
Chapter 4. Differentiation

§1. Basic Properties of the Derivative

Let f be a real-valued function defined on an interval I in IR. The derivative of f

at a point a ∈ I is defined to be

lim
x→a

f(x)− f(a)

x− a
,

if this limit exists as a real number. The derivative f at a is denoted by f ′(a). We say

that f is differentiable at a if f ′(a) exists. We say that f is differentiable on I if f ′(x)

exists at each x ∈ I. In this case, f ′ itself is a function from I to IR.

For example, let n ∈ IN0 and let f(x) = xn for x ∈ IR. We show that f ′(x) = nxn−1

for all x ∈ IR. Indeed, for n = 0 we have f(x) = 1 for all x ∈ IR. Consequently, f ′(x) = 0

for all x ∈ IR. Suppose n ∈ IN. For a ∈ IR and x ̸= a, we have

f(x)− f(a)

x− a
= xn−1 + axn−2 + · · ·+ an−2x+ an−1.

It follows that

lim
x→a

f(x)− f(a)

x− a
= an−1 + aan−2 + · · ·+ an−2a+ an−1 = nan−1.

If f is differentiable at a point a, then f is continuous at a. Indeed, for x ̸= a we have

f(x) = (x− a)
f(x)− f(a)

x− a
+ f(a).

Hence, limx→a f(x) = f(a).

Theorem 1.1. Let f and g be two functions from an interval I to IR. Suppose that f

and g are differentiable at a point a ∈ I.

(1) For any c ∈ IR, the function cf is differentiable at a and (cf)′(a) = cf ′(a).

(2) The function f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a).

(3) The function fg is differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(4) If g(a) ̸= 0, then the function f/g is differentiable at a and(f
g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Proof. (1) We have

(cf)′(a) = lim
x→a

(cf)(x)− (cf)(a)

x− a
= lim

x→a
c · f(x)− f(a)

x− a
= cf ′(a).
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(2) This is true because the following identity holds for x ̸= a:

(f + g)(x)− (f + g)(a)

x− a
=

f(x)− f(a)

x− a
+

g(x)− g(a)

x− a
.

(3) For x ∈ I \ {a}, we have

(fg)(x)− (fg)(a)

x− a
= f(x)

g(x)− g(a)

x− a
+ g(a)

f(x)− f(a)

x− a
.

Taking the limit as x → a and noting that limx→a f(x) = f(a), we obtain the product

rule.

(4) Since g(a) ̸= 0 and g is continuous at a, there exists an open interval J containing

a such that g(x) ̸= 0 for x ∈ I ∩ J . For x ∈ I ∩ J we can write

(f
g

)
(x)−

(f
g

)
(a) =

g(a)f(x)− f(a)g(x)

g(x)g(a)
=

g(a)f(x)− g(a)f(a) + g(a)f(a)− f(a)g(x)

g(x)g(a)
.

Hence, for x ∈ I ∩ J and x ̸= a we have

(f/g)(x)− (f/g)(a)

x− a
=

(
g(a)

f(x)− f(a)

x− a
− f(a)

g(x)− g(a)

x− a

)
1

g(x)g(a)
.

Taking the limit as x → a and noting that limx→a g(x) = g(a), we obtain the quotient

rule.

For example, let p(x) := c0+ c1x+ c2x
2+ · · ·+ cnx

n for x ∈ IR, where c0, c1, c2, . . . , cn

are real numbers. Then p is a polynomial and

p′(x) = c1 + 2c2x+ · · ·+ ncnx
n−1.

Suppose p and q are two polynomials. Let Zq := {x ∈ IR : q(x) = 0}. Let h be the

rational function given by h(x) := p(x)/q(x) for x ∈ IR \ Zq. If q is not identically 0, then

Zq is a finite set. In this case, by the quotient rule we obtain

h′(x) =
p′(x)q(x)− p(x)q′(x)

[q(x)]2
, x ∈ IR \ Zq.

In particular, if n ∈ IN and h(x) := 1/xn for x ∈ IR \ {0}, then

h′(x) =
−nxn−1

x2n
= −nx−n−1, x ∈ IR \ {0}.
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Theorem 1.2. (The Chain Rule) Let f be a function from an interval I to an interval J ,

and let g be a function from J to IR. If f is differentiable at a and g is differentiable at

f(a), then the composite function g◦f is differentiable at a and (g◦f)′(a) = g′(f(a))f ′(a).

Proof. Let h be the function from J to IR given by

h(y) :=
g(y)− g(f(a))

y − f(a)
for y ∈ J \ {f(a)},

and h(f(a)) := g′(f(a)). Since g is differentiable at f(a), we have

lim
y→f(a)

h(y) = g′(f(a)) = h(f(a)).

Hence the function h is continuous at f(a). Moreover,

g(y)− g(f(a)) = h(y)(y − f(a)) ∀ y ∈ J.

Consequently, for x ∈ I \ {a} we have

g ◦ f(x)− g ◦ f(a)
x− a

= h(f(x))
f(x)− f(a)

x− a
.

Taking the limit in the above equation as x → a, we obtain (g ◦ f)′(a) = g′(f(a))f ′(a).

Theorem 1.3. (Inverse Function Theorem) Let f be a real-valued function on an interval

I in IR. If f is strictly monotone and continuous, then J := f(I) is an interval in IR and

the inverse function g of f is continuous. If, in addition, f is differentiable at some point

c ∈ I and f ′(c) ̸= 0, then g is differentiable at f(c) and

g′(f(c)) =
1

f ′(c)
.

Proof. It suffices to prove the theorem for the case that f is strictly increasing. The

first part of the theorem was proved in Theorem 5.3 of Chapter 3. Suppose that f is

differentiable at c ∈ I and f ′(c) ̸= 0. To each y ∈ J let x = g(y). Then y = f(x). Since g

is continuous, we have

lim
y→f(c)

x = lim
y→f(c)

g(y) = g(f(c)) = c.

Moreover, y ̸= f(c) implies x ̸= c. Hence,

lim
y→f(c)

g(y)− g(f(c))

y − f(c)
= lim

x→c

x− c

f(x)− f(c)
= lim

x→c

1
f(x)−f(c)

x−c

=
1

f ′(c)
.

This shows g′(f(c)) = 1/f ′(c).
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Let us find the derivative of the root function g : x 7→ n
√
x, x ∈ (0,∞), where n is

a positive integer. It is the inverse of the power function f : x 7→ xn, x ∈ (0,∞). In

particular, f( n
√
x) = x for all x ∈ (0,∞). By Theorem 1.3, g is differentiable on (0,∞)

and

g′(x) =
1

f ′( n
√
x)

=
1

n( n
√
x)n−1

=
1

n
x1/n−1, x ∈ (0,∞).

Moreover, let h(x) = xr for x > 0, where r = m/n, m ∈ ZZ and n ∈ IN. Consequently,

h(x) = [x1/n]m. By the chain rule, we have

h′(x) = m[x1/n]m−1 1

n
x1/n−1 = r xr−1, x > 0.

§2. The Derivative of the Exponential and Logarithmic Functions

In this section we will find the derivatives of the exponential and logarithmic functions.

Fix a ∈ (0, 1) ∪ (1,∞). Let f(x) := ax for x ∈ (−∞,∞) and g(x) := loga x for

x ∈ (0,∞). First, we find the derivative of the logarithmic function g. Suppose x > 0. For

|h| < x we have

loga(x+ h)− loga x = loga
x+ h

x
= loga

(
1 +

h

x

)
.

Set y := h/x. Then h = xy and

loga(x+ h)− loga x

h
=

1

xy
loga(1 + y) =

1

x
loga(1 + y)1/y.

Clearly, limh→0 y = limh→0(h/x) = 0. Hence

lim
h→0

loga(x+ h)− loga x

h
= lim

y→0

1

x
loga(1 + y)1/y.

We assert that limy→0(1 + y)1/y exists as a positive real number. Assuming that our

assertion is valid and e := limy→0(1 + y)1/y, we infer that

g′(x) = lim
h→0

loga(x+ h)− loga x

h
=

loga e

x
.

We write lnx for loge x and call it the natural logarithm of x. Let u(x) := ex for x ∈ IR

and v(x) := lnx for x ∈ (0,∞). By what has been proved, v′(x) = 1/x for x ∈ (0,∞). By

the Inverse Function Theorem, u is differentiable on IR and

u′(x) = u′(v(ex)) =
1

v′(ex)
=

1

1/ex
= ex, x ∈ IR.
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Note that f(x) = ax = (eln a)x = ex ln a. By the chain rule we obtain

f ′(x) = ex ln a ln a = ax ln a, x ∈ IR.

For µ ∈ IR, let q be the function given by q(x) := xµ for x > 0. Then q(x) = eµ ln x. By

the chain rule we get

q′(x) = eµ lnx µ

x
= xµ µ

x
= µxµ−1, x > 0.

In order to prove that limy→0(1 + y)1/y exists, we first consider limn→∞ sn, where

sn := (1 + 1/n)n for n ∈ IN.

By the Binomial Theorem we have

sn =
(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1n−k

( 1

n

)k

=

n∑
k=0

cn,k,

where cn,k :=
(
n
k

)
(1/n)k. Clearly, cn,0 = cn,1 = 1. For n ≥ k ≥ 2 we have

cn,k =
n!

k!(n− k)!

1

nk
=

1

k!

n(n− 1) · · · (n− k + 1)

nk

=
1

k!

n

n

n− 1

n
· · · n− k + 1

n
=

1

k!

k−1∏
j=1

(
1− j

n

)
.

It follows that

cn+1,k =
1

k!

k−1∏
j=1

(
1− j

n+ 1

)
>

1

k!

k−1∏
j=1

(
1− j

n

)
= cn,k,

because 1− j/(n+ 1) > 1− j/n for j = 1, . . . , k − 1. Hence

sn+1 =
n+1∑
k=0

cn+1,k >
n∑

k=0

cn+1,k >
n∑

k=0

cn,k = sn.

This shows that (sn)n=1,2,... is an increasing sequence.

Next, we demonstrate that the sequence (sn)n=1,2,... is bounded. We have cn,k ≤ 1/k!

for n ≥ k ≥ 2. Consequently,

sn =

n∑
k=0

cn,k ≤ 1 + 1 +

n∑
k=2

1

k!
=: tn.
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We can use mathematical induction to prove that k! ≥ 2k−1 for all k ≥ 2. It follows that

tn ≤ 2 +
n∑

k=2

1

2k−1
< 3.

Therefore, sn < 3 for all n ∈ IN. Thus limn→∞ sn exists as a real number. Let e denote

the limit.

Fix an integer n ≥ 2. For m > n we have

sm = 2 +
m∑

k=2

1

k!

k−1∏
j=1

(
1− j

m

)
> 2 +

n∑
k=2

1

k!

k−1∏
j=1

(
1− j

m

)
.

Letting m → ∞ in the above inequality, we obtain e ≥ tn. Thus, sn ≤ tn ≤ e for n ≥ 2.

By the squeeze theorem for sequences we get

e = lim
n→∞

tn = 2 +
∞∑
k=2

1

k!
.

An easy calculation gives e ≈ 2.718281828459045.

Since limn→∞(1 + 1/n)n = e, we have

lim
n→∞

(
1 +

1

n+ 1

)n

= e and lim
n→∞

(
1 +

1

n

)n+1

= e.

For given ε > 0, there exists some positive integer N such that

e− ε <
(
1 +

1

n+ 1

)n

<
(
1 +

1

n

)n+1

< e+ ε ∀n ≥ N.

Choose δ := 1/N . Suppose 0 < y < δ. Then 1/y ≥ N . Let n be the integer such that

n ≤ 1/y < n+ 1. It follows that 1/(n+ 1) < y ≤ 1/n. Clearly, n ≥ N . Hence we have

e− ε <
(
1 +

1

n+ 1

)n

< (1 + y)1/y <
(
1 +

1

n

)n+1

< e+ ε.

This shows limy→0+(1 + y)1/y = e. It remains to prove limy→0−(1 + y)1/y = e. For

−1 < y < 0, set z := −y/(1+y). Then z > 0 and limy→0− z = 0. Moreover, z = −y/(1+y)

implies z(1 + y) = −y. So y = −z/(1 + z). Consequently,

lim
y→0−

(1 + y)1/y = lim
z→0+

(1 + z)1+1/z = lim
z→0+

(1 + z)(1 + z)1/z = e.

This completes the proof for limy→0(1 + y)1/y = e.
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§3. The Mean Value Theorem

Let f be a function from an interval I to IR, and let c be an interior point of I. We

say that f has a local maximum (local minimum) at c, if there exists some δ > 0 such

that f(x) ≤ f(c) (f(x) ≥ f(c)) for all x ∈ I ∩ (c− δ, c+ δ).

Theorem 3.1. If f has either a local maximum or a local minimum at an interior point

c of I = [a, b] and if f is differentiable at c, then f ′(c) = 0.

Proof. Suppose that f has a local minimum at c. Then there exists some δ > 0 such that

(c− δ, c+ δ) ⊂ I and f(x) ≥ f(c) for all x ∈ (c− δ, c+ δ). Consequently, we have

f ′(c) = lim
h→0+

f(c+ h)− f(c)

h
≥ 0 and f ′(c) = lim

h→0−

f(c+ h)− f(c)

h
≤ 0.

Hence, f ′(c) = 0. If f has a local maximum at c, the proof is similar.

Theorem 3.2. (Rolle’s Theorem) Suppose that f is continuous on [a, b] and is differen-

tiable on (a, b). Suppose further that f(a) = f(b). Then there exists at least one point c

in (a, b) such that f ′(c) = 0.

Proof. If f(x) = f(a) for all x ∈ [a, b]. then f ′(x) = 0 for all x ∈ [a, b], and the theorem

is proved. Otherwise, f must have either a maximum value or a minimum value at some

point c ∈ (a, b). By Theorem 2.1, it follows that f ′(c) = 0.

Theorem 3.3. (The Mean Value Theorem) Suppose that f is continuous on [a, b] and is

differentiable on (a, b). Then there exists a point c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The line joining the points (a, f(a)) and (b, f(b)) has equation y = m(x−a)+f(a),

x ∈ IR, where m := [f(b)− f(a)]/(b− a). Let g(x) := f(x)− [m(x− a) + f(a)], a ≤ x ≤ b.

Then g is continuous on [a, b] and g is differentiable on (a, b) with g′(x) = f ′(x)−m. Note

that g(a) = g(b) = 0. By Rolle’s theorem, there exists some c ∈ (a, b) such that g′(c) = 0.

For this c we have f ′(c) = m = [f(b)− f(a)]/(b− a).

Theorem 3.4. (The Generalized Mean Value Theorem) Let f and g be two functions

each of which is continuous on [a, b] and differentiable on (a, b). Then there exists a point

c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).
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Proof. Let h be the function given by

h(x) := [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x), x ∈ [a, b].

Then h is continuous on [a, b] and differentiable on (a, b). By Rolle’s theorem, h′(c) = 0

for some c ∈ (a, b). This completes the proof of the theorem.

§4. Applications of the Mean Value Theorem

The following theorem is an application of the mean value theorem to the study of

monotone functions. Given an interval I in IR, recall that I◦ is the set of all interior points

of I.

Theorem 4.1. Let f be a real-valued function on an interval I in IR. Suppose that f is

continuous on I and differentiable on I◦. Then the following statements are true:

(1) If f ′(x) > 0 for all x ∈ I◦, then f is strictly increasing on I.

(2) If f ′(x) < 0 for all x ∈ I◦, then f is strictly decreasing on I.

(3) If f ′(x) ≥ 0 for all x ∈ I◦, then f is increasing on I.

(4) If f ′(x) ≤ 0 for all x ∈ I◦, then f is decreasing on I.

(5) If f ′(x) = 0 for all x ∈ I◦, then f is constant on I.

Proof. Let us prove (1). Consider x1, x2 ∈ I with x1 < x2. By the mean value theorem,

there exists some c ∈ (x1, x2) such that f(x2) − f(x1) = f ′(c)(x2 − x1). Clearly, c ∈ I◦

and hence f ′(c) > 0 by the assumption. It follows that f(x2)−f(x1) = f ′(c)(x2−x1) > 0.

This shows that f is strictly increasing on I.

Parts (2), (3), and (4) can be proved by using similar arguments. Finally, (5) follows

immediately from parts (3) and (4).

The following example illustrates an application of Theorem 4.1.

Example 1. Let f(x) := x3/(1− x2) for x ∈ IR \ {−1, 1}. Determine the intervals where

f is monotone.

Solution. For x ∈ IR \ {−1, 1} we have

f ′(x) =
(3x2)(1− x2)− x3(−2x)

(1− x2)2
=

x2(3− x2)

(1− x2)2
.

Hence f ′(x) < 0 for |x| >
√
3 and f ′(x) > 0 for x ∈ (−

√
3,
√
3)\{−1, 1}. Thus, the function

is strictly decreasing on (−∞,−
√
3] and [

√
3,∞), and strictly increasing on [−

√
3,−1),

(−1, 1) and (1,
√
3].
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The mean value theorem is useful for proving certain inequalities.

Example 2. Prove the following inequality:

x

1 + x
≤ ln(1 + x) ≤ x for all x > −1.

Proof. Let f(x) := x− ln(1 + x), x > −1. We have

f ′(x) = 1− 1

1 + x
=

x

1 + x
, x > −1.

Hence, f ′(x) > 0 for x > 0 and f ′(x) < 0 for x < 0. This shows that f is strictly decreasing

on (−1, 0) and is strictly increasing on (0,∞). Therefore, f(x) ≥ f(0) = 0 for x > −1,

that is, ln(1 + x) ≤ x for x > −1.

Let g(x) := ln(1 + x)− x/(1 + x), x > −1. We have

g′(x) =
1

1 + x
− 1

(1 + x)2
=

x

(1 + x)2
.

Hence, g′(x) < 0 for x ∈ (−1, 0) and g′(x) > 0 for x ∈ (0,∞). This shows that g is strictly

decreasing on (−1, 0) and is strictly increasing on (0,∞). Therefore, g(x) ≥ g(0) = 0 for

x > −1, that is, x/(1 + x) ≤ ln(1 + x) for x > −1.

The following example generalizes the Bernoulli inequality.

Example 3. Let µ > 1. Prove that (1 + x)µ ≥ 1 + µx for all x > −1.

Proof. Let f(x) := (1 + x)µ − (1 + µx) for x > −1. Then

f ′(x) = µ(1 + x)µ−1 − µ = µ[(1 + x)µ−1 − 1].

Since µ > 1, (1+x)µ−1 < 1 for −1 < x < 0 and (1+x)µ−1 > 1 for x > 0. Thus, f ′(x) < 0

for −1 < x < 0 and f ′(x) > 0 for x > 0. This shows that f is decreasing on (−1, 0] and

increasing on [0,∞). Therefore, for all x > −1, f(x) ≥ f(0), that is, (1 + x)µ ≥ 1 + µx.

As an application of the generalized Bernoulli inequality, we study the following limit:

lim
x→∞

xα

ax
,

where a > 1 and α ∈ IR. First, consider the case α < 1. Let b := a−1 > 0. The Bernoulli’s

inequality tells us that ax = (1 + b)x ≥ 1 + bx for x > 1. Hence

0 <
xα

ax
≤ xα

bx
=

1

bx1−α
, x > 1.

9



Since 1 − α > 0, we have limx→∞ 1/(bx1−α) = 0. By the squeeze theorem for limits, we

get limx→∞ xα/ax = 0. Next, consider the case α ≥ 1. Choose a positive integer m > α.

Then
xα

ax
=

[
xα/m

(a1/m)x

]m
.

Now we have α/m < 1 and a1/m > 1. Therefore,

lim
x→∞

xα/m

(a1/m)x
= 0 and lim

x→∞

xα

ax
= 0.

Setting x = loga y in the above limit, we obtain

lim
y→∞

(loga y)
α

y
= 0,

provided that a > 1 and α ∈ IR.

Let f be a continuous function from an interval I to IR. If f is differentiable on I◦ and

there is a constant M such that |f ′(x)| ≤ M for all x ∈ I◦, then the mean value theorem

gives

|f(x1)− f(x2)| ≤ M |x1 − x2| ∀x1, x2 ∈ I.

Thus f is a Lipschitz function on I. In particular, f is uniformly continuous on I.

Example 4. Let f(x) = lnx, x ∈ (0,∞). For a fixed a > 0, prove that f is uniformly

continuous on [a,∞).

Proof. For x ≥ a we have

|f ′(x)| =
∣∣∣∣ 1x

∣∣∣∣ ≤ 1

a
.

By the mean value theorem, f is uniformly continuous on [a,∞).

§5. Taylor’s Theorem

Let f be a real-valued function defined on an interval I in IR. If f is differentiable on

I, then the derivative f ′ : x 7→ f ′(x) is also a function on I. If c ∈ I and f ′ is differentiable

at c, then the derivative of f ′ at c, denoted by f ′′(c) or f (2)(c), is called the second

derivative of f at c, and f is said to be twice differentiable at c. More generally, for

n ∈ IN, if f (n−1) exists on I, and if f (n−1) is differentiable at c, then the derivative of

f (n−1) at c, denoted by f (n)(c), is called the nth derivative of f at c, and f is said to be

n-times differentiable at c. If f is n-times differentiable at every point of I, then we say

that f is n-times differentiable on I.
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Example 1. Let f be the function on IR given by f(x) := (x − a)n for x ∈ IR, where

n ∈ IN0 and a ∈ IR is a constant. For k ∈ IN, find f (k) and f (k)(a).

Solution. For n ≥ 2 we have

f ′(x) = n(x− a)n−1 and f ′′(x) = n(n− 1)(x− a)n−2.

More generally, for k ≤ n we have

f (k)(x) = n(n− 1) · · · (n− k + 1)(x− a)n−k, x ∈ IR.

Note that f (n)(x) = n! for x ∈ IR. So f (n) is a constant. In particular, f (n)(a) = n!.

Moreover, for k > n we have f (k) = 0 and f (k)(a) = 0. If k < n, then n−k ≥ 1, and hence

(x− a)n−k vanishes when x = a. Therefore, f (k)(a) = 0 for k < n.

Example 2. Let g be a function from an interval I to IR. Suppose that g is n-times

differentiable on I, and that g(n) is differentiable on the interior of I. Let a and b be two

distinct points in I. If g(k)(a) = 0 for k = 0, 1, . . . , n and g(b) = 0, then there exists some

ξ between a and b such that g(n+1)(ξ) = 0.

Proof. For k ∈ IN let Pk be the statement “either k > n + 1 or there exists some ξ

between a and b such that f (k)(ξ) = 0”. We shall use mathematical induction to prove

that Pk is true for all k ∈ IN. For k = 1, since g(a) = g(b) = 0, by Rolle’s theorem there

exists some ξ between a and b such that g′(ξ) = 0. This verifies the base case. For the

induction step, assuming that Pk is true, we wish to prove that Pk+1 is true. If k > n,

then k + 1 > n+ 1; hence Pk+1 is true. Let us consider the case k ≤ n. By the induction

hypothesis, g(k)(η) = 0 for some η between a and b. But g(k)(a) = 0. Applying Rolle’s

theorem to the function g(k), we see that there exists some ξ between a and η such that

(g(k))′(ξ) = 0. In other words, g(k+1)(ξ) = 0. Now η is between a and b, and ξ is between

a and η. We infer that ξ is between a and b and thereby complete the induction step.

Consequently, Pn+1 is true. This is the desired result.

Let f be a function from an interval I to IR. Suppose that f is n-times differentiable

on I. Given an interior point a of I, we wish to find a polynomial of degree at most n such

that p(a) = f(a), p′(a) = f ′(a), . . . , p(n)(a) = f (n)(a). We may express p in the following

form:

p(t) =

n∑
k=0

ck(t− a)k, t ∈ IR.

By Example 1 we have p(k)(a) = ckk!. Thus, p
(k)(a) = f (k)(a) if and only if ck = f (k)(a)/k!,

k = 0, 1, . . . , n. We write

Tn(f, a)(t) :=

n∑
k=0

f (k)(a)

k!
(t− a)k, t ∈ IR,
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and call Tn(f, a) the nth Taylor polynomial of f at a.

Theorem 5.1. Let f be a function from an interval I to IR. Suppose that f is n-times

differentiable on I for some n ∈ IN0, and that f (n) is differentiable on the interior of I. For

an interior point a of I, let pn := Tn(f, a) be the nth Taylor polynomial of f at a. Then

for each x ∈ I, there exists some ξ between a and x such that

f(x) = pn(x) +
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

Proof. We have f(a) = pn(a). Hence, we may assume x ̸= a in what follows. Let

g(t) := f(t)− pn(t)− r(t− a)n+1, t ∈ I,

where r is so chosen that g(x) = 0. In other words, f(x) − pn(x) = r(x − a)n+1. We

observe that the derivatives g(k) exist on I for k = 0, 1, . . . , n. Moreover, g(k)(a) = 0 for

k = 0, 1, . . . , n. By Example 2, there exists some ξ between a and x such that g(n+1)(ξ) = 0.

On the other hand, g(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!r. Hence we have

f (n+1)(ξ)− (n+ 1)!r = 0.

It follows that r = f (n+1)(ξ)/(n+ 1)!. Therefore,

f(x) = pn(x) + r(x− a)n+1 = pn(x) +
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

This completes the proof.

Let Rn(f, a) := f − Tn(f, a). Then Rn(f, a) is called the remainder between f and

Tn(f, a). The above theorem shows that there exists some ξ between a and x such that

Rn(f, a) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

This is called the Lagrange form of the remainder.

Example 3. Let f be the function given by f(x) =
√
1 + x for x ∈ (−1,∞). Find its

second Taylor polynomial at a = 0 and the corresponding Lagrange form of the remainder.

Solution. We have

f ′(x) =
1

2
(1 + x)−1/2, f ′′(x) = −1

4
(1 + x)−3/2, f ′′′(x) =

3

8
(1 + x)−5/2.

12



It follows that f(0) = 1, f ′(0) = 1/2, and f ′′(0) = −1/4. Hence

√
1 + x = T2(f, 0)(x) +R2(f, 0)(x) = 1 +

1

2
x− 1

8
x2 +R2(f, 0)(x),

where

R2(f, 0)(x) =
f ′′′(ξ)

3!
x3 =

1

16
(1 + ξ)−5/2x3

for some ξ between 0 and x.

Now let f be an infinitely differentiable real-valued function on an interval I. The

series
∞∑
k=0

f (k)(a)

k!
(x− a)k,

as a function of x on I, is called the Taylor series of f about a. This series converges to

f(x) if and only if limn→∞ Rn(f, a)(x) = 0.

Let f(x) := ex for x ∈ IR. Then f (k)(x) = ex for all k ∈ IN and x ∈ IR. Consequently,

Tn(f, 0)(x) =

n∑
k=0

xk

k!
, x ∈ IR,

and

Rn(f, 0)(x) =
eξ

(n+ 1)!
xn+1,

where ξ is a real number between 0 and x. Suppose M > 0. For x ∈ [−M,M ] we have

|Rn(f, 0)(x)| ≤ eM
Mn+1

(n+ 1)!
and lim

n→∞

Mn+1

(n+ 1)!
= 0.

Hence, the sequence (Tn(f, 0)(x))n=1,2,... converges to f(x) for each x ∈ IR. Consequently,

ex =
∞∑
k=0

xk

k!
, x ∈ IR.

Example 4. Let g be the function on IR given by g(x) = e−1/x for x > 0 and g(x) = 0 for

x ≤ 0. Clearly g is infinitely differentiable at any point in IR \ {0}. Moreover, g(n)(0) = 0

for all n ∈ IN0. Hence the Taylor series of g about 0 is identically zero, so g does not agree

with its Taylor series in any open interval containing 0.
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§6. Power Series

A power series in x about a is an infinite series of the form

∞∑
n=0

cn(x− a)n,

where a ∈ IR and cn ∈ IR for n ∈ IN0. The main purpose of this section is to study

convergence of the power series.

Suppose that the power series
∑∞

n=0 cn(x − a)n converges for some x0 ̸= a. Then it

converges absolutely for all x ∈ IR satisfying |x−a| < |x0−a|. Let us verify this assertion.

Since the series
∑∞

n=0 cn(x0 − a)n converges, the sequence (cn(x0 − a)n)n=0,1,... converges

to 0. So there is a positive number M such that |cn(x0 − a)n| ≤ M for all n ∈ IN0. Then

we have ∣∣cn(x− a)n
∣∣ = ∣∣cn(x0 − a)n

∣∣∣∣(x− a)n/(x0 − a)n
∣∣ ≤ Mrn,

where r := |x − a|/|x0 − a|. Since |x − a| < |x0 − a|, we have 0 ≤ r < 1, and hence the

geometric series
∑∞

n=0 Mrn converges. By the comparison test for series we see that the

series
∑∞

n=0 cn(x− a)n converges absolutely.

Theorem 6.1. Given a power series
∑∞

n=0 cn(x−a)n, there is R ∈ [0,∞) or R = ∞ with

the following properties: (1) the power series
∑∞

n=0 cn(x − a)n converges for all x ∈ IR

with |x− a| < R; (2) the power series diverges for all x ∈ IR with |x− a| > R.

Proof. Let S be the set of those x ∈ IR for which the power series
∑∞

n=0 cn(x − a)n

converges. Since a ∈ S, S is nonempty. Let R := sup{|x − a| : x ∈ S}. If R = 0, then∑∞
n=0 cn(x− a)n diverges whenever x ̸= a. If 0 < R < ∞, then |x− a| > R implies x /∈ S;

hence
∑∞

n=0 cn(x−a)n diverges. Now suppose that |x−a| < R, where 0 < R ≤ ∞. By the

definition of R, there exists some x0 ∈ S such that |x−a| < |x0−a|. Thus
∑∞

n=0 cn(x0−a)n

converges. Therefore the series
∑∞

n=0 cn(x− a)n converges.

The extended real number R ∈ [0,∞] in the above theorem is called the radius of

convergence of the power series
∑∞

n=0 cn(x− a)n. From the proof of the above theorem

we see that (a − R, a + R) ⊆ S ⊆ [a − R, a + R]. Hence S is an interval. It is called the

interval of convergence of the power series. If R = 0, the interval of convergence is the

degenerated interval {a}. If R = ∞, the interval of convergence is (−∞,∞).

Example 1. Consider the following three power series:

∞∑
n=0

n!xn,
∞∑

n=0

xn,
∞∑

n=0

xn

n!
.

14



By using the ratio test we see that the series
∑∞

n=0 n!x
n diverges for any x ̸= 0. So its

radius of convergence is R = 0. The series
∑∞

n=0 x
n is a geometric series. It converges if

and only if −1 < x < 1; hence its radius of convergence is R = 1. Finally, the power series∑∞
n=0 x

n/n! converges for all x ∈ IR and its radius of convergence is R = ∞.

Example 2. Determine the interval of convergence of the following power series:

∞∑
n=0

1

3n(n+ 1)
(x+ 2)n.

Solution. Let un := (x+ 2)n/(3n(n+ 1)) for n ∈ IN0. For x ̸= −2 we have∣∣∣∣un+1

un

∣∣∣∣ = |x+ 2|n+1

3n+1(n+ 2)

3n(n+ 1)

|x+ 2|n
=

|x+ 2|
3

n+ 1

n+ 2
.

It follows that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = |x+ 2|
3

.

By the ratio test, the power series converges if |x+2| < 3 and diverges if |x+2| > 3. So its

radius of convergence is R = 3. We observe that |x+2| < 3 if and only if −3 < x+2 < 3,

which is equivalent to −5 < x < 1. The end points of the interval (−5, 1) are −5 and 1. If

x = −5, the series
∞∑

n=0

1

3n(n+ 1)
(−5 + 2)n =

∞∑
n=0

(−1)n

n+ 1

is convergent, by the alternating series test. If x = 1, the series

∞∑
n=0

1

3n(n+ 1)
(1 + 2)n =

∞∑
n=0

1

n+ 1

is the harmonic series. So it diverges. We conclude that the interval of convergence of the

power series is [−5, 1).

Term-by-term differentiation of a power series is valid inside its interval of convergence.

Theorem 6.2. Suppose that the power series
∑∞

n=0 cn(x− a)n has radius of convergence

R > 0. For x ∈ (a− R, a+ R), let f(x) be the sum of the series. Then f is differentiable

on (a−R, a+R) and

f ′(x) =
∞∑

n=1

ncn(x− a)n−1 ∀x ∈ (a−R, a+R).

Proof. First, we prove that the power series
∑∞

n=1 ncn(x−a)n−1 converges absolutely for

all x ∈ (a−R, a+R). For this purpose we fix a real number x ∈ (a−R, a+R). Choose x0
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such that |x−a| < x0−a < R. By our assumption, the series
∑∞

n=0 cn(x0−a)n converges.

Hence the sequence (cn(x0 − a)n)n=0,1,... converges to 0. So there is a positive number M

such that |cn(x0 − a)n−1| ≤ M for all n ∈ IN. It follows that∣∣ncn(x− a)n−1
∣∣ = ∣∣cn(x0 − a)n−1

∣∣n|x− a|n−1/(x0 − a)n−1 ≤ Mnrn−1,

where r := |x − a|/|x0 − a| < 1. Thus the series
∑∞

n=1 Mnrn−1 converges. So the

series
∑∞

n=1 ncn(x − a)n−1 converges absolutely, by the comparison test. Applying term-

by-term differentiation to the series
∑∞

n=1 ncn(x − a)n−1, we see that the power series∑∞
n=2 n(n− 1)cn(x− a)n−2 converges absolutely for all x ∈ (a−R, a+R).

Next, we show that f ′(x) = g(x) for x ∈ (a−R, a+R), where g(x) is the sum of the

series
∑∞

n=1 ncn(x − a)n−1. Let h := (x0 − a) − |x − a|. Then h > 0. For 0 < |t| < h we

have

f(x+ t)− f(x)

t
− g(x) =

∞∑
n=1

cn

[
(x− a+ t)n − (x− a)n

t
− n(x− a)n−1

]
.

Let un(t) := (x − a + t)n − (x − a)n, t ∈ IR. For n = 1 we have u1(t) = t. For n ≥ 2, by

the Taylor theorem we get un(t) = un(0) + u′
n(0)t + u′′

n(ξ)t
2 for some ξ between 0 and t.

Consequently,

(x− a+ t)n − (x− a)n

t
−n(x−a)n−1 =

un(t)− un(0)

t
−u′

n(0) = tn(n− 1)(x−a+ ξ)n−2.

We have

|x− a+ ξ| ≤ |x− a|+ |ξ| ≤ |x− a|+ |t| < |x0 − a|.

It follows that ∣∣∣∣f(x+ t)− f(x)

t
− g(x)

∣∣∣∣ ≤ |t|
∞∑

n=2

|cn|n(n− 1)|x0 − a|n−2.

But the series
∑∞

n=2 |cn|n(n−1)|x0−a|n−2 converges and its sum is a constant independent

of t. Therefore,

lim
t→0

f(x+ t)− f(x)

t
= g(x).

This shows that f ′(x) = g(x) =
∑∞

n=1 ncn(x− a)n−1 for x ∈ (a−R, a+R).

Example 3. The power series
∑∞

n=0 x
n is a geometric series. We have

∞∑
n=0

xn =
1

1− x
, −1 < x < 1.
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Differentiating the above power series term-by-term, we obtain

∞∑
n=1

nxn−1 =
1

(1− x)2
, −1 < x < 1.

Suppose that the power series
∑∞

n=0 cn(x− a)n has radius of convergence R > 0. For

x ∈ (a−R, a+R), let f(x) be the sum of the series. For k ∈ IN, differentiating the power

series term-by-term k times, we get

f (k)(x) =
∞∑

n=k

cnn(n− 1) · · · (n− k + 1)(x− a)n−k, x ∈ (a−R, a+R).

Substituting a for x in the above equation, we obtain f (k)(a) = ckk!. Therefore,

ck =
f (k)(a)

k!
, k = 0, 1, 2, . . . .

Thus,
∑∞

n=0 cn(x− a)n is the Taylor series of f about a.

Example 4. Let f(x) = ln(1 + x) for x > −1. Find the Taylor series of f about 0.

Solution. Let g(x) := f ′(x) = 1/(1 + x) for x > −1. We have

1

1 + x
=

1

1− (−x)
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn, −1 < x < 1.

For −1 < x < 1, let h(x) be the sum of the power series
∑∞

n=0(−1)nxn+1/(n + 1). By

Theorem 6.2, h′(x) = g(x) for x ∈ (−1, 1). On the other hand, f ′(x) = g(x) for x ∈ (−1, 1).

Hence, f ′(x)− h′(x) = 0 for all x ∈ (−1, 1). Consequently, f − h is a constant on (−1, 1).

But f(0) = 0 and h(0) = 0. Therefore, f(x) = h(x) for all x ∈ (−1, 1). This shows that

ln(1 + x) =
∞∑

n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n−1

n
xn, x ∈ (−1, 1).

Note that the convergence of interval of the above power series is (−1, 1]. But the conver-

gence of interval of the power series
∑∞

n=0(−1)nxn is (−1, 1).

§7. Length of Curves

In this section we study lengths of curves in the Euclidean plane.

We use IR2 to denote the set of ordered pairs (x1, x2) of real numbers. For two points

x = (x1, x2) and y = (y1, y2) in IR2, define

ρ(x, y) :=
√
(x1 − y1)2 + (y1 − y2)2.
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Then ρ(x, y) represents the distance between x and y. We call ρ a metric on IR2. The

Euclidean plane is the set IR2 equipped with the metric ρ. The metric ρ satisfies the

following properties for x, y, z ∈ IR2:

(1) ρ(x, y) ≥ 0, and ρ(x, y) = 0 if and only if x = y,

(2) ρ(x, y) = ρ(y, x), and

(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The third property is called the triangle inequality.

Let u be a mapping from an interval I in IR to IR2. We say that u is continuous on

I, if for every a ∈ I,

lim
t→a

ρ(f(t), f(a)) = 0.

A curve in the Euclidean plane IR2 is represented by a continuous mapping u from a

closed interval [a, b] to IR2. Suppose u(t) = (u1(t), u2(t)) for t ∈ [a, b], where u1 and u2

are real-valued continuous functions on [a, b]. Then u is a continuous mapping from [a, b]

to IR2.

By a partition P of [a, b] we mean a finite ordered set {t0, t1, . . . , tn} such that

a = t0 < t1 < · · · < tn = b.

Let P := {t0, t1, . . . , tn} be a partition of [a, b]. For j ∈ {1, . . . , n}, the length of the line

segment connecting two points u(tj−1) and u(tj) is√
[u1(tj)− u1(tj−1)]2 + [u2(tj)− u2(tj−1)]2.

Let L(u, P ) denote the sum of the lengths of the line segments connecting u(tj−1) and

u(tj) for j = 1, . . . , n. Then

L(u, P ) =

n∑
j=1

√
[u1(tj)− u1(tj−1)]2 + [u2(tj)− u2(tj−1)]2.

The length of the curve u is defined to be

L(u) := sup{L(u, P ) : P is a partition of [a, b]}.

If L(u) < ∞, then u is said to be rectifiable.

For a ≤ c ≤ d ≤ b, we use u|[c,d] to denote the restriction of u to the interval [c, d].
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Theorem 7.1. Let u = (u1, u2) be a continuous mapping from [a, b] to IR2. If u′
1 and u′

2

are continuous on [a, b], then u is rectifiable and the function s given by s(t) := L(u|[a,t])
for a ≤ t ≤ b has the following property:

s′(t) =
√
[u′

1(t)]
2 + [u′

2(t)]
2, t ∈ [a, b].

Proof. Suppose a ≤ c < d ≤ b. For k = 1, 2, let

mk := inf{|u′
k(t)| : t ∈ [c, d]} and Mk := sup{|u′

k(t)| : t ∈ [c, d]}.

Let P = {t0, t1, . . . , tn} be a partition of [c, d]. By the mean value theorem, for each

j ∈ {1, . . . , n} there exist some ξj and ηj in (tj−1, tj) such that

u1(tj)− u1(tj−1) = u′
1(ξj)(tj − tj−1) and u2(tj)− u2(tj−1) = u′

2(ηj)(tj − tj−1).

It follows that

mk(tj − tj−1) ≤ |uk(tj)− uk(tj−1)| ≤ Mk(tj − tj−1), k = 1, 2.

Consequently, with m :=
√
m2

1 +m2
2 and M :=

√
M2

1 +M2
2 we have

n∑
j=1

m(tj − tj−1) ≤
n∑

j=1

√
[u1(tj)− u1(tj−1)]2 + [u2(tj)− u2(tj−1)]2 ≤

n∑
j=1

M(tj − tj−1).

Hence, m(d − c) ≤ L(u|[c,d], P ) ≤ M(d − c). This is true for every partition P of [c, d].

Therefore,

m(d− c) ≤ L(u|[c,d]) ≤ M(d− c).

In particular, u is rectifiable.

Now suppose t, t+h ∈ [a, b]. For k = 1, 2, let mk,h (Mk,h) be the infimum (supremum)

of the function |u′
k| on the interval with t and t+ h as the end points. Let

mh :=
√
m2

1,h +m2
2,h and Mh :=

√
M2

1,h +M2
2,h.

We have s(t+h)− s(t) = L(u[t,t+h]) for h > 0 and s(t+h)− s(t) = −L(u[t+h,t]) for h < 0.

Thus, by what has been proved we obtain

mh ≤ s(t+ h)− s(t)

h
≤ Mh, h ̸= 0.

Since u′
1 and u′

2 are continuous on [a, b],

lim
h→0

mh = lim
h→0

Mh =
√

[u′
1(t)]

2 + [u′
2(t)]

2.
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Consequently,

s′(t) = lim
h→0

s(t+ h)− s(t)

h
=

√
[u′

1(t)]
2 + [u′

2(t)]
2, t ∈ [a, b].

This completes the proof of the theorem.

Let us consider the following example: γ(t) = (γ1(t), γ2(t)), where

γ1(t) :=
1− t2

1 + t2
and γ2(t) =

2t

1 + t2
, 0 ≤ t ≤ 1.

We have

γ′
1(t) =

−4t

(1 + t2)2
and γ′

2(t) =
2(1− t2)

(1 + t2)2
, 0 ≤ t ≤ 1.

Clearly, γ′
1(t) < 0 and γ′

2(t) > 0 for 0 < t < 1. Hence, γ1 is strictly decreasing and γ2

is strictly increasing on [0, 1]. Thus, γ is a one-to-one and onto mapping from [0, 1] to

{(x1, x2) ∈ IR2 : x2
1 + x2

2 = 1, x1 ≥ 0, x2 ≥ 0}, which is the part of the unit circle in the

first quadrant. For 0 ≤ t ≤ 1, let s(t) := L(γ|[0,t]). Then

s′(t) =
√
[γ′

1(t)]
2 + [γ′

2(t)]
2 =

2

1 + t2
, t ∈ [0, 1].

For 0 ≤ t ≤ 1 and n ∈ IN we observe that

1

1 + t2
=

n∑
k=0

(−t2)k +
(−t2)n+1

1 + t2
.

This motivates us to introduce the function

rn(t) := s(t)−
n∑

k=0

2(−1)kt2k+1

2k + 1
, 0 ≤ t ≤ 1.

Clearly, rn(0) = 0. Moreover,

r′n(t) = s′(t)− 2
n∑

k=0

(−1)kt2k =
2(−t2)n+1

1 + t2
, 0 ≤ t ≤ 1.

By the mean value theorem we have

|rn(t)| = |rn(t)− rn(0)| ≤ sup{|r′n(τ)| : τ ∈ [0, t]} ≤ 2t2n+2, 0 ≤ t ≤ 1.

It follows that limn→∞ rn(t) = 0 for 0 ≤ t < 1. Consequently,

s(t) = lim
n→∞

n∑
k=0

2(−1)kt2k+1

2k + 1
=

∞∑
k=0

2(−1)kt2k+1

2k + 1
, 0 ≤ t < 1.

20



Furthermore,

∞∑
k=0

2(−1)k

2k + 1
− s(t) =

∞∑
k=0

2(−1)k(1− t2k+1)

2k + 1
= 2(1− t)

∞∑
k=0

(−1)kbk(t), 0 ≤ t < 1

where bk(t) := (1 + t + · · · + t2k)/(2k + 1). In particular, b0(t) = 1. For 0 ≤ t < 1, the

series
∑∞

k=0(−1)kbk(t) is an alternating series with bk(t) ≥ bk+1(t) for all k ∈ IN0. Indeed

bk(t) ≥ bk+1(t) holds if

(2k + 3)(1 + t+ · · ·+ t2k)− (2k + 1)(1 + t+ · · ·+ t2k + t2k+1 + t2k+2) ≥ 0.

Let w denote the left side of the above inequality. Then for 0 ≤ t < 1 we have

w = 2(1 + t+ · · ·+ t2k)− (2k + 1)(t2k+1 + t2k+2) =
2k∑
j=0

[
2tj − (t2k+1 + t2k+2)

]
≥ 0.

This verifies bk(t) ≥ bk+1(t) for 0 ≤ t < 1 and k ∈ IN0. It follows that

∞∑
k=0

(−1)kbk(t) ≤ b0(t) = 1.

Consequently,

0 ≤
∞∑
k=0

2(−1)k

2k + 1
− s(t) ≤ 2(1− t), 0 ≤ t < 1.

Finally, by the squeeze theorem for limits, we obtain

s(1) = lim
t→1−

s(t) =
∞∑
k=0

2(−1)k

2k + 1
.

Let π be the perimeter of the half unit circle. Then

π

4
=

s(1)

2
=

∞∑
k=0

(−1)k

2k + 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

The above series gives π ≈ 3.141592653589793.
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§8. Trigonometric Functions

In this section we introduce trigonometric functions and investigate their properties.

Given two distinct points A and B in the Euclidean plane, the ray
−−→
AB is the set

consisting of A together with all points on the line AB that are on the same side of A

as B. The point A is the origin of the ray. Let
−−→
AB and

−→
AC be two rays originating at

the same point A, not lying on the same line. Then the angle ̸ BAC is the union of the

rays
−−→
AB and

−→
AC and the set of those points P satisfying the following two properties: (1)

the line segment PC does not intersect the line AB; (2) the line segment PB does not

intersect the line AC. The point A is called the vertex of ̸ BAC.

In the Euclidean plane IR2 = {(x, y) : x, y ∈ IR}, the x-axis is the line {(x, 0) : x ∈ IR},
and the y-axis is the line {(0, y) : y ∈ IR}. Let C be the unit circle {(x, y) : x2 + y2 = 1}.
The unit circle intersects the x-axis at two points A(1, 0) and B(−1, 0). The arc AB is the

upper half unit circle {(x, y) : x2 + y2 = 1 and y ≥ 0}. If P (x, y) is a point on the unit

circle with y > 0, then the arc AP is the the intersection of the unit circle with ̸ POA.

If P (x, y) is a point on the unit circle with y < 0, then the arc BP is the the intersection

of the unit circle with ̸ POB and we define the arc AP to be the arc AB followed by the

arc BP . For a point P (x, y) on the unit circle, let σ(x, y) be the length of the arc AP . If

(x, y) = (1, 0), we define σ(1, 0) = 0. Then σ is a one-to-one function from the unit circle

C onto [0, 2π). Given θ ∈ [0, 2π), there exists a unique point P (x, y) on the unit circle

such that σ(x, y) = θ. We define

cos θ := x and sin θ := y.

It follows that cos 0 = 1, sin 0 = 0, cos(π/2) = 0, sin(π/2) = 1, cosπ = −1, sinπ = 0,

cos(3π/2) = 0 and sin(3π/2) = −1. In general, any θ ∈ IR can be uniquely represented as

θ = θ0 + 2kπ, where θ0 ∈ [0, 2π) and k ∈ ZZ. Then we define

cos θ := cos θ0 and sin θ := sin θ0.

Thus the cosine and sine functions are 2π-periodic. Since the point (cos θ, sin θ) lies on the

unit circle, we have

cos2 θ + sin2 θ = 1 ∀ θ ∈ IR.

Let us find the derivatives of the sine and cosine functions. For this purpose, we

consider the set E := {(x, y) : x2 + y2 = 1, x ≥ 0 and y ≥ 0}, which is the part of the unit

circle in the first quadrant. It has the following parametric equations:

x = u(t) =
1− t2

1 + t2
and y = v(t) =

2t

1 + t2
, 0 ≤ t ≤ 1.

22



Given a point P (u(t), v(t)) for some t ∈ [0, 1], the length of the arc AP is θ = σ(u(t), v(t)).

Let s(t) := σ(u(t), v(t)) for t ∈ [0, 1]. In the last section we proved that s is a strictly

increasing continuous function from [0, 1] onto [0, π/2]. Moreover,

s′(t) =
2

1 + t2
∀ t ∈ [0, 1].

Since x = u(t), y = v(t) and θ = s(t), for θ ∈ [0, π/2] we have

cos′(θ) =
dx

dθ
=

dx
dt
dθ
dt

=

−4t
(1+t2)2

2
1+t2

=
−2t

1 + t2
= − sin θ

and

sin′(θ) =
dy

dθ
=

dy
dt
dθ
dt

=

2(1−t2)
(1+t2)2

2
1+t2

=
1− t2

1 + t2
= cos θ.

From the definitions of the cosine and sine functions we can deduce that

cos(θ + π/2) = − sin θ and sin(θ + π/2) = cos θ, θ ∈ [0, π/2].

Moreover,

cos(θ + π) = − cos θ and sin(θ + π) = − sin θ, θ ∈ [0, π].

Furthermore, the cosine and sine functions are 2π-periodic. Therefore we conclude that

cos′(θ) = − sin θ and sin′(θ) = cos θ ∀ θ ∈ (−∞,∞).

By using differentiation we can derive the following addition formulas:

sin(α+β) = sinα cosβ+cosα sinβ and cos(α+β) = cosα cosβ−sinα sinβ, α, β ∈ IR.

Indeed, to prove the first formula, we consider the function q given by

q(θ) := sin θ cos(γ − θ) + cos θ sin(γ − θ), θ ∈ IR,

where γ := α+ β is fixed. For every θ ∈ IR we have

q′(θ) = cos θ cos(γ − θ) + sin θ sin(γ − θ)− sin θ sin(γ − θ)− cos θ cos(γ − θ) = 0.

Hence, q(α) = q(0). This establishes the first formula. The second formula can be proved

similarly.
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Now let us find the Taylor series of the sine function about 0. Let f(x) := sinx for

x ∈ (−∞,∞). We have

f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sinx.

In general, for j = 0, 1, 2, . . .,

f (4j)(x) = sinx, f (4j+1)(x) = cosx, f (4j+2)(x) = − sinx, f (4j+3)(x) = − cosx.

It follows that

f (2k)(0) = 0 and f (2k+1)(0) = (−1)k, k = 0, 1, 2, . . . .

By the Taylor theorem we obtain

f(x) =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1 +R2n+1(x),

where

R2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!
x2n+2 = (−1)n+1 sin ξ

x2n+2

(2n+ 2)!

with ξ between 0 and x. It follows that

|R2n+1(x)| ≤
|x|2n+2

(2n+ 2)!
.

Consequently,

lim
n→∞

|R2n+1(x)| = 0.

Therefore

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+

x5

5!
− x7

7!
+ · · · , x ∈ (−∞,∞).

Term-by-term differentiation of the above power series gives the Taylor series of the cosine

function ahbout 0:

cosx =
∞∑

n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · , x ∈ (−∞,∞).

The other trigonometric functions, tangent, cotangent, secant, and cosecant, are de-

fined as follows:

tan θ :=
sin θ

cos θ
and sec θ :=

1

cos θ
for θ ∈ IR \ {kπ + π/2 : k ∈ ZZ},
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and

cot θ :=
cos θ

sin θ
and csc θ :=

1

sin θ
for θ ∈ IR \ {kπ : k ∈ ZZ}.

The derivatives of these functions are found by using the quotient rule:

tan′(θ) = sec2 θ and sec′(θ) = tan θ sec θ for θ ∈ IR \ {kπ + π/2 : k ∈ ZZ},

and

cot′(θ) = − csc2 θ and csc′(θ) = − cot θ csc θ for θ ∈ IR \ {kπ : k ∈ ZZ}.

Finally, let us investigate the inverse trigonometric functions. Let f(θ) := sin θ for

−π/2 ≤ θ ≤ π/2. Since f ′(θ) = cos θ > 0 for −π/2 < θ < π/2, f is strictly increasing

on [−π/2, π/2]. Thus, f maps [−π/2, π/2] one-to-one and onto [−1, 1]. Hence, the inverse

function f−1 is continuous and strictly increasing on [−1, 1] and its range is [−π/2, π/2].

We define

arcsinx := f−1(x), x ∈ [−1, 1].

By the inverse function theorem, with x = sin θ we obtain

arcsin′(x) =
1

f ′(θ)
=

1

cos θ
=

1√
1− x2

, −1 < x < 1.

Let g(θ) := cos θ for 0 ≤ θ ≤ π. Since g′(θ) = − sin θ < 0 for 0 < θ < π, g is strictly

decreasing on [0, π]. Thus, g maps [0, π] one-to-one and onto [−1, 1]. Hence, the inverse

function g−1 is continuous and strictly decreasing on [−1, 1] and its range is [0, π]. We

define

arccosx := g−1(x), x ∈ [−1, 1].

It is easily verified that

arccosx =
π

2
− arcsinx, x ∈ [−1, 1].

Let h(θ) := tan θ for −π/2 < θ < π/2. Since h′(θ) = sec2 θ > 0 for −π/2 < θ < π/2,

h is strictly increasing on (−π/2, π/2). Thus, h maps (−π/2, π/2) one-to-one and onto

(−∞,∞). Hence, the inverse function h−1 is continuous and strictly increasing on (−∞,∞)

and its range is (−π/2, π/2). We define

arctanx := h−1(x), x ∈ (−∞,∞).

By the inverse function theorem, with x = tan θ we obtain

arctan′(x) =
1

h′(θ)
=

1

sec2 θ
=

1

1 + x2
, −∞ < x < ∞.
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