3
3

+ . . .

In this case, the number of continents is

2

1
+

4

2
+

12

3
+

12

4
= 11.

Iverson exam 2015 5

c) [3 marks] Write a function count continents(sizes, n) where sizes is a sorted array of
n integers, obtained from a grid with n land cells. The function should return the number of
continents in the grid.

Solution: Here is a Python implementation that follows the formula from the previous part.

def count_continents(sizes, n):

tot = 0

for i in range(1,n):

tot += sizes.count(i)//i

return tot

It is a bit slow for large inputs because the count() method will scan sizes every iteration of
the loop. The following is faster because it only walks through the list once. It takes advantage
of the fact that all occurrences of a number will appear consecutively (because the list is sorted).

def count_continents(sizes, n):

prev = 0

tot = 0

for j in range(1,n):

if sizes[j] != sizes[prev]:

tot += (j-prev)//sizes[prev]

prev = j

tot += (n-prev)//sizes[prev]

return tot

Iverson exam 2015 6

d) [3 marks] We represent a grid by specifying two positive integers, rows and columns —
indicating the grid size — together with a two-dimensional array grid. For 1 ≤ r ≤ rows and
1 ≤ c ≤ columns, grid[r][c] is 0 if the cell at location (r, c) is water, and is 1 if that cell
is land.

Write a function continent size(r, c, rows, columns, grid) that returns the size of the
continent that includes the cell at location (r, c). If this is a water cell, return 0. You may
assume that every cell on the boundary of the grid is water.

Solution: Mark off the cells in the continent one at a time. Initially, mark the cell at coordinate
(r,c). While there is marked land cell that is adjacent to an unmarked land cell, then mark
that unmarked cell. When there are no more cells to mark, return the number of marked cells.

#return the list of the four cells adjacent to cell (r, c)

def neighbours(r, c):

return [(r-1, c), (r+1, c), (r, c-1), (r, c+1)]

def continent_size(r, c, rows, columns, grid):

if grid[r][c] == 0:

return 0

#create a grid of 0s

marked = [[0]*columns]*rows

marked[r-1][c-1] = 1

count = 1

while true:

found = false

for cr in range(rows):

for cc in range(columns):

if marked[cr][cc]:

#examine the neighbours of the marked cell

for (nr, nc) in neighbours(cr, cc):

#mark the neighbour if is is an unmarked land cell

if not marked[nr][nc] and grid[nr][nc]:

marked[nr][nc] = 1

count += 1

found = true

if not found:

the entire continent must be marked if we reach here

return count

Iverson exam 2015 7

This can be made more efficient. Notice that we only have to examine the neighbours of a
marked cell once.

The following Python code exploits this fact. It maintains a list to examine that contains the
cells that have been marked but have not yet had their neighbouring cells checked. It removes
one cell from this list at a time and checks the neighbours of that cell. If any neighbour is a
land cell that is not yet marked, it is marked and then added to the list. This way, every cell
the continent has its neighbours checked exactly once.

#return the list of the four cells adjacent to cell (r, c)

def neighbours(r, c):

return [(r-1, c), (r+1, c), (r, c-1), (r, c+1)]

def continent_size(r, c, rows, columns, grid):

if grid[r][c] == 0:

return 0

#create a grid filled with 0s

marked = [[0]*columns]*rows

marked[r-1][c-1] = 1

#the list of cells that have been marked

to_examine = [(r-1, c-1)]

#the number of cells in the continent we have marked so far

count = 1

while len(to_examine) > 0:

#remove something from the list of unprocessed tiles

(cr, cc) = to_examine.pop()

#examine the neighbours of this cell

for (nr, nc) in neighbours(cr, cc):

#if the neighbouring tile is an unmarked land tile

#then mark it and add it to the list of tiles to process

if marked[nr][nc] == 0 and grid[nr][nc] == 1:

marked[nr][nc] = 1

count += 1

to_examine.append((nr, nc))

return count

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.

We will use finite state machines (FSMs) for our tests. A FSM is a computational device that
reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.

Once the entire input is processed, the FSM accepts the string if v is the accepting state,
otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a
1−→ b

1−→ a
0−→ a

and here is the computation for input string 100:

a
1−→ b

0−→ c
0−→ b

Iverson exam 2015 9

String 110 is accepted because the final state is the accepting state, but string 100 is rejected.
In fact, this FSM accepts precisely the binary numbers that are divisible by 310 = 112. Notice
that both 011 and 00 are accepted; leading 0s are allowed.

a) [2 marks] Illustrate the computation of the above FSM for (i) input string 1010010 and (ii)
input string 1011010. For each string, state whether it is accepted.

Solution:

a
1−→ b

0−→ c
1−→ c

0−→ b
0−→ c

1−→ c
0−→ b

The string 1010010 is rejected. Note: 10100102 = 8210 which is not divisible by 3.

a
1−→ b

0−→ c
1−→ c

1−→ c
0−→ b

1−→ a
0−→ a

The string 1011010 is rejected. Note: 10110102 = 9010 which is divisible by 3.

b) [2 marks] Draw a FSM that accepts precisely the binary numbers that are divisible by 210

(leading zeros are allowed).

Solution: Even numbers are precisely those whose binary representation ends in a 0.

a b

0

1

0

start

1

Iverson exam 2015 10

c) [3 marks] Draw a FSM that accepts precisely the binary numbers that are divisible by 510

(leading zeros are allowed).

Solution: Consider how the binary number changes as the bits are read in. If a 0 is read then
the number is multiplied by 2. If a 1 is read then the number is multiplied by 2 and increased
by 1. Example: 101 represents 5 and 1011 represents 2 · 5 + 1 = 11.

The states of the FSM will keep track of the value mod 5 of the binary number read so far
and the arcs model how this value changes as the bits are read. Example: consider a binary
number that is 3 mod 5. Suppose 1 is then appended to the number. The value mod 5 of the
new number then becomes 2 · 3 + 1 ≡ 2.

0

1

1

0

start

2

3 4

0

1 0 1 0

1

10

Iverson exam 2015 11

d) [3 marks] Draw a FSM from the description that accepts precisely binary numbers that are
divisible by 310 and either are the number zero or have a leading 1. Example: 11 and 0 are
accepted; 011, 00, 10 are rejected.

Solution: The only allowed string that starts with 0 is 0 itself. The following FSM will move
into the ”divisibility by 3” FSM if a leading 1 is read. If a leading 0 is read, the rest of the FSM
(states e,f below) makes sure nothing else is read.

a b c

0

0

0

1

1

1

start d e f

0,1

0,10

1

Iverson exam 2015 12

question 3: pebble game

Alice and Bob play a 2-player game. A number of pebbles are placed in various positions that
are arranged horizontally. On a turn, a player moves one pebble and to the left. However, not
all such moves are valid; valid moves are specified as part of the game. If no pebble can be
moved, then the player whose turn it is loses and the other player wins.

Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show
the valid moves.

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s only
option is to move one of these pebbles to the leftmost point; then Alice moves the other pebble
left, and Bob has no moves so Alice wins.

In the following questions, assume both Alice and Bob play perfectly. That is, if the current
player can move so that that they can win by continuing to play perfectly, then they make a
winning move.

a) [2 marks] Who wins this game? Remember, Alice plays first. Explain briefly. It might help
to label the pebbles.

Solution: Call the pebbles a, b, c in order from left to right.
Alice can force a win. She moves pebble b to the position with pebble a. She can now

guarantee a win through the given strategy:

• When Bob moves pebble c, Alice responds by moving c to the leftmost position.

• When Bob moves one of a or b to the leftmost position, Alice responds by moving the
other to this position.

Iverson exam 2015 13

b) [2 marks] Who wins this game? Explain briefly.

Solution: Label the pebbles a, b, c, d in left to right order.
Bob will win through the following strategy.

• When Alice moves either a or d to the leftmost position, Bob responds by moving the
other to the leftmost position.

• When Alice moves either b or c, Bob responds by moving the other to the same position.

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n − 1 (left to right) and
only these valid moves: for 0 ≤ v ≤ n − 1, a pebble can move from v to v − 1; for v ≥ 2, a
pebble can move from v to v − 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".

Explain briefly why your code is correct. For full marks, your algorithm should run in a
fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are different mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are different mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being different mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2,

Let us call the placement of two pebbles similar if they lie on positions with the same label.
Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

Iverson exam 2015 15

d) [3 marks] Now consider the same board as the previous part, except we may have many
pebbles on the board. Write pseudocode for a function win(a, m, n) where n is the number
of positions on the board and a[] is an array with m nonnegative integers, each between 0 and
n-1, specifying the initial placement of the pebbles. Again, this code should run quickly and
you must explain briefly why it is correct.

Solution:
Call a placement of pebbles similar if both a1 and a2 are even, and dissimilar otherwise. Note

the game ends in a similar placement.

• If the placement is dissimilar, then there is a single move that makes it similar. That is,
if exactly one of a1 or a2 is odd then move a single pebble of the corresponding label to a
position with label 0. If both a1 and a2 are odd then move a pebble from a position with
label 2 one a position with label 1.

• If the placement is similar, then every move makes it dissimilar. If the move is from either
a label 1 or a label 2 position, then the corresponding value a1 or a2 becomes odd. If the
move is from a label 0 position, then it ends on a label 1 or label 2 position making the
corresponding a1 or a2 odd.

Alice wins if the initial placement is dissimilar and Bob wins if the initial placement is similar
by following essentially the same strategy as in part c, except using this notion of similar and
dissimilar.

def win(a, m, n):

a1 = 0

a2 = 0

for i in a:

if i%3 == 1:

a1 += 1

elif i%3 == 2:

a2 += 2

if a1%2 == 0 and a2%2 == 0:

return "Bob"

else:

return "Alice"

Iverson exam 2015 16

question 4: fractions

You are given a fraction a
b
≥ 0. However, a and b might be large. So, given a positive integer N ,

you want to find a “simpler” fraction c
d

that is as close to a
b

as possible but with 0 ≤ c, d ≤ N .
That is, you should find c and d so that 0 ≤ c ≤ N , 0 < d ≤ N , and

∣∣a
b
− c

d

∣∣ as small as possible.
If there are multiple solutions, choose the answer such that c + d is as small as possible.

[3 marks] Write a function simpler(a,b,N) that prints closest simpler fraction c / d

where c and d are the numerator and denominator of the answer. Remember, you can write
helper functions.

Example: calling simpler(5, 7, 5) prints closest simpler fraction 3 / 4

and calling simpler(11, 17, 7) prints closest simpler fraction 2 / 3

Solution: Simply iterate over all pairs (c, d) with 0 ≤ c ≤ N and 1 ≤ d ≤ N . If one of them
forms a fraction that is closer than the previous best, then keep it.

The following code does exactly this. Note, that it never explicitly checks that c + d is the
smallest among all possible answers. The order we iterate over c, d guarantees the first time we
encounter a closest fraction that it will have minimum c + d value. Can you see why?

is the fraction num/den closer to a/b than c/d?

def closer(num, den, c, d, a, b):

#num1/den1 = distance between num/den and a/b

num1 = abs(num*b - a*den)

den1 = den*b

#num2/den2 = distance between a/b and c/d

num2 = abs(c*b - a*d)

den2 = d*b

#cross multiply to check num1/den1 < num2/den2

return num1*den2 < num2*den1

def simpler(a, b, N):

c = 0

d = 1

for num in range(1,N+1):

for den in range(1,N+1):

if closer(num, den, c, d, a, b):

c, d = num, den

print("closest simpler fraction", c, "/", d)

