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Abstract: We describe a method to find low cost shift schedules with a time-varying service

level that is always above a specified minimum. Most previous approaches used a two-step

procedure: (1) determine staffing requirements and (2) find a minimum cost schedule that

provides the required staffing in every period. Approximations in the first step sometimes

cause the two-step approach to find infeasible or suboptimal solutions. Our method iterates

between a schedule evaluator and a schedule generator. The schedule evaluator calculates

transient service levels using the randomization method and identifies infeasible intervals,

where the service level is lower than desired. The schedule generator solves a series of integer

programs to produce improved schedules, by adding constraints for every infeasible interval,

in an attempt to eliminate infeasibility without eliminating the optimal solution. We present

computational results for several test problems and discuss factors that make our approach

more likely to outperform previous approaches.

Keywords: service operations management; employee scheduling; staffing requirements;

nonstationary queues; randomization method; integer programming.

1 Introduction and Literature Review

The need to schedule employees is ubiquitous in the service sector. Bank branches, restau-

rants, retail stores, and airline check-in areas are but a few examples of organizations that

need to schedule employees to match the demand for services—which is typically random

and varies over time—to the supply of employees providing services. Call centers are per-

haps the largest sector in need of employee scheduling. Modern call centers are complex

organizations, both technologically and operationally. As this sector grows and matures,

and as technology advances, there are increasing opportunities to employ models to improve

operations (Gans et al., 2003). Labor is typically the largest cost for a call center (60-70% of

total cost according to Gans et al., 2003) and therefore efficient employee scheduling provides

substantial opportunities for productivity improvements.

Models for employee scheduling have a long history in the operations research literature.

Edie’s (1954) classic study of traffic delays at tollbooths used a combination of empirical
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analysis and formulas for stationary queueing systems to generate the staffing requirements

needed to ensure a specified level of service. Soon after, Dantzig (1954), referring to Edie’s

work, showed how a linear integer program could find shift schedules that provide enough

staffing to meet specified requirements in each planning period—such as the ones developed

by Edie—at minimum cost.

A typical sequence of steps in scheduling employees is (Buffa et al. 1976):

Step 1: Forecast demand,

Step 2: Convert demand forecasts into staffing requirements,

Step 3: Schedule shifts optimally, and

Step 4: Rostering: Assign employees to shifts.

Current practice (e.g., Fukunaga et al., 2002) and most research on employee scheduling has

followed this approach. Edie’s paper demonstrated one way of performing Step 2. Dantzig’s

tour scheduling model addressed Step 3. Steps 1 and 4 are important, but outside the scope

of this paper.

The papers by Edie and Dantzig were among the first in two distinct streams of research:

one on how to set staffing requirements and the other on how to optimally schedule employees

subject to staffing requirements.

Step 2 often uses formulas for stationary M/M/s queueing systems to determine the

smallest number of servers (employees) needed to provide a specified level of service (often

expressed as the percent of customers who experience queue delay of less than some thresh-

old time). Green et al. (2001) termed this the SIPP (Stationary Independent Period by

Period) approach. A stream of research in queueing theory has developed better methods

to determine employee requirements (for example, see Jennings et al., 1996, Green, et al.,

2007, and Feldman et al., 2008).

Research on shift scheduling has developed efficient algorithms for special cases (e.g.,

Bartholdi et al., 1980), heuristics (e.g., Brusco and Jacobs, 1993), and reformulations to

allow larger problems to be solved to optimality (e.g., Aykin, 1996).

We will refer to performing Steps 2 and 3 once in sequence as the “approximate ap-

proach.” The main simplifying assumption in the approximate approach is that the staffing

requirement for a period can be determined independent of staffing in prior periods. The ex-

tent to which this assumption is valid determines whether it is reasonable to decouple Steps 2

and 3. Kolesar et al. (1975) demonstrated that this approximation is not always warranted.

2



More recently, Green et al. (2001, 2003) conducted extensive experiments to investigate

the reliability of the SIPP approach, which they defined as the number of half-hours during

which the desired service level falls below a desired minimum. They demonstrated that the

SIPP approach is, unfortunately, unreliable in many situations. They explored various ways

of modifying the SIPP approach while retaining the simplicity of calculations with M/M/s

queueing formulas. The most promising of these heuristics was the lag max approach, which

replaces the average arrival rate over a planning period with the maximum of the arrival

rate function over that planning period, shifted forward by one average service time. The

lag max approach extends the range of situations where SIPP generates reliable staffing

requirements considerably, as Green et al. (2001, 2003) showed. When the approximate ap-

proach is justified (see Green et al., 2001, for guidelines), then it should be used, because it is

simpler and faster than the approach we will describe. Our focus is on situations where the

approximate approach (using either SIPP or lag max to generate staffing requirements) has

been demonstrated to be unreliable. However, our approach can also result in cost savings

in situations where the approximate approach is reliable, as we demonstrate.

Ingolfsson et al. (2002) described an approach to integrating Steps 2 and 3. This article

presents an improved implementation of that method, involving two algorithmic compo-

nents: a schedule generator and a schedule evaluator. The schedule generator searches for

good schedules using exact or heuristic optimization. The schedule evaluator estimates the

cost and service level of a schedule. In Ingolfsson et al. (2002), the schedule generator used

a genetic algorithm, and the schedule evaluator used numeric integration of the forward dif-

ferential equations for an M(t)/M/s(t) system to evaluate the service level. In this paper,

we use an integer programming heuristic to generate schedules and we use the randomiza-

tion method (Grassmann, 1977) to compute service levels. These algorithmic improvements

result in a substantial reduction in computation time, which has allowed us to perform com-

putational experiments to generate insight into when decoupling Steps 2 and 3 is justified

and when it is not. While the method does not guarantee optimality, it provides a good

feasible solution and a lower bound on the minimum cost.

We define the service level at time t as the probability that the virtual waiting time is

less than a maximum acceptable waiting time τ . Because we solve the forward differential

equations, we can compute instantaneous service levels for as many time points as desired,

and we define our optimization problem in terms of instantaneous service levels. In related

research that uses simulation, as well as in practice, service levels are typically defined as

averages over some time period, such as an hour. It is straightforward to modify our approach

to conform with such definitions.
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Thompson (1997) and Atlason et al. (2004, 2008) described other approaches to inte-

grating Steps 2 and 3. Thompson generated staffing requirements using stationary M/M/s

formulas, with a heuristic adjustment (described in Thompson, 1993) for transient effects.

As discussed in Ingolfsson et al. (2007), this heuristic is similar to Green et al.’s lag max

approach and, therefore, shares its limitations. Thompson used slack and surplus decision

variables for deviations above or below the requirement for each planning period, with coeffi-

cients derived from M/M/s formulas to quantify the impact of these deviations on the service

level. He solved the resulting model using Brusco and Jacobs’ (1993) simulated annealing

heuristic. Atlason et al. (2004) iterate between simulation (to evaluate service levels) and

integer programming, with constraints being added to the integer program at each iteration

based on approximate subgradients of the service level (estimated using simulation) as a

function of staffing in each planning period. Atlason et al. (2008) improved on the approach

in Atlason et al. (2004), using “pseudogradients” rather than subgradients. Our approach

adds constraints at each iteration as well, but our constraints do not require evaluation of

subgradients or pseudogradients of the service level. We compare the performance of our

approach to that of Atlason et al. (2008) as part of our computational experiments and we

discuss these related approaches further in the last section.

The paper is organized as follows. Section 2 presents an example to illustrate the main

issues, Section 3 states the problem formally, Section 4 reviews the randomization method,

Section 5 describes an initial parameter estimation procedure, Section 6 presents our integer

programming heuristic, Section 7 outlines our computational experiments and results, and

Section 8 concludes with observations on how our approach performs and how it could be

generalized. An online supplement contains appendices with supplementary material and

additional computational results.

2 Example

We will use the following example to illustrate potential shortcomings of performing Steps 2

and 3 sequentially and how these shortcomings can be addressed. A service system is open

12 hours each day and has a sinusoidally varying arrival rate with two daily peaks (Figure 1).

The planning period (the shortest time interval over which staffing is constant) is 15 minutes.

For Step 2, we approximate the time-varying arrival rate by its average over each 5-minute

interval and we use M/M/s queueing formulas (with a service rate of 2 customers per hour)

to determine, for each planning period, the smallest number of servers needed to ensure that
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Figure 1: Arrival rate for example.

at least 80% of customers do not have to wait before commencing service (this is the SIPP

approach).

Shifts are four, six, or eight hours long and can start at the beginning of any planning

period that allows the shift to end before the facility closes (Appendix A describes the

243 possible shifts). Figure 2 (upper panel) shows the SIPP staffing requirements and the

number of scheduled servers that minimizes the number of server-hours (by solving an integer

program), while satisfying the staffing requirements. The lower panel shows the transient

service level for this schedule (calculated with the randomization method). The service level

goal is not met during a large fraction of the day.

Figure 2 illustrates how the SIPP approach can be unreliable, as discussed by Green

et al. (2001, 2003). As they showed, the lag max approach often improves reliability.

Figure 3 shows the results of using the lag max approach. The curves for the required and

scheduled number of servers have shifted forward by 30 minutes (one average service time).

The resulting service level is much improved and stays above the 80% target during all but

4 (of 48) planning periods. Not surprisingly (because a maximum rather than an average

arrival rate is used), the improved service level comes at the expense of higher labor cost:

the number of server-hours increased by 3.5%, from 954 (with SIPP staffing requirements)

to 987 (with lag max staffing requirements).

However, one can do better. With the solution illustrated in Figure 4, the service level

remains above 80% at all times, and the labor cost (947.5 server-hours) is 0.7% lower than

with SIPP staffing requirements and 4% lower than with lag max staffing requirements.

5



0 2 4 6 8 10 12
0

50

100

N
um

be
r 

of
 s

er
ve

rs

Hour

 

 

Required
Scheduled

0 2 4 6 8 10 12
0%

20%

40%

60%

80%

100%

S
er

vi
ce

 le
ve

l

Hour

Figure 2: SIPP staffing requirements, scheduled number of servers, and resulting service
level.
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Figure 3: Lag max staffing requirements, scheduled number of servers, and resulting service
level.
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Figure 4: Strict lower bound staffing requirements, scheduled number of servers, and resulting
service level for a solution generated with our approach.

Sections 5 and 6 describe the algorithm used to generate the solution shown in Figure 4.

Like the SIPP and lag max approaches, the algorithm sets bounds on the staffing in each

planning period that we refer to as strict lower bounds. In contrast to SIPP and lag max

staffing requirements, which are intended to provide sufficient conditions for meeting the

service level requirements, the strict lower bounds provide necessary conditions and are

therefore usually smaller. We illustrate the calculation of the strict lower bounds later in

this section and elaborate in Section 5.

To understand why the SIPP and lag max approaches do not generate reliable staffing

requirements, it is instructive to recalculate the service level under certain changes in the

scenario, to illustrate how the service level in one period depends on staffing in previous

periods. For simplicity, we focus on the first two planning periods. First, schedule 8 servers

for the first period (s1 = 8). This is far too little capacity to keep up with the load (the

SIPP approach recommends almost 70 servers for the first period) and Figure 5 (top panel)

demonstrates how the transient service level drops quickly during the first period. At the

end of the first period, a sizable queue will have built up. Given the first-period staffing,

consider how many servers need to be scheduled for the second period to ensure that the

service level remains above 80%. By varying the second-period staffing (s2) and computing
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Figure 5: Service level during first two planning periods.

the service level, we discover that the minimum required staffing is 50 servers. Figure 5 (top

panel) shows curves for s2 = 49, which causes the service level to drop below 80% at the end

of the second period, and s2 = 50, which ensures that the service level constraint is satisfied.

Second, suppose we schedule 28 servers for the first period. Although still far below the

SIPP staffing requirement, 28 servers is enough to keep the service level above 80% until

the end of the first period. With this first-period staffing, there will be far less congestion

at the beginning of the second period than with s1 = 8. As a consequence, less second-

period staffing is required to achieve the desired service level. As Figure 5 (bottom panel)

illustrates, the minimum second-period staffing drops from 50 to 47 when the first-period

staffing increases from 8 to 28. The reason is clear: if we understaff in the first period, then

we need more servers in the second period. Conversely, first-period overstaffing may reduce

the minimum second-period staffing. In general, it is not possible to determine staffing

requirements for one period independent of staffing in other periods as with the SIPP and

lag max approaches.

Observe that we can determine the minimum first-period staffing (s1 = 28) to ensure

that the service level constraint is met without considering staffing in any other periods,

because the system is empty at the beginning of the first period. We can determine an

optimistic estimate of the needed second-period staffing by pretending that the system is

empty at the beginning of that period. We refer to the resulting staffing estimate as a
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strict lower bound because staffing below this bound guarantees violation of the service level

constraint. Figure 4 shows the strict lower bounds for all periods. Section 5 elaborates on

the computation of the strict lower bounds.

3 Problem Description

We model the system as an M(t)/M/s(t) queue, specified as follows. Customers arrive

according to an inhomogeneous Poisson process with rate λ(t) at time t, and are served

by the first available server. Servers have identical capabilities and service durations are

independent and exponentially distributed with mean 1/µ. The performance measure of

primary interest is the service level SL(t), which we define to be Pr{W (t) ≤ τ}, where W (t)

is the virtual waiting time at time t and τ is an “acceptable waiting time threshold.” The

final part of the M(t)/M/s(t) specification is to describe what happens when servers are

scheduled to leave. Like Green et al. (2001, 2003), we adopt a pre-emptive service discipline,

to facilitate comparison of our computational results to theirs. Under this discipline, if a

server is busy with a customer when scheduled to go off duty, then the customer will either

be transferred to another server (if available) or return to the queue.

We consider facilities that operate for a finite time interval [0, T ] (e.g., retail stores that

are open for part of the day) and also facilities that operate continuously (e.g., emergency

services). For continuously operating systems, we assume a periodic arrival rate λ(t) with

period T (e.g., 24 hours or one week). We assume planning periods of length δ (typically 15

minutes, 30 minutes, or 1 hour). The scheduled number of servers s(t) is constant during

each planning period ((j − 1)δ, jδ], j = 1, 2, . . . , n and we assume T = nδ.

We define the state variable N(t) to be the number of customers in the M(t)/M/s(t)

system at epoch t and we let πk(t) = Pr{N(t) = k} and π(t) = (π0(t), π1(t), . . .). Under

the pre-emptive discipline, N(t) evolves as a continuous time Markov chain, according to

the well-known Chapman-Kolmogorov equations for an M/M/s queue (with time arguments

added for λ and s). To compute transient service levels, first consider epochs t that are more

than τ time units before the end of the current planning period. At such epochs, if the queue

is not empty, then the event W (t) > τ , conditional on N(t) = k ≥ s(t), is the same as the

event that there will be k − s(t) or fewer service completions during (t, t + τ ]. This leads to

the following formula for the service level: SL(t) = 1 −
∑

∞

k=s(t)

∑k−s(t)
j=0 aje−aπk(t)/j! where

a = µ
∫ t+τ
t s(u)du—see Ingolfsson et al. (2002). Second, for epochs that are less than τ time

units before the end of the current planning period, we need to account for the possibility

that some of the customers that are currently in service will return to the queue during
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(t, t + τ ] because their server leaves. At these epochs, we use the algorithms described in

Green and Soares (2007).

The scheduled number of servers s(t) is determined by how many servers are assigned

to permissible shifts that cover time t, excluding servers that are on break. The set of

permissible shifts is I and each permissible shift i ∈ I is represented by a binary row vector

ai = (aij, j = 1, . . . , n) of length n, with aij = 1 if shift i includes planning period j and zero

otherwise, for j = 1, 2, . . . , n. A schedule x is a column vector (xi, i ∈ I) with xi indicating

the number of servers scheduled to work shift i. Therefore, given a schedule x, s(t) will equal

sj(x) =
∑

i∈I aijxi for t ∈ ((j − 1)δ, jδ]. The cost of a schedule is C(x) =
∑

i∈I cixi, where ci

is the variable labor cost per server assigned to shift i.

The functions λ(t) and s(t) and the service rate µ determine the transient state proba-

bilities (π0(t), . . . , πK(t)) where the system capacity K is chosen to approximate an infinite

capacity system. For continuously operating systems, we compute the periodic stationary

state probabilities, which satisfy πk(t) = πk(t + pT ) for all states k, epochs t, and integers p.

Our shift scheduling problem is:

minimize C(x)

subject to SL(t) ≥ SLmin for t ∈ [0, T ] (1)
n

∑

j=1

sj(x) ≥

⌈

∫ T

0
λ(t)dt/µ

⌉

xi ≥ 0, integer, for i ∈ I

The second constraint is included to ensure that the total scheduled server hours over the

planning horizon are sufficient to handle the total amount of work. The service level SL(t)

depends on the threshold τ and the number of servers but we suppress this dependence to

simplify notation. The parameter SLmin is the minimum desired service level.

Formulation (1) is in contrast to the following approximate formulation:

minimize C(x)

subject to sj ≥ bj , j = 1, 2, . . . , n (2)

xi ≥ 0, integer, for i ∈ I

Here, the server requirement bj is determined using a stationary M/M/sj queueing model

with arrival rate λj =
∫ jδ
(j−1)δ λ(t)dt/δ, (the average arrival rate in planning period j). Specif-

ically, if W (λ, µ, s) is the steady state waiting time before service commences in an M/M/s
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queueing system, then bj = min {sj : Pr {W (λj, µ, sj) ≤ τ} ≥ SLmin}. The generation of

staffing requirements in this fashion is what Green et al. (2001, 2003) termed the SIPP

approach. The staffing constraints sj ≥ bj in Problem (2) are intended to guarantee, to an

adequate approximation, that the service level will remain at or above SLmin for t ∈ [0, T ].

Green et al.’s (2001, 2003) lag max modification to the SIPP approach changes the arrival rate

used to determine the server requirement bj to λj = max{λ(t) : t ∈ [(j−1)δ−1/µ, jδ−1/µ]},

i.e., shift the arrival rate forward by one average service time and take the maximum rather

than the average over the planning period.

Problem (2), with or without the lag max modification, is an approximation to Prob-

lem (1) for two reasons:

1. The service level during period j depends not only on the staffing sj during that period

but also on staffing in preceding periods. If τ > 0, then the service level will also depend

on staffing in subsequent periods.

2. The service level varies during a period. It may not be well approximated by the

limiting value obtained by assuming that the arrival rate and number of servers are

constant and continue indefinitely.

For these reasons, the approximate approach, which solves Problem (2), often results in

either infeasible or suboptimal solutions to Problem (1).

4 Randomization Method

Also known as the uniformization method, the randomization method (described in Grass-

mann 1977) provides a computationally stable and efficient method to calculate transient

state probabilities for a homogeneous, discrete-state, continuous time Markov chain. The

computational cost of this method is significantly lower than for the Runge-Kutta numerical

integration method (Grassmann 1977) used in Ingolfsson et al. (2002).

The randomization method only applies to homogenous processes, but in our problem, the

arrival rate may vary continuously. Therefore, we approximate the arrival rate function λ(t)

by a piecewise constant function λ̃(t) = λ̃l ≡
∫ lδcalc
(l−1)δcalc

λ(s)ds/δcalc for t ∈ ((l − 1)δcalc, lδcalc],

were, δcalc is the “calculation period.” We will always use a calculation period that is

shorter than the planning period (δcalc ≤ δ) and which divides evenly into a planning period

(δ mod δcalc = 0). We apply the randomization method in each calculation period, during

which the parameters of the M(t)/M/s(t) queueing system remain constant. The state
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probabilities at the end of one calculation period are used as the initial state probabilities

at the beginning of the next. Importantly, this procedure calculates transient probabilities

throughout each calculation period—no steady state approximation is used.

We approximate the infinite capacity system with a finite capacity M(t)/M/s(t)/K sys-

tem, with the system capacity K chosen large enough to ensure that πK(t) < ǫK for all t,

with ǫK = 10−4. For continuously operating systems, we calculate the state probabilities for

p periods, until |πk(t + (p − 1)T ) − πk(t + pT )| is less than a specified tolerance ǫSS = 10−2

for all t ∈ [0, T ] and for all k = 0, 1, . . . , K.

Ingolfsson et al. (2007) demonstrated that the randomization method remains highly

accurate compared to the Runge-Kutta method when applied to M(t)/M/s(t) systems and

that most of the computational speed advantage of the randomization method over the

Runge-Kutta method for time homogenous systems is retained for M(t)/M/s(t) systems.

See Ingolfsson et al. (2007) for details of our implementation of the randomization method.

5 Parameter Estimation Procedure

The first step in our procedure uses the randomization method to calculate strict lower

bounds bmin
j on the staffing levels sj in each period and to estimate how the service level in

each period increases as a function of increased staffing.

The strict lower bounds have a different meaning and are calculated differently from the

SIPP (or lag max) staffing requirements used in Problem (2). The strict lower bound bmin
j is

the minimum number of servers needed in period j to ensure the service level constraint is

satisfied during that period, assuming that the system is empty at the beginning of period

j and that all waiting customers will enter service at the beginning of period j + 1. Both

assumptions are optimistic and therefore the strict lower bound specifies a necessary (but

not sufficient) condition on the number of servers. To compute the strict lower bound for

period j, one pretends that the system is empty at the beginning of the period (by setting

π((j − 1)δ) = (1, 0, . . .)), chooses a staffing level sj, and computes the resulting transient

service level SL(t) for t ∈ ((j − 1)δ, jδ]. If SL(t) drops below SLmin during the period,

then one increases sj and repeats the calculation, until one finds the smallest sj such that

SL(t) ≥ SLmin for t ∈ ((j − 1)δ, jδ]. In performing these calculations, one needs to set

sj+1 = ∞ (in practice, a very large number), to remove dependence of the service level in

period j on staffing in period j + 1. Referring back to the example in Section 2, the strict

lower bound for planning period 1 was 28. As Figure 5 illustrates, if the system starts empty,

with 28 scheduled servers in period 1, then the service level stays above 80% throughout the
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Figure 6: Illustration of strict lower bound calculation for period 2.

first period. With 27 servers in the first period (not shown), the service level drops below

80% before the end of the period. To illustrate the calculation of the strict lower bound for

the second period, Figure 6 shows the transient service level during that period if the system

is empty at the beginning of the period and staffing is either 31 or 32. The lowest staffing

level that achieves the desired service level throughout the period is 32, so bmin
2 = 32.

If sj is smaller than bmin
j , then the service level constraint is certain to be violated during

period j, regardless of staffing in other periods. If the system is not empty at the beginning

of the period or if the number of servers is reduced at the end of the period, then sj may

need to be strictly greater than bmin
j for the service level constraint to be satisfied during

period j; hence the term strict lower bound. We use bisection search to compute the strict

lower bounds, using the randomization method at each iteration to calculate transient service

levels.

If SIPP server requirements truly represented sufficient conditions that guaranteed that

the service level was met, then these server requirements would always be larger than or equal

to the corresponding strict lower bounds. This is usually the case. There are exceptions,

however—particularly when the arrival rate changes considerably during a planning period.

Such exceptions are more common with the lag max approach. For example, in Figures 3

and 4, the lag max staffing requirement for the 6:30-6:45 planning period is 3 servers but

the strict lower bound is 5 servers.

Our estimate of how the minimum service level in a planning period increases with in-

creased staffing in that planning period is based on an approximation that we describe in
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a moment. To motivate the approximation, consider how the service level in a stationary

M/M/s system changes when s increases. For s > λ/µ, the service level is concave increasing

in s and approaches 100% in the limit (from results in Jagers and Van Doorn 1991). There-

fore, it seems plausible to expect min{SL(t) : t ∈ ((j − 1)δ, jδ]} to be concave increasing in

sj and to approach 100% in the limit, for sj above some inflection point. We assume, for

our approximation, that this inflection point is at or below the strict lower bound bmin
j .

We approximate min{SL(t) : t ∈ ((j − 1)δ, jδ]} with an exponential function of sj ,

as follows. Denote the minimum service level during planning period j when sj = bmin
j

and sj−1 = sj+1 = ∞ by SLj,0. We set sj = bmin
j + 1, continue to assume that sj−1 =

sj+1 = ∞ and calculate the minimum service level during the period, which we denote

SLj,1. Suppose that with a particular schedule, staffing in planning period j is sj, and the

minimum service level during planning period j is SLj,current < SLmin. If staffing increases

to sj + k, then we approximate the minimum service level during planning period j as

SLj,current +(1−SLj,current)(1−exp(−djk)). We estimate the unknown constant dj by solving

SLj,0 + (1 − SLj,0)(1 − exp(−dj)) = SLj,1, resulting in dj = − ln ((1 − SLj,1)/(1 − SLj,0)).

Then we use dj to estimate the smallest number k⋆
j of additional servers needed to bring the

minimum service level in planning period j above SLmin:

SLj,current + (1 − SLj,current)(1 − exp(−djkj)) ≥ SLmin

⇔ kj ≥ − ln ((1 − SLmin)/(1 − SLj,current)) /dj

⇒ k⋆
j = ⌈− ln ((1 − SLmin)/(1 − SLj,current)) /dj⌉ (3)

These estimates are used in the integer programming heuristic to generate constraints. In

recognition that the procedure for estimating the required staffing increase involves approx-

imation, we introduce (in the next section) an algorithm parameter β to “scale down” the

required increase, in order to reduce the risk of adding constraints that eliminate the optimal

solution.

6 Integer Programming Heuristic

Our heuristic begins by using the approximate approach, with SIPP and lag max staffing

requirements, to obtain two staffing solutions. We use the randomization method to calculate

the transient service level resulting from these two solutions. If one of these solutions satisfies

the service level constraint throughout the interval [0, T ], then we store it as xapprox and use

its cost C(xapprox) as an upper bound. (If more than one approximate solution satisfies the

14



service level constraint then we use the least costly solution.)

Next, we solve the following integer program:

minimize C(x)

subject to sj(x) ≥ bmin
j for j = 1, 2, . . . , n (4)

n
∑

j=1

sj(x) ≥

⌈

∫ T

0
λ(t)dt/µ

⌉

xi ≥ 0, integer, for i ∈ I

This integer program is linear, because sj(x) is linear in x (see Section 3). We note that,

instead of xi being the number of servers scheduled to work shift i, the vector x could be

any set of decision variables used to (fully or partially) specify a schedule, as long as sj(x)

is a linear function of x, to ensure that the above integer program is linear. For example, x

could include “break variables” as in Aykin (1996).

The definition of the strict lower bounds bmin
j implies that (4) is a relaxation of Problem (1)

and therefore, its optimal cost is a lower bound on the optimal cost for Problem (1). Once we

have this initial solution, we begin iterating between calculating service levels for a solution

and obtaining new solutions by solving the integer program again, with some constraints

added and some deleted.

An iteration begins by calculating the service level SL(t) for t ∈ [0, T ] for a solution

xcurrent (we calculate the service level at 5-minute intervals). Then we enumerate all in-

feasible planning periods, defined as ones where the service level drops below SLmin. Let

(l, l + 1, . . . , u) be an infeasible interval of consecutive infeasible periods. We estimate the

additional staffing (measured in server-planning periods) needed to bring the service level

above SLmin as
∑u

j=l k
⋆
j , using equation (3) to compute k⋆

j , and add the following constraint

to the integer program, for all infeasible intervals:

u
∑

j=l

sj(x) ≥
u

∑

j=l

sj(xcurrent) + max



1,







β
u

∑

j=l

k⋆
j











 (5)

(β is a parameter between 0 and 1 whose value and role is explained later.)

When a new constraint a′x ≥ b′ is added, we eliminate any existing constraint a′′x ≥ b′′

that is dominated by the new constraint (that is, if a′′ ≥ a′ (elementwise) and b′′ ≤ b′).

Every integer program that we solve can be represented as follows:

minimize C(x)
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subject to
∑

i∈I

aijxi ≥ bmin
j for j = 1, 2, . . . , n (6)

uv
∑

j=lv

∑

i∈I

aijxi ≥ bv, for v ∈ V

xi ≥ 0, integer, for i ∈ I

where V is the set of constraints of the form (5) that have been added so far (note that

the second constraint in (4) is of the same form as (5)). Formulation (6) includes, first,

period-by-period staffing constraints, just as Problem (2) does. Importantly, the second set

of constraints has a different structure. Instead of constraining minimum staffing in a period,

these constraints specify that staffing in an interval must be increased by a certain amount.

The integer programming solver distributes the required staffing increase over the interval

so as to minimize cost. The structure of the constraints in (6) suggests that our approach

should be better able to exploit scheduling flexibility than the approximate approach.

The parameter β ∈ [0, 1] in expression (5) influences both solution quality and solution

speed. A low β makes it unlikely that we add a constraint that eliminate the optimal solution

to Problem (1), and makes our procedure more likely return the optimal solution. However,

low values for β will also lead to more iterations. We experimented with values of β from 0.3

to 1.0 (see Appendix B) and these hypotheses were generally confirmed, although solution

quality appeared not to be particularly sensitive to β.

At each iteration, before solving the integer program, we solve its LP relaxation to obtain

the solution xLP . If the costs ci are integer (as in our computational experiments), then we

tighten the formulation by adding the valid inequality C(x) ≥ ⌈C(xLP )⌉. We also use the

LP solution to construct a solution xfeas by rounding all components of xLP up to the nearest

integer. This solution is feasible for (6), because all constraint coefficients in (6) are non-

negative and all constraints are of the “greater than or equal to” type. The resulting upper

bound C(xfeas) on the cost of the integer program helps when using a branch-and-bound

solver. If some of the constraint coefficients are negative, as in Aykin’s (1996) formulation,

then a more sophisticated rounding heuristic is needed to generate a feasible solution; for

example, see Aykin (1998).

After adding and deleting constraints in this fashion, we solve the integer program again.

We iterate between calculating service levels and solving integer programs until either all

planning periods are feasible, or the cost of the integer program exceeds C(xapprox). The

final solution is guaranteed to be feasible to Problem (1), but it may not be optimal.

Other heuristics are possible for the schedule generator. For example, Atlason et al.
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(2004) add constraints based on estimated subgradients of the service level function with

respect to staffing in each planning period. Evaluating subgradients is considerably more

computationally expensive than just the service level resulting from the current schedule,

which is all that our procedure requires. Atlason et al.’s procedure has the advantage that

it converges to the optimal solution, but only if the service level function is concave in the

staffing vector (s1, . . . , sn). The service level for Problem (1) is not a concave function of

staffing, if one considers all possible staffing levels—rather, the service level increases from

zero to one according to an S-shaped curve as staffing increases. Atlason et al. (2008) use

a different heuristic, which is optimal if the service level is pseudoconcave in the staffing

levels; an assumption that appears realistic. Instead of subgradients, this heuristic requires

“pseudogradients,” which are equally expensive to compute. We compare the performance

of our method to this method in the next section.

7 Computational Experiments

We have compared the performance of our method to the approximate approach and to the

Analytic Center Cutting Plane Method (ACCPM) from Atlason et al. (2008) on a variety of

test problems. Appendix C outlines how we applied ACCPM to our model. All experiments

that we report on in this section were run on a 1.66 GHz Windows PC with 0.99 Gb of

RAM. The randomization method was coded in Matlab, and the integer programs were

solved using the Tomlab optimization environment (Holmström, 1999), using CPLEX 11 to

solve all linear and integer programs and using SNOPT 7.2 to solve the nonlinear programs

required by ACCPM. When solving integer programs, we set the maximum duality gap to

0.5% and the maximum number of simplex iterations to 5,000, except when solving integer

programs to compute ACCPM lower bounds, where we left the maximum duality gap at its

default value. The parameter β was set to 0.7, based on experimentation that is described

in Appendix B. We set the calculation period δcalc to 5 minutes in all of the experiments, as

was done in Ingolfsson et al. (2007).

In choosing test problems, our aim was to identify situations where our approach is most

likely to be beneficial. Green et al. (2001, 2003) demonstrated that the lag max modification

to the SIPP approach improves reliability considerably in many situations. For our first set

of 27 test problems we focused on situations where the lag max approach is least reliable,

namely, situations when the service facility has limited operating hours, large variation in

arrival rate, long average service times, and short planning periods (see Green et al., 2003).
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We fixed the operating hours to T = 12 hours and used a sinusoidal arrival rate function

λ(t) = λ{1 + γ sin(πt/4)} to specify the inhomogeneous Poisson arrival process, similarly

to Green et al. (2003). The parameter γ is the “relative amplitude” and the parameter

λ determines (but is not equal to) the average arrival rate. This arrival rate function has

two peaks, at t = 2 and 10, corresponding to a morning and afternoon peak. The average

arrival rate over the 12 hours is λ̄ = λ(1 + 2γ/(3π)). We specified our 27 test problems by

varying the service rate (µ = 1, 2, or 4 customers per hour), the average offered load r = λ̄/µ

(16, 32, or 64), and the length of a planning period δ (0.25, 0.5, or 1 hours). We fixed the

relative amplitude at γ = 1. The example in Section 2 is one of the problems in this set,

corresponding to µ = 2, r = 64, and δ = 0.25.

To facilitate comparison with results from Green et al. (2003), we used a threshold

τ = 0—the service level is equal, in this case, to the probability of zero queue delay. The

minimum service level was set to SLmin = 80%. We also performed the same experiments

with a threshold τ = 20 seconds (a common target for call centers, Gans et al., 2003) and

obtained very similar numerical results. We used a set of shifts that we believe are realistic,

specified as follows. Shifts can be 4, 6, or 8 hours in length, including breaks. The number

of breaks varies from 1 to 3 depending on the shift length and the planning period length

and the timing of breaks is flexible. Shifts can start in any planning period, as long as the

shift ends by time T . The number of permissible shifts varied from 45 for δ = 1 to 243 for

δ = 0.25. Appendix A provides further details on the set of permissible shifts. We set the

cost of each shift equal to the number of hours of work (excluding breaks) contained in it.

Thus, the cost of a schedule equals the total number of scheduled person-hours.

We compared our method both to the approximate approach and to the ACCPM ap-

proach. We begin by describing our comparisons to the approximate approach, where we

solved each test problem three times: using the approximate approach with SIPP and lag

max staffing requirements, to obtain solutions x1 and x2, and using our method to obtain a

solution x3. If the minimum service level SL′

min (evaluated using the randomization method)

of the lag max solution was less than the desired minimum SLmin, then we used our method

with the constraint SL(t) ≥ SL′

min to obtain a fourth solution x4.

Table 1 shows the cost and minimum service level of the solutions obtained with the

SIPP, lag max, and our approach for each test problem. For the approximate SIPP and lag

max approaches, we also show the fraction of 5-minute intervals during which the service

level drops below 80%. We calculated the percent cost reduction achieved by our approach

compared to the lag max approach as 1 − C(x3)/C(x2) (column (7) in Table 1). When the

approximate lag max approach resulted in an infeasible solution, we used 1 − C(x4)/C(x2)
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to calculate an alternative measure of percent cost reduction (column (10) in Table 1).

Table 1 reveals the following trends:

• The approximate SIPP approach is highly unreliable for these test problems. The lag

max modification is more reliable, but it fails to produce a solution that satisfies the

service level constraint for 13 of the 27 problems. This is consistent with results in

Green et al. (2003).

• Our approach resulted in lower cost than the approximate lag max approach for all

problems, even ones where the lag max solution was infeasible. The cost savings ranged

from 1.4% to 10.4%, averaging 5.5%.

• The cost savings are even greater when we adjust the percent savings calculation for

test problems where the lag max solution was infeasible, with cost reductions ranging

from 1.4% to 30.2%, averaging 11.0%.

• Solution cost always decreases with decreased planning period length when µ and r

are fixed, for both the approximate lag max approach and our approach. This is what

one would hope happens, because decreased planning period length implies additional

scheduling flexibility, so all else being equal, the solution cost should decrease.

Table 2 shows computation times for the approximate approach and our approach. The com-

putation time for our approach is divided into the time for the initial parameter estimation

procedure and the time for iterations between solving integer programs and computing ser-

vice levels. On average, 33% of the computation time was spent on the parameter estimation

procedure. The total computation time per problem ranged from 0.26 to 5.31 minutes.

We found our method’s computation times for these test problems to be highly predictable

as a function of the experimental factors µ, r, and δ. The parameter estimation computation

times in Table 2 were well approximated (R2 = 0.97) by 0.0024r1.14δ−1.17µ0.20. A shorter

planning period length implies more planning periods and more parameters to estimate, so

the inverse relationship with δ is not surprising. A higher average offered load r implies that

the randomization method will need to solve larger systems, and therefore the parameter

estimation time for each planning period increases. We analyzed the number of iterations

and the average time per iteration separately and found the number of iterations to be

almost independent of δ, while the average time per iteration was almost independent of

µ. Combining these two analyses resulted in the following approximation for the iterations

computation time (R2 = 0.88): 0.0067r1.26δ−0.63µ−0.29. The computation time per iteration
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Table 1: Cost and service level results.

Our method, with
Approximate SIPP approach Approximate lag max approach Our method SLmin=min(80%, (3a))
(1a) (1b) (2) (3a) (3b) (4) (5) (6) (7) (8) (9) (10)
min fraction min fraction min Cost min Cost

µ r δ SL(t) < 80% C(x1) SL(t) < 80% C(x2) SL(t) C(x3) savings SL(t) C(x4) savings

1 16 0.25 0.8% 39.6% 273 36.3% 15.8% 280.5 80.6% 256 8.7% 36.5% 207 26.2%
1 16 0.5 0.7% 37.5% 268 47.5% 8.3% 289.5 81.0% 263 9.2% 47.7% 222 23.3%
1 16 1 0.6% 47.6% 258 48.2% 4.2% 297 80.6% 266 10.4% 49.1% 232 21.9%
1 32 0.25 0.0% 41.7% 503 15.1% 16.7% 519 80.3% 470 9.4% 15.7% 377.5 27.3%
1 32 0.5 0.0% 41.7% 500 29.7% 8.3% 532.5 80.8% 486.5 8.6% 31.0% 410.5 22.9%
1 32 1 0.0% 44.0% 486 30.2% 5.4% 550 80.3% 494 10.2% 34.5% 427 22.4%
1 64 0.25 0.0% 41.7% 954 1.7% 17.1% 983.5 80.4% 894.5 9.0% 1.8% 686.5 30.2%
1 64 0.5 0.0% 41.7% 946 9.9% 8.3% 1012 81.2% 924.5 8.6% 10.6% 749.5 25.9%
1 64 1 0.0% 41.7% 916 10.2% 5.4% 1047 80.4% 943 9.9% 10.5% 768 26.6%
2 16 0.25 8.2% 34.2% 273 81.4% 0.0% 281.5 80.6% 266 5.5%
2 16 0.5 6.0% 37.5% 268 83.4% 0.0% 289.5 81.2% 273 5.7%
2 16 1 4.6% 38.7% 258 83.5% 0.0% 304 80.1% 282 7.2%
2 32 0.25 0.6% 38.8% 503 77.9% 0.4% 519.5 81.9% 506 2.6% 78.0% 496 4.5%
2 32 0.5 0.4% 44.4% 500 78.4% 1.4% 534.5 80.2% 511 4.4% 78.5% 505.5 5.4%
2 32 1 0.1% 38.1% 486 78.5% 0.6% 559 80.6% 536 4.1% 79.2% 528 5.5%
2 64 0.25 0.0% 42.5% 954 76.6% 1.7% 987 80.0% 947.5 4.0% 77.0% 940 4.8%
2 64 0.5 0.0% 44.4% 946 80.4% 0.0% 1016 80.1% 965 5.0%
2 64 1 0.0% 43.5% 916 80.5% 0.0% 1066 80.4% 1016 4.7%
4 16 0.25 31.3% 28.3% 273 83.6% 0.0% 282 80.9% 272.5 3.4%
4 16 0.5 22.1% 29.2% 268 84.0% 0.0% 289.5 80.4% 278.5 3.8%
4 16 1 13.2% 42.3% 258 84.0% 0.0% 301 80.7% 292 3.0%
4 32 0.25 9.5% 35.4% 503 83.1% 0.0% 518 80.7% 510.5 1.4%
4 32 0.5 5.5% 36.1% 500 84.2% 0.0% 533 80.0% 520.5 2.3%
4 32 1 2.1% 42.3% 486 84.2% 0.0% 559 80.1% 545 2.5%
4 64 0.25 1.0% 38.3% 954 81.6% 0.0% 984 80.3% 970 1.4%
4 64 0.5 0.2% 38.9% 946 82.2% 0.0% 1015.5 80.0% 993.5 2.2%
4 64 1 0.0% 52.4% 916 85.0% 0.0% 1064 80.8% 1049 1.4%
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Table 2: Computation time (minutes).

Our method
Approximate Lag max Parameter Number of

µ r δ approach approach estimation Iterations Total Iterations
1 16 0.25 0.02 0.02 0.33 0.59 0.92 22
1 16 0.5 0.01 0.01 0.11 0.29 0.41 25
1 16 1 0.01 0.01 0.06 0.23 0.29 21
1 32 0.25 0.03 0.03 0.55 1.09 1.64 30
1 32 0.5 0.02 0.02 0.22 0.55 0.77 33
1 32 1 0.01 0.02 0.12 0.65 0.76 38
1 64 0.25 0.06 0.06 1.91 3.40 5.31 44
1 64 0.5 0.03 0.03 0.61 1.62 2.23 41
1 64 1 0.03 0.03 0.26 1.93 2.19 60
2 16 0.25 0.02 0.02 0.34 0.59 0.93 22
2 16 0.5 0.01 0.01 0.13 0.21 0.34 14
2 16 1 0.01 0.01 0.08 0.18 0.26 14
2 32 0.25 0.04 0.04 0.68 1.56 2.23 37
2 32 0.5 0.02 0.02 0.28 0.49 0.76 22
2 32 1 0.02 0.02 0.14 0.55 0.70 29
2 64 0.25 0.07 0.06 1.91 3.10 5.01 35
2 64 0.5 0.03 0.03 0.67 1.13 1.81 26
2 64 1 0.03 0.03 0.30 1.39 1.70 39
4 16 0.25 0.03 0.03 0.37 0.48 0.85 16
4 16 0.5 0.01 0.01 0.17 0.18 0.35 10
4 16 1 0.01 0.01 0.09 0.21 0.30 14
4 32 0.25 0.04 0.04 0.73 0.95 1.67 20
4 32 0.5 0.02 0.02 0.33 0.34 0.67 12
4 32 1 0.02 0.02 0.16 0.37 0.53 15
4 64 0.25 0.07 0.07 2.00 2.89 4.89 30
4 64 0.5 0.04 0.05 0.75 0.76 1.52 14
4 64 1 0.04 0.04 0.39 0.93 1.32 19

21



should decrease with increased planning period length, because shorter planning periods

imply a larger number of permissible shifts (in our experimental design, and likely in practice

as well) and hence a larger integer program. The approximation equation confirms this

expectation. We caution that it is not safe to extrapolate the approximation equations to

situations beyond the test problems we considered, particularly ones where the factors that

we kept fixed (for example, limited facility operating hours) vary.

To compare our method to ACCPM, we ran that algorithm two times for each of the

27 problems. First, we gave ACCPM the same computational budget as our method and

recorded the best solution x5 found by ACCPM. Second, we ran ACCPM until it found a

solution x6 for which the lower and upper bounds maintained by the method were within

1% of each other. Table 3 shows the minimum service level, cost, and computation time

required to find solutions x3 (by our method), x5, and x6. We also show optimality gaps for

both methods, computed as C(x3)/LB − 1 for our method and C(x6)/LB − 1 for ACCPM,

where LB is the best lower bound found by ACCPM.

Comparing our method to ACCPM, we observe the following:

• When given the same computational budget as our method, ACCPM found solutions

that were 11% to 88% more costly than those found by our method.

• Running ACCPM until it found a solution guaranteed to be within 1% of optimality

typically required about 20 times as much computation as our method.

• Comparing the best solutions found by the two methods, ACCPM found a better

solution for 20 test problems, our method found a better solution for 3 problems, and

the cost was the same for 4 test problems. The average optimality gap was 0.76%

(maximum = 0.99%) for ACCPM and 1.19% (maximum = 2.53%) for our method.

ACCPM has the important advantage of providing good lower bounds on the optimal cost

of Problem (1). Unfortunately, based on our experiments, it appears that computing the

value of the lower bounds is very time consuming. Because of this, for two problem instances

(indicated in Table 3), we were unable to find solutions that were guaranteed to be within

1% of optimality within 5 hours of computation time. Computing the lower bounds involves

solving integer programs, and Atlason et al. (2008) mention that one could solve linear pro-

gramming relaxations instead. We tried this, but it appeared that the reduction in the time

needed to compute the lower bounds came at the expense of a larger number of iterations,

and the total computation time was not reduced. Instead, for the two problem instances

mentioned, we solved the lower bound integer programs to within 0.5% of optimality. This
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Table 3: Comparison of our method and ACCPM.

Our method ACCPM
min Comp. min min Comp. Optimality gaps:

µ r δ C(x3) SL(t) time (min.) C(x5) SL(t) C(x6) SL(t) time (min.) ACCPM Our Method
1 16 0.25 256 80.6% 0.92 480 99.87% 252.5 80.12% 43.92 0.60% 1.99%
1 16 0.5 263 81.0% 0.41 332.5 87.62% 259.5 80.94% 5.33 0.58% 1.94%
1 16 1 266 80.6% 0.29 329 88.84% 264 80.02% 1.04 0.00% 0.76%
1 32 0.25 470 80.3% 1.64 864 99.95% 470 80.55% 42.69 0.97% 0.97%
1 32 0.5 486.5 80.8% 0.77 590 81.26% 482 80.89% 6.61 0.94% 1.88%
1 32 1 494 80.3% 0.76 577 80.02% 493 80.61% 1.77 0.61% 0.82%
1 64 0.25 894.5 80.4% 5.31 1227.5 86.68% 891 80.25% 94.80 0.62% 1.02%
1 64 0.5 924.5 81.2% 2.23 1060 81.56% 914 80.01% 16.51 0.66% 1.82%
1 64 1 943 80.4% 2.19 1048 80.41% 943 81.45% 4.04 0.86% 0.86%
2 16 0.25 266 80.6% 0.93 480 99.50% 264.5 80.31% 25.22 0.95% 1.53%
2 16 0.5 273 81.2% 0.34 337 86.79% 273 80.01% 7.01 0.92% 0.92%
2 16 1 282 80.1% 0.26 346 84.31% 282 80.75% 1.13 0.71% 0.71%
2 32 0.25 506 81.9% 2.23 864 99.66% 496 80.46% 157.66 0.51% 2.53%
2 32 0.5 511 80.2% 0.76 624.5 86.95% 509.5 80.30% 6.27 0.79% 1.09%
2 32 1 536 80.6% 0.70 616 83.15% 533 80.07% 1.70 0.95% 1.52%
2 64 0.25 947.5 80.0% 5.01 1632 99.92% 946.5 80.14% 59.74 0.91% * 1.01% *
2 64 0.5 965 80.1% 1.81 1200 81.01% 969 78.73% 10.28 0.99% 0.57%
2 64 1 1016 80.4% 1.70 1163 80.45% 1018 80.46% 4.04 0.99% 0.79%
4 16 0.25 272.5 80.9% 0.85 480 99.24% 271 80.16% 29.87 0.93% 1.49%
4 16 0.5 278.5 80.4% 0.35 353.5 82.30% 277 80.57% 4.69 0.91% 1.46%
4 16 1 292 80.7% 0.30 367 82.67% 290 80.07% 1.20 0.35% 1.04%
4 32 0.25 510.5 80.7% 1.67 864 99.39% 508.5 80.25% 193.21 0.59% 0.99%
4 32 0.5 520.5 80.0% 0.67 621.5 83.16% 519 80.85% 79.72 0.78% 1.07%
4 32 1 545 80.1% 0.53 692 82.89% 548 81.43% 2.56 0.92% 0.37%
4 64 0.25 970 80.3% 4.89 1632 99.80% 968.5 80.60% 273.05 0.89% 1.04%
4 64 0.5 993.5 80.0% 1.52 1197 84.25% 990.5 80.52% 8.16 0.56% * 0.86% *
4 64 1 1049 80.8% 1.32 1319 81.59% 1048 80.86% 5.70 0.96% 1.06%

*: Lower bounds not guaranteed to be valid.
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greatly reduced the computation time, but the lower bounds for these problem instances are

not guaranteed to be valid.

Appendix C provides additional information about ACCPM computation times. Ap-

pendix D contains additional computational results for the approximate methods and our

method, for 54 limited operating hours test problems for situations where Green et al. (2003)

found the lag max approach to be reliable, and for 72 continuous operating hours test prob-

lems, as in Green et al. (2001). For the former set of experiments, cost savings of our

approach over the lag max solution ranged from 0% (in 9 cases) to 8.6% and averaged 3.5%,

and for the latter set, the cost savings ranged from 0% (in 9 cases) to 3.0%, averaging 1.0%.

8 Summary and Conclusions

We developed a solution approach for the problem that appears to be tacitly assumed in most

research on tour and shift scheduling (Problem (1)). A commonly used approximate approach

often results in service-level-infeasible solutions to this problem. We tested our approach

on three sets of problems. The first set corresponds to situations where the approximate

approach has been found to be least reliable. In this setting, the lag max variant of the

approximate approach generated feasible solutions to 14 of the 27 problems. Our approach,

which is guaranteed to generate a feasible solution, resulted in cost savings compared to the

lag max approach on all 27 test problems, ranging from 1.4% to 10.4%. For the other two sets

of experiments, the approximate approach performed relatively better, but nevertheless our

approach resulted in considerable cost savings in many cases. For the first set of experiments,

we also compared our approach to ACCPM, an approach that provides lower bounds on the

minimum cost and that can be used to find globally optimal solutions. Based on the ACCPM

lower bounds, the solutions from our approach were generally within 2% of optimality, and

they were obtained in considerably less time than the ACCPM solutions.

The most obvious use for our approach is in situations where the approximate approach

is known to generate solutions where service level constraints are not satisfied. However, our

approach can also result in cost savings in other situations, where the approximate approach

is reliable, but not optimal. Furthermore, our approach can be used for verification: If

the approximate approach is sufficiently accurate, then our approach will terminate after

one iteration, with proof that the solution from the approximate approach is a feasible and

optimal solution to Problem (1).

An important issue is whether service level constraints should apply at all times or be

aggregated over a longer time period. Our formulation has one service level constraint per
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planning period, which is common in the related literature. The purpose of such constraints

could be to provide a consistent level of service over time. When the service level is lower

than desired, customers may leave or be less likely to return in the future. When the

service level is higher than desired, customers’ expectations may increase to a level that the

organization cannot sustain. These arguments suggest that one should minimize variations

in service level. A constraint on the minimum service level together with cost minimization,

as in Problem (1), will sometimes be an adequate proxy for this goal. However, a strict limit

on the instantaneous service level could be counterproductive and our approach can handle

such alternatives as allowing the service level to drop below the desired minimum for short

time intervals, or constraining the average service level over a planning period, rather than

the minimum instantaneous service level. The minimum desired service level could also vary

with time, because customers could be more tolerant of waiting, for example, in the evening

(Jackson 2002) or on paydays (Katz et al. 1991).

Future research could help illuminate the consequences of several algorithm design choices

for this and related server scheduling problems, including:

1. How to generate schedules—using a heuristic approach (such as the genetic algorithm

in Ingolfsson et al., 2002) or an integer programming constraint (or “cut”) addition

heuristic (as in the present paper, Atlason et al., 2004, 2008, and in Cezik and L’Ecuyer,

2008, who address a related multi-skill problem). Atlason et al. (2004) and Cezik and

L’Ecuyer (2008) add cuts based on estimated subgradients of the service level. This ap-

proach would guarantee an optimal solution if the service level were a concave function

of the staffing, which it is not. Atlason et al. (2008) relax the concavity requirement

to one of pseudoconcavity, which appears realistic for service levels. Instead of subgra-

dients, their cuts are based on pseudogradients. An advantage of our cuts is that they

require only one service level evaluation, while estimation of sub- or pseudogradients

using a finite difference approach requires one evaluation for each planning period. Our

cuts could be generalized to define a “feasible period” to be one where specified goals

regarding service level, probability of abandonment, and probability of blocking are

achieved. As long as each planning period can be classified as feasible or infeasible,

and as long as any infeasible period can be made feasible by increasing staffing, our

integer programming heuristic is applicable.

2. How to evaluate schedules—using simulation or an analytical approach. Simulation has

the advantage of generality, but analytical approaches should be considered seriously.

Compared to simulation, they have the advantage that noise in service level estimates
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is not an issue. As we have shown, time-varying inputs and transient effects can be

handled analytically, using a numerical approach. Abandonments and blocking can

be incorporated in an analytical model as well. Another important feature is the

discipline used when servers finish their shift. The pre-emptive discipline that we used

will sometimes be unrealistic. A possible alternative is an exhaustive service discipline,

where servers complete the current service before leaving. Ingolfsson et al. (2007) and

Ingolfsson (2005) demonstrate how to treat this discipline analytically. We adopted

the pre-emptive discipline in this paper to facilitate comparison of our computational

results to Green et al. (2001, 2003).

3. The benefit of using of strict lower bounds. Such bounds can speed convergence of

any integer programming-based heuristic that iterates between staffing and scheduling

(Steps 2 and 3 in Section 1).

4. Combining methods. Our computations with Atlason et al.’s (2008) ACCPM suggest

that combining it with our method could be a fruitful strategy. Our method could be

used to quickly generate a near-optimal feasible solution. This solution could then be

used as a starting solution by ACCPM, which could improve the solution further and

provide lower bounds on the solution cost.
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