Chapter 4. Differentiation

$\S1$. Basic Properties of the Derivative

Let f be a real-valued function defined on an interval I in \mathbb{R} . The **derivative** of f at a point $a \in I$ is defined to be

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if this limit exists as a real number. The derivative f at a is denoted by f'(a). We say that f is **differentiable** at a if f'(a) exists. We say that f is differentiable on I if f'(x)exists at each $x \in I$. In this case, f' itself is a function from I to \mathbb{R} .

For example, let $n \in \mathbb{N}_0$ and let $f(x) = x^n$ for $x \in \mathbb{R}$. We show that $f'(x) = nx^{n-1}$ for all $x \in \mathbb{R}$. Indeed, for n = 0 we have f(x) = 1 for all $x \in \mathbb{R}$. Consequently, f'(x) = 0for all $x \in \mathbb{R}$. Suppose $n \in \mathbb{N}$. For $a \in \mathbb{R}$ and $x \neq a$, we have

$$\frac{f(x) - f(a)}{x - a} = x^{n-1} + ax^{n-2} + \dots + a^{n-2}x + a^{n-1}.$$

It follows that

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = a^{n-1} + aa^{n-2} + \dots + a^{n-2}a + a^{n-1} = na^{n-1}.$$

If f is differentiable at a point a, then f is continuous at a. Indeed, for $x \neq a$ we have

$$f(x) = (x - a) \frac{f(x) - f(a)}{x - a} + f(a).$$

Hence, $\lim_{x \to a} f(x) = f(a)$.

Theorem 1.1. Let f and g be two functions from an interval I to \mathbb{R} . Suppose that f and g are differentiable at a point $a \in I$.

- (1) For any $c \in \mathbb{R}$, the function cf is differentiable at a and (cf)'(a) = cf'(a).
- (2) The function f + g is differentiable at a and (f + g)'(a) = f'(a) + g'(a).
- (3) The function fg is differentiable at a and (fg)'(a) = f'(a)g(a) + f(a)g'(a).

(4) If $g(a) \neq 0$, then the function f/g is differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$$

Proof. (1) We have

$$(cf)'(a) = \lim_{x \to a} \frac{(cf)(x) - (cf)(a)}{x - a} = \lim_{x \to a} c \cdot \frac{f(x) - f(a)}{x - a} = cf'(a).$$

(2) This is true because the following identity holds for $x \neq a$:

$$\frac{(f+g)(x) - (f+g)(a)}{x-a} = \frac{f(x) - f(a)}{x-a} + \frac{g(x) - g(a)}{x-a}$$

(3) For $x \in I \setminus \{a\}$, we have

$$\frac{(fg)(x) - (fg)(a)}{x - a} = f(x)\frac{g(x) - g(a)}{x - a} + g(a)\frac{f(x) - f(a)}{x - a}$$

Taking the limit as $x \to a$ and noting that $\lim_{x\to a} f(x) = f(a)$, we obtain the product rule.

(4) Since $g(a) \neq 0$ and g is continuous at a, there exists an open interval J containing a such that $g(x) \neq 0$ for $x \in I \cap J$. For $x \in I \cap J$ we can write

$$\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a) = \frac{g(a)f(x) - f(a)g(x)}{g(x)g(a)} = \frac{g(a)f(x) - g(a)f(a) + g(a)f(a) - f(a)g(x)}{g(x)g(a)}.$$

Hence, for $x \in I \cap J$ and $x \neq a$ we have

$$\frac{(f/g)(x) - (f/g)(a)}{x - a} = \left(g(a)\frac{f(x) - f(a)}{x - a} - f(a)\frac{g(x) - g(a)}{x - a}\right)\frac{1}{g(x)g(a)}$$

Taking the limit as $x \to a$ and noting that $\lim_{x\to a} g(x) = g(a)$, we obtain the quotient rule.

For example, let $p(x) := c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$ for $x \in \mathbb{R}$, where $c_0, c_1, c_2, \dots, c_n$ are real numbers. Then p is a polynomial and

$$p'(x) = c_1 + 2c_2x + \dots + nc_nx^{n-1}.$$

Suppose p and q are two polynomials. Let $Z_q := \{x \in \mathbb{R} : q(x) = 0\}$. Let h be the rational function given by h(x) := p(x)/q(x) for $x \in \mathbb{R} \setminus Z_q$. If q is not identically 0, then Z_q is a finite set. In this case, by the quotient rule we obtain

$$h'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{[q(x)]^2}, \quad x \in \mathbb{R} \setminus Z_q$$

In particular, if $n \in \mathbb{N}$ and $h(x) := 1/x^n$ for $x \in \mathbb{R} \setminus \{0\}$, then

$$h'(x) = \frac{-nx^{n-1}}{x^{2n}} = -nx^{-n-1}, \quad x \in \mathbb{R} \setminus \{0\}.$$

Theorem 1.2. (The Chain Rule) Let f be a function from an interval I to an interval J, and let g be a function from J to \mathbb{R} . If f is differentiable at a and g is differentiable at f(a), then the composite function $g \circ f$ is differentiable at a and $(g \circ f)'(a) = g'(f(a))f'(a)$.

Proof. Let h be the function from J to \mathbb{R} given by

$$h(y) := \frac{g(y) - g(f(a))}{y - f(a)} \quad \text{for } y \in J \setminus \{f(a)\},\$$

and h(f(a)) := g'(f(a)). Since g is differentiable at f(a), we have

$$\lim_{y \to f(a)} h(y) = g'(f(a)) = h(f(a)).$$

Hence the function h is continuous at f(a). Moreover,

$$g(y) - g(f(a)) = h(y)(y - f(a)) \quad \forall y \in J.$$

Consequently, for $x \in I \setminus \{a\}$ we have

$$\frac{g \circ f(x) - g \circ f(a)}{x - a} = h(f(x)) \frac{f(x) - f(a)}{x - a}$$

Taking the limit in the above equation as $x \to a$, we obtain $(g \circ f)'(a) = g'(f(a))f'(a)$.

Theorem 1.3. (Inverse Function Theorem) Let f be a real-valued function on an interval I in \mathbb{R} . If f is strictly monotone and continuous, then J := f(I) is an interval in \mathbb{R} and the inverse function g of f is continuous. If, in addition, f is differentiable at some point $c \in I$ and $f'(c) \neq 0$, then g is differentiable at f(c) and

$$g'(f(c)) = \frac{1}{f'(c)}.$$

Proof. It suffices to prove the theorem for the case that f is strictly increasing. The first part of the theorem was proved in Theorem 5.3 of Chapter 3. Suppose that f is differentiable at $c \in I$ and $f'(c) \neq 0$. To each $y \in J$ let x = g(y). Then y = f(x). Since g is continuous, we have

$$\lim_{y \to f(c)} x = \lim_{y \to f(c)} g(y) = g(f(c)) = c.$$

Moreover, $y \neq f(c)$ implies $x \neq c$. Hence,

$$\lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = \lim_{x \to c} \frac{x - c}{f(x) - f(c)} = \lim_{x \to c} \frac{1}{\frac{f(x) - f(c)}{x - c}} = \frac{1}{f'(c)}.$$

This shows g'(f(c)) = 1/f'(c).

Let us find the derivative of the root function $g: x \mapsto \sqrt[n]{x}, x \in (0, \infty)$, where *n* is a positive integer. It is the inverse of the power function $f: x \mapsto x^n, x \in (0, \infty)$. In particular, $f(\sqrt[n]{x}) = x$ for all $x \in (0, \infty)$. By Theorem 1.3, *g* is differentiable on $(0, \infty)$ and

$$g'(x) = \frac{1}{f'(\sqrt[n]{x})} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n} x^{1/n-1}, \quad x \in (0,\infty).$$

Moreover, let $h(x) = x^r$ for x > 0, where r = m/n, $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Consequently, $h(x) = [x^{1/n}]^m$. By the chain rule, we have

$$h'(x) = m[x^{1/n}]^{m-1} \frac{1}{n} x^{1/n-1} = r x^{r-1}, \quad x > 0.$$

\S 2. The Derivative of the Exponential and Logarithmic Functions

In this section we will find the derivatives of the exponential and logarithmic functions.

Fix $a \in (0,1) \cup (1,\infty)$. Let $f(x) := a^x$ for $x \in (-\infty,\infty)$ and $g(x) := \log_a x$ for $x \in (0,\infty)$. First, we find the derivative of the logarithmic function g. Suppose x > 0. For |h| < x we have

$$\log_a(x+h) - \log_a x = \log_a \frac{x+h}{x} = \log_a \left(1 + \frac{h}{x}\right).$$

Set y := h/x. Then h = xy and

$$\frac{\log_a(x+h) - \log_a x}{h} = \frac{1}{xy}\log_a(1+y) = \frac{1}{x}\log_a(1+y)^{1/y}.$$

Clearly, $\lim_{h\to 0} y = \lim_{h\to 0} (h/x) = 0$. Hence

$$\lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h} = \lim_{y \to 0} \frac{1}{x} \log_a(1+y)^{1/y}.$$

We assert that $\lim_{y\to 0} (1+y)^{1/y}$ exists as a positive real number. Assuming that our assertion is valid and $e := \lim_{y\to 0} (1+y)^{1/y}$, we infer that

$$g'(x) = \lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h} = \frac{\log_a e}{x}.$$

We write $\ln x$ for $\log_e x$ and call it the **natural logarithm** of x. Let $u(x) := e^x$ for $x \in \mathbb{R}$ and $v(x) := \ln x$ for $x \in (0, \infty)$. By what has been proved, v'(x) = 1/x for $x \in (0, \infty)$. By the Inverse Function Theorem, u is differentiable on \mathbb{R} and

$$u'(x) = u'(v(e^x)) = \frac{1}{v'(e^x)} = \frac{1}{1/e^x} = e^x, \quad x \in \mathbb{R}.$$

Note that $f(x) = a^x = (e^{\ln a})^x = e^{x \ln a}$. By the chain rule we obtain

$$f'(x) = e^{x \ln a} \ln a = a^x \ln a, \quad x \in \mathbb{R}$$

For $\mu \in \mathbb{R}$, let q be the function given by $q(x) := x^{\mu}$ for x > 0. Then $q(x) = e^{\mu \ln x}$. By the chain rule we get

$$q'(x) = e^{\mu \ln x} \frac{\mu}{x} = x^{\mu} \frac{\mu}{x} = \mu x^{\mu-1}, \quad x > 0.$$

In order to prove that $\lim_{y\to 0} (1+y)^{1/y}$ exists, we first consider $\lim_{n\to\infty} s_n$, where $s_n := (1+1/n)^n$ for $n \in \mathbb{N}$.

By the Binomial Theorem we have

$$s_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \left(\frac{1}{n}\right)^k = \sum_{k=0}^n c_{n,k},$$

where $c_{n,k} := \binom{n}{k} (1/n)^k$. Clearly, $c_{n,0} = c_{n,1} = 1$. For $n \ge k \ge 2$ we have

$$c_{n,k} = \frac{n!}{k!(n-k)!} \frac{1}{n^k} = \frac{1}{k!} \frac{n(n-1)\cdots(n-k+1)}{n^k}$$
$$= \frac{1}{k!} \frac{n}{n} \frac{n-1}{n} \cdots \frac{n-k+1}{n} = \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right).$$

It follows that

$$c_{n+1,k} = \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n+1} \right) > \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n} \right) = c_{n,k},$$

because 1 - j/(n+1) > 1 - j/n for j = 1, ..., k - 1. Hence

$$s_{n+1} = \sum_{k=0}^{n+1} c_{n+1,k} > \sum_{k=0}^{n} c_{n+1,k} > \sum_{k=0}^{n} c_{n,k} = s_n.$$

This shows that $(s_n)_{n=1,2,\ldots}$ is an increasing sequence.

Next, we demonstrate that the sequence $(s_n)_{n=1,2,\ldots}$ is bounded. We have $c_{n,k} \leq 1/k!$ for $n \geq k \geq 2$. Consequently,

$$s_n = \sum_{k=0}^n c_{n,k} \le 1 + 1 + \sum_{k=2}^n \frac{1}{k!} =: t_n.$$

We can use mathematical induction to prove that $k! \ge 2^{k-1}$ for all $k \ge 2$. It follows that

$$t_n \le 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} < 3.$$

Therefore, $s_n < 3$ for all $n \in \mathbb{N}$. Thus $\lim_{n\to\infty} s_n$ exists as a real number. Let e denote the limit.

Fix an integer $n \ge 2$. For m > n we have

$$s_m = 2 + \sum_{k=2}^m \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{m}\right) > 2 + \sum_{k=2}^n \frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{m}\right).$$

Letting $m \to \infty$ in the above inequality, we obtain $e \ge t_n$. Thus, $s_n \le t_n \le e$ for $n \ge 2$. By the squeeze theorem for sequences we get

$$e = \lim_{n \to \infty} t_n = 2 + \sum_{k=2}^{\infty} \frac{1}{k!}$$

An easy calculation gives $e \approx 2.718281828459045$.

Since $\lim_{n\to\infty} (1+1/n)^n = e$, we have

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = e \quad \text{and} \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = e$$

For given $\varepsilon > 0$, there exists some positive integer N such that

$$e - \varepsilon < \left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon \quad \forall n \ge N.$$

Choose $\delta := 1/N$. Suppose $0 < y < \delta$. Then $1/y \ge N$. Let *n* be the integer such that $n \le 1/y < n + 1$. It follows that $1/(n+1) < y \le 1/n$. Clearly, $n \ge N$. Hence we have

$$e - \varepsilon < \left(1 + \frac{1}{n+1}\right)^n < (1+y)^{1/y} < \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon.$$

This shows $\lim_{y\to 0^+} (1+y)^{1/y} = e$. It remains to prove $\lim_{y\to 0^-} (1+y)^{1/y} = e$. For -1 < y < 0, set z := -y/(1+y). Then z > 0 and $\lim_{y\to 0^-} z = 0$. Moreover, z = -y/(1+y) implies z(1+y) = -y. So y = -z/(1+z). Consequently,

$$\lim_{y \to 0^-} (1+y)^{1/y} = \lim_{z \to 0^+} (1+z)^{1+1/z} = \lim_{z \to 0^+} (1+z)(1+z)^{1/z} = e.$$

This completes the proof for $\lim_{y\to 0} (1+y)^{1/y} = e$.

§3. The Mean Value Theorem

Let f be a function from an interval I to \mathbb{R} , and let c be an interior point of I. We say that f has a **local maximum** (**local minimum**) at c, if there exists some $\delta > 0$ such that $f(x) \leq f(c)$ ($f(x) \geq f(c)$) for all $x \in I \cap (c - \delta, c + \delta)$.

Theorem 3.1. If f has either a local maximum or a local minimum at an interior point c of I = [a, b] and if f is differentiable at c, then f'(c) = 0.

Proof. Suppose that f has a local minimum at c. Then there exists some $\delta > 0$ such that $(c - \delta, c + \delta) \subset I$ and $f(x) \ge f(c)$ for all $x \in (c - \delta, c + \delta)$. Consequently, we have

$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \ge 0$$
 and $f'(c) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \le 0.$

Hence, f'(c) = 0. If f has a local maximum at c, the proof is similar.

Theorem 3.2. (Rolle's Theorem) Suppose that f is continuous on [a, b] and is differentiable on (a, b). Suppose further that f(a) = f(b). Then there exists at least one point cin (a, b) such that f'(c) = 0.

Proof. If f(x) = f(a) for all $x \in [a, b]$. then f'(x) = 0 for all $x \in [a, b]$, and the theorem is proved. Otherwise, f must have either a maximum value or a minimum value at some point $c \in (a, b)$. By Theorem 2.1, it follows that f'(c) = 0.

Theorem 3.3. (The Mean Value Theorem) Suppose that f is continuous on [a, b] and is differentiable on (a, b). Then there exists a point c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof. The line joining the points (a, f(a)) and (b, f(b)) has equation y = m(x-a)+f(a), $x \in \mathbb{R}$, where m := [f(b) - f(a)]/(b-a). Let g(x) := f(x) - [m(x-a) + f(a)], $a \le x \le b$. Then g is continuous on [a, b] and g is differentiable on (a, b) with g'(x) = f'(x) - m. Note that g(a) = g(b) = 0. By Rolle's theorem, there exists some $c \in (a, b)$ such that g'(c) = 0. For this c we have f'(c) = m = [f(b) - f(a)]/(b-a).

Theorem 3.4. (The Generalized Mean Value Theorem) Let f and g be two functions each of which is continuous on [a, b] and differentiable on (a, b). Then there exists a point $c \in (a, b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Proof. Let h be the function given by

$$h(x) := [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x), \quad x \in [a, b].$$

Then h is continuous on [a, b] and differentiable on (a, b). By Rolle's theorem, h'(c) = 0 for some $c \in (a, b)$. This completes the proof of the theorem.

$\S4$. Applications of the Mean Value Theorem

The following theorem is an application of the mean value theorem to the study of monotone functions. Given an interval I in \mathbb{R} , recall that I° is the set of all interior points of I.

Theorem 4.1. Let f be a real-valued function on an interval I in \mathbb{R} . Suppose that f is continuous on I and differentiable on I° . Then the following statements are true:

(1) If f'(x) > 0 for all $x \in I^{\circ}$, then f is strictly increasing on I.

(2) If f'(x) < 0 for all $x \in I^{\circ}$, then f is strictly decreasing on I.

- (3) If $f'(x) \ge 0$ for all $x \in I^{\circ}$, then f is increasing on I.
- (4) If $f'(x) \leq 0$ for all $x \in I^{\circ}$, then f is decreasing on I.
- (5) If f'(x) = 0 for all $x \in I^{\circ}$, then f is constant on I.

Proof. Let us prove (1). Consider $x_1, x_2 \in I$ with $x_1 < x_2$. By the mean value theorem, there exists some $c \in (x_1, x_2)$ such that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. Clearly, $c \in I^{\circ}$ and hence f'(c) > 0 by the assumption. It follows that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0$. This shows that f is strictly increasing on I.

Parts (2), (3), and (4) can be proved by using similar arguments. Finally, (5) follows immediately from parts (3) and (4). \Box

The following example illustrates an application of Theorem 4.1.

Example 1. Let $f(x) := \frac{x^3}{(1-x^2)}$ for $x \in \mathbb{R} \setminus \{-1, 1\}$. Determine the intervals where f is monotone.

Solution. For $x \in \mathbb{R} \setminus \{-1, 1\}$ we have

$$f'(x) = \frac{(3x^2)(1-x^2) - x^3(-2x)}{(1-x^2)^2} = \frac{x^2(3-x^2)}{(1-x^2)^2}$$

Hence f'(x) < 0 for $|x| > \sqrt{3}$ and f'(x) > 0 for $x \in (-\sqrt{3}, \sqrt{3}) \setminus \{-1, 1\}$. Thus, the function is strictly decreasing on $(-\infty, -\sqrt{3}]$ and $[\sqrt{3}, \infty)$, and strictly increasing on $[-\sqrt{3}, -1)$, (-1, 1) and $(1, \sqrt{3}]$.

The mean value theorem is useful for proving certain inequalities.

Example 2. Prove the following inequality:

$$\frac{x}{1+x} \le \ln(1+x) \le x \quad \text{for all } x > -1.$$

Proof. Let $f(x) := x - \ln(1 + x), x > -1$. We have

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}, \quad x > -1.$$

Hence, f'(x) > 0 for x > 0 and f'(x) < 0 for x < 0. This shows that f is strictly decreasing on (-1,0) and is strictly increasing on $(0,\infty)$. Therefore, $f(x) \ge f(0) = 0$ for x > -1, that is, $\ln(1+x) \le x$ for x > -1.

Let $g(x) := \ln(1+x) - x/(1+x)$, x > -1. We have

$$g'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2}.$$

Hence, g'(x) < 0 for $x \in (-1,0)$ and g'(x) > 0 for $x \in (0,\infty)$. This shows that g is strictly decreasing on (-1,0) and is strictly increasing on $(0,\infty)$. Therefore, $g(x) \ge g(0) = 0$ for x > -1, that is, $x/(1+x) \le \ln(1+x)$ for x > -1.

The following example generalizes the Bernoulli inequality.

Example 3. Let $\mu > 1$. Prove that $(1 + x)^{\mu} \ge 1 + \mu x$ for all x > -1. **Proof.** Let $f(x) := (1 + x)^{\mu} - (1 + \mu x)$ for x > -1. Then

$$f'(x) = \mu(1+x)^{\mu-1} - \mu = \mu[(1+x)^{\mu-1} - 1].$$

Since $\mu > 1$, $(1+x)^{\mu-1} < 1$ for -1 < x < 0 and $(1+x)^{\mu-1} > 1$ for x > 0. Thus, f'(x) < 0 for -1 < x < 0 and f'(x) > 0 for x > 0. This shows that f is decreasing on (-1, 0] and increasing on $[0, \infty)$. Therefore, for all x > -1, $f(x) \ge f(0)$, that is, $(1+x)^{\mu} \ge 1 + \mu x$.

As an application of the generalized Bernoulli inequality, we study the following limit:

$$\lim_{x \to \infty} \frac{x^{\alpha}}{a^x},$$

where a > 1 and $\alpha \in \mathbb{R}$. First, consider the case $\alpha < 1$. Let b := a - 1 > 0. The Bernoulli's inequality tells us that $a^x = (1 + b)^x \ge 1 + bx$ for x > 1. Hence

$$0 < \frac{x^{\alpha}}{a^x} \le \frac{x^{\alpha}}{bx} = \frac{1}{bx^{1-\alpha}}, \quad x > 1.$$

Since $1 - \alpha > 0$, we have $\lim_{x\to\infty} 1/(bx^{1-\alpha}) = 0$. By the squeeze theorem for limits, we get $\lim_{x\to\infty} x^{\alpha}/a^x = 0$. Next, consider the case $\alpha \ge 1$. Choose a positive integer $m > \alpha$. Then

$$\frac{x^{\alpha}}{a^{x}} = \left[\frac{x^{\alpha/m}}{(a^{1/m})^{x}}\right]^{m}$$

Now we have $\alpha/m < 1$ and $a^{1/m} > 1$. Therefore,

$$\lim_{x \to \infty} \frac{x^{\alpha/m}}{(a^{1/m})^x} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{x^{\alpha}}{a^x} = 0.$$

Setting $x = \log_a y$ in the above limit, we obtain

$$\lim_{y \to \infty} \frac{(\log_a y)^{\alpha}}{y} = 0,$$

provided that a > 1 and $\alpha \in \mathbb{R}$.

Let f be a continuous function from an interval I to \mathbb{R} . If f is differentiable on I° and there is a constant M such that $|f'(x)| \leq M$ for all $x \in I^{\circ}$, then the mean value theorem gives

$$|f(x_1) - f(x_2)| \le M |x_1 - x_2| \quad \forall x_1, x_2 \in I.$$

Thus f is a Lipschitz function on I. In particular, f is uniformly continuous on I.

Example 4. Let $f(x) = \ln x$, $x \in (0, \infty)$. For a fixed a > 0, prove that f is uniformly continuous on $[a, \infty)$.

Proof. For $x \ge a$ we have

$$|f'(x)| = \left|\frac{1}{x}\right| \le \frac{1}{a}.$$

By the mean value theorem, f is uniformly continuous on $[a, \infty)$.

§5. Taylor's Theorem

Let f be a real-valued function defined on an interval I in \mathbb{R} . If f is differentiable on I, then the derivative $f': x \mapsto f'(x)$ is also a function on I. If $c \in I$ and f' is differentiable at c, then the derivative of f' at c, denoted by f''(c) or $f^{(2)}(c)$, is called the **second** derivative of f at c, and f is said to be twice differentiable at c. More generally, for $n \in \mathbb{N}$, if $f^{(n-1)}$ exists on I, and if $f^{(n-1)}$ is differentiable at c, then the derivative of $f^{(n-1)}$ at c, denoted by $f^{(n)}(c)$, is called the *n*th derivative of f at c, and f is said to be the network of f at c, and f is said to be network of f at c, and f is said to be the network of f at c, and f is said to be the network of f at c, and f is said to be network of f at c, and f is network of f at c. If f is n-times differentiable at every point of I, then we say that f is n-times differentiable on I.

Example 1. Let f be the function on \mathbb{R} given by $f(x) := (x - a)^n$ for $x \in \mathbb{R}$, where $n \in \mathbb{N}_0$ and $a \in \mathbb{R}$ is a constant. For $k \in \mathbb{N}$, find $f^{(k)}$ and $f^{(k)}(a)$.

Solution. For $n \ge 2$ we have

 $f'(x) = n(x-a)^{n-1}$ and $f''(x) = n(n-1)(x-a)^{n-2}$.

More generally, for $k \leq n$ we have

$$f^{(k)}(x) = n(n-1)\cdots(n-k+1)(x-a)^{n-k}, \quad x \in \mathbb{R}$$

Note that $f^{(n)}(x) = n!$ for $x \in \mathbb{R}$. So $f^{(n)}$ is a constant. In particular, $f^{(n)}(a) = n!$. Moreover, for k > n we have $f^{(k)} = 0$ and $f^{(k)}(a) = 0$. If k < n, then $n - k \ge 1$, and hence $(x-a)^{n-k}$ vanishes when x = a. Therefore, $f^{(k)}(a) = 0$ for k < n.

Example 2. Let g be a function from an interval I to \mathbb{R} . Suppose that g is n-times differentiable on I, and that $g^{(n)}$ is differentiable on the interior of I. Let a and b be two distinct points in I. If $g^{(k)}(a) = 0$ for k = 0, 1, ..., n and g(b) = 0, then there exists some ξ between a and b such that $g^{(n+1)}(\xi) = 0$.

Proof. For $k \in \mathbb{N}$ let P_k be the statement "either k > n + 1 or there exists some ξ between a and b such that $f^{(k)}(\xi) = 0$ ". We shall use mathematical induction to prove that P_k is true for all $k \in \mathbb{N}$. For k = 1, since g(a) = g(b) = 0, by Rolle's theorem there exists some ξ between a and b such that $g'(\xi) = 0$. This verifies the base case. For the induction step, assuming that P_k is true, we wish to prove that P_{k+1} is true. If k > n, then k + 1 > n + 1; hence P_{k+1} is true. Let us consider the case $k \leq n$. By the induction hypothesis, $g^{(k)}(\eta) = 0$ for some η between a and b. But $g^{(k)}(a) = 0$. Applying Rolle's theorem to the function $g^{(k)}$, we see that there exists some ξ between a and η such that $(g^{(k)})'(\xi) = 0$. In other words, $g^{(k+1)}(\xi) = 0$. Now η is between a and b, and ξ is between a and η . We infer that ξ is between a and b and thereby complete the induction step. Consequently, P_{n+1} is true. This is the desired result.

Let f be a function from an interval I to \mathbb{R} . Suppose that f is n-times differentiable on I. Given an interior point a of I, we wish to find a polynomial of degree at most n such that $p(a) = f(a), p'(a) = f'(a), \ldots, p^{(n)}(a) = f^{(n)}(a)$. We may express p in the following form:

$$p(t) = \sum_{k=0}^{n} c_k (t-a)^k, \quad t \in \mathbb{R}.$$

By Example 1 we have $p^{(k)}(a) = c_k k!$. Thus, $p^{(k)}(a) = f^{(k)}(a)$ if and only if $c_k = f^{(k)}(a)/k!$, k = 0, 1, ..., n. We write

$$T_n(f,a)(t) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (t-a)^k, \quad t \in \mathbb{R},$$

and call $T_n(f, a)$ the *n*th **Taylor polynomial** of f at a.

Theorem 5.1. Let f be a function from an interval I to \mathbb{R} . Suppose that f is n-times differentiable on I for some $n \in \mathbb{N}_0$, and that $f^{(n)}$ is differentiable on the interior of I. For an interior point a of I, let $p_n := T_n(f, a)$ be the nth Taylor polynomial of f at a. Then for each $x \in I$, there exists some ξ between a and x such that

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Proof. We have $f(a) = p_n(a)$. Hence, we may assume $x \neq a$ in what follows. Let

$$g(t) := f(t) - p_n(t) - r(t-a)^{n+1}, \quad t \in I,$$

where r is so chosen that g(x) = 0. In other words, $f(x) - p_n(x) = r(x-a)^{n+1}$. We observe that the derivatives $g^{(k)}$ exist on I for k = 0, 1, ..., n. Moreover, $g^{(k)}(a) = 0$ for k = 0, 1, ..., n. By Example 2, there exists some ξ between a and x such that $g^{(n+1)}(\xi) = 0$. On the other hand, $g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!r$. Hence we have

$$f^{(n+1)}(\xi) - (n+1)!r = 0.$$

It follows that $r = f^{(n+1)}(\xi)/(n+1)!$. Therefore,

$$f(x) = p_n(x) + r(x-a)^{n+1} = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

This completes the proof.

Let $R_n(f, a) := f - T_n(f, a)$. Then $R_n(f, a)$ is called the **remainder** between f and $T_n(f, a)$. The above theorem shows that there exists some ξ between a and x such that

$$R_n(f,a) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

This is called the Lagrange form of the remainder.

Example 3. Let f be the function given by $f(x) = \sqrt{1+x}$ for $x \in (-1, \infty)$. Find its second Taylor polynomial at a = 0 and the corresponding Lagrange form of the remainder. *Solution*. We have

$$f'(x) = \frac{1}{2}(1+x)^{-1/2}, \quad f''(x) = -\frac{1}{4}(1+x)^{-3/2}, \quad f'''(x) = \frac{3}{8}(1+x)^{-5/2}.$$

It follows that f(0) = 1, f'(0) = 1/2, and f''(0) = -1/4. Hence

$$\sqrt{1+x} = T_2(f,0)(x) + R_2(f,0)(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + R_2(f,0)(x),$$

where

$$R_2(f,0)(x) = \frac{f'''(\xi)}{3!}x^3 = \frac{1}{16}(1+\xi)^{-5/2}x^3$$

for some ξ between 0 and x.

Now let f be an infinitely differentiable real-valued function on an interval I. The series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k,$$

as a function of x on I, is called the **Taylor series** of f about a. This series converges to f(x) if and only if $\lim_{n\to\infty} R_n(f,a)(x) = 0$.

Let $f(x) := e^x$ for $x \in \mathbb{R}$. Then $f^{(k)}(x) = e^x$ for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$. Consequently,

$$T_n(f,0)(x) = \sum_{k=0}^n \frac{x^k}{k!}, \quad x \in \mathbb{R},$$

and

$$R_n(f,0)(x) = \frac{e^{\xi}}{(n+1)!} x^{n+1},$$

where ξ is a real number between 0 and x. Suppose M > 0. For $x \in [-M, M]$ we have

$$|R_n(f,0)(x)| \le e^M \frac{M^{n+1}}{(n+1)!}$$
 and $\lim_{n \to \infty} \frac{M^{n+1}}{(n+1)!} = 0.$

Hence, the sequence $(T_n(f,0)(x))_{n=1,2,...}$ converges to f(x) for each $x \in \mathbb{R}$. Consequently,

$$e^x = \sum_{k=0}^\infty \frac{x^k}{k!}, \quad x \in {\rm I\!R}.$$

Example 4. Let g be the function on \mathbb{R} given by $g(x) = e^{-1/x}$ for x > 0 and g(x) = 0 for $x \leq 0$. Clearly g is infinitely differentiable at any point in $\mathbb{R} \setminus \{0\}$. Moreover, $g^{(n)}(0) = 0$ for all $n \in \mathbb{N}_0$. Hence the Taylor series of g about 0 is identically zero, so g does not agree with its Taylor series in any open interval containing 0.

$\S 6.$ Power Series

A **power series** in x about a is an infinite series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n,$$

where $a \in \mathbb{R}$ and $c_n \in \mathbb{R}$ for $n \in \mathbb{N}_0$. The main purpose of this section is to study convergence of the power series.

Suppose that the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges for some $x_0 \neq a$. Then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x-a| < |x_0-a|$. Let us verify this assertion. Since the series $\sum_{n=0}^{\infty} c_n (x_0-a)^n$ converges, the sequence $(c_n (x_0-a)^n)_{n=0,1,\ldots}$ converges to 0. So there is a positive number M such that $|c_n (x_0-a)^n| \leq M$ for all $n \in \mathbb{N}_0$. Then we have

$$|c_n(x-a)^n| = |c_n(x_0-a)^n| |(x-a)^n/(x_0-a)^n| \le Mr^n,$$

where $r := |x - a|/|x_0 - a|$. Since $|x - a| < |x_0 - a|$, we have $0 \le r < 1$, and hence the geometric series $\sum_{n=0}^{\infty} Mr^n$ converges. By the comparison test for series we see that the series $\sum_{n=0}^{\infty} c_n (x - a)^n$ converges absolutely.

Theorem 6.1. Given a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, there is $R \in [0,\infty)$ or $R = \infty$ with the following properties: (1) the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges for all $x \in \mathbb{R}$ with |x-a| < R; (2) the power series diverges for all $x \in \mathbb{R}$ with |x-a| > R.

Proof. Let S be the set of those $x \in \mathbb{R}$ for which the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges. Since $a \in S$, S is nonempty. Let $R := \sup\{|x-a| : x \in S\}$. If R = 0, then $\sum_{n=0}^{\infty} c_n (x-a)^n$ diverges whenever $x \neq a$. If $0 < R < \infty$, then |x-a| > R implies $x \notin S$; hence $\sum_{n=0}^{\infty} c_n (x-a)^n$ diverges. Now suppose that |x-a| < R, where $0 < R \le \infty$. By the definition of R, there exists some $x_0 \in S$ such that $|x-a| < |x_0-a|$. Thus $\sum_{n=0}^{\infty} c_n (x_0-a)^n$ converges. Therefore the series $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges.

The extended real number $R \in [0, \infty]$ in the above theorem is called the **radius of** convergence of the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$. From the proof of the above theorem we see that $(a - R, a + R) \subseteq S \subseteq [a - R, a + R]$. Hence S is an interval. It is called the interval of convergence of the power series. If R = 0, the interval of convergence is the degenerated interval $\{a\}$. If $R = \infty$, the interval of convergence is $(-\infty, \infty)$.

Example 1. Consider the following three power series:

$$\sum_{n=0}^{\infty} n! x^n, \quad \sum_{n=0}^{\infty} x^n, \quad \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

By using the ratio test we see that the series $\sum_{n=0}^{\infty} n! x^n$ diverges for any $x \neq 0$. So its radius of convergence is R = 0. The series $\sum_{n=0}^{\infty} x^n$ is a geometric series. It converges if and only if -1 < x < 1; hence its radius of convergence is R = 1. Finally, the power series $\sum_{n=0}^{\infty} x^n/n!$ converges for all $x \in \mathbb{R}$ and its radius of convergence is $R = \infty$.

Example 2. Determine the interval of convergence of the following power series:

$$\sum_{n=0}^{\infty} \frac{1}{3^n (n+1)} (x+2)^n$$

Solution. Let $u_n := (x+2)^n/(3^n(n+1))$ for $n \in \mathbb{N}_0$. For $x \neq -2$ we have

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{|x+2|^{n+1}}{3^{n+1}(n+2)} \frac{3^n(n+1)}{|x+2|^n} = \frac{|x+2|}{3} \frac{n+1}{n+2}.$$

It follows that

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|x+2|}{3}.$$

By the ratio test, the power series converges if |x+2| < 3 and diverges if |x+2| > 3. So its radius of convergence is R = 3. We observe that |x+2| < 3 if and only if -3 < x+2 < 3, which is equivalent to -5 < x < 1. The end points of the interval (-5, 1) are -5 and 1. If x = -5, the series

$$\sum_{n=0}^{\infty} \frac{1}{3^n (n+1)} (-5+2)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$

is convergent, by the alternating series test. If x = 1, the series

$$\sum_{n=0}^{\infty} \frac{1}{3^n (n+1)} (1+2)^n = \sum_{n=0}^{\infty} \frac{1}{n+1}$$

is the harmonic series. So it diverges. We conclude that the interval of convergence of the power series is [-5, 1).

Term-by-term differentiation of a power series is valid inside its interval of convergence.

Theorem 6.2. Suppose that the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0. For $x \in (a - R, a + R)$, let f(x) be the sum of the series. Then f is differentiable on (a - R, a + R) and

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1} \quad \forall x \in (a-R, a+R).$$

Proof. First, we prove that the power series $\sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$ converges absolutely for all $x \in (a-R, a+R)$. For this purpose we fix a real number $x \in (a-R, a+R)$. Choose x_0

such that $|x-a| < x_0 - a < R$. By our assumption, the series $\sum_{n=0}^{\infty} c_n (x_0 - a)^n$ converges. Hence the sequence $(c_n (x_0 - a)^n)_{n=0,1,\dots}$ converges to 0. So there is a positive number M such that $|c_n (x_0 - a)^{n-1}| \leq M$ for all $n \in \mathbb{N}$. It follows that

$$\left|nc_{n}(x-a)^{n-1}\right| = \left|c_{n}(x_{0}-a)^{n-1}\right| n|x-a|^{n-1}/(x_{0}-a)^{n-1} \le Mnr^{n-1},$$

where $r := |x - a|/|x_0 - a| < 1$. Thus the series $\sum_{n=1}^{\infty} Mnr^{n-1}$ converges. So the series $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ converges absolutely, by the comparison test. Applying termby-term differentiation to the series $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$, we see that the power series $\sum_{n=2}^{\infty} n(n-1)c_n(x-a)^{n-2}$ converges absolutely for all $x \in (a-R, a+R)$.

Next, we show that f'(x) = g(x) for $x \in (a - R, a + R)$, where g(x) is the sum of the series $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$. Let $h := (x_0 - a) - |x - a|$. Then h > 0. For 0 < |t| < h we have

$$\frac{f(x+t) - f(x)}{t} - g(x) = \sum_{n=1}^{\infty} c_n \left[\frac{(x-a+t)^n - (x-a)^n}{t} - n(x-a)^{n-1} \right].$$

Let $u_n(t) := (x - a + t)^n - (x - a)^n$, $t \in \mathbb{R}$. For n = 1 we have $u_1(t) = t$. For $n \ge 2$, by the Taylor theorem we get $u_n(t) = u_n(0) + u'_n(0)t + u''_n(\xi)t^2$ for some ξ between 0 and t. Consequently,

$$\frac{(x-a+t)^n - (x-a)^n}{t} - n(x-a)^{n-1} = \frac{u_n(t) - u_n(0)}{t} - u'_n(0) = tn(n-1)(x-a+\xi)^{n-2}.$$

We have

$$|x - a + \xi| \le |x - a| + |\xi| \le |x - a| + |t| < |x_0 - a|.$$

It follows that

$$\left|\frac{f(x+t) - f(x)}{t} - g(x)\right| \le |t| \sum_{n=2}^{\infty} |c_n| n(n-1) |x_0 - a|^{n-2}.$$

But the series $\sum_{n=2}^{\infty} |c_n| n(n-1) |x_0 - a|^{n-2}$ converges and its sum is a constant independent of t. Therefore,

$$\lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = g(x).$$

$$u = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1} \text{ for } x \in (a-R, a+R).$$

This shows that $f'(x) = g(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$ for $x \in (a-R, a+R)$.

Example 3. The power series $\sum_{n=0}^{\infty} x^n$ is a geometric series. We have

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad -1 < x < 1.$$

Differentiating the above power series term-by-term, we obtain

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}, \quad -1 < x < 1.$$

Suppose that the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0. For $x \in (a-R, a+R)$, let f(x) be the sum of the series. For $k \in \mathbb{N}$, differentiating the power series term-by-term k times, we get

$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-k+1)(x-a)^{n-k}, \quad x \in (a-R, a+R).$$

Substituting a for x in the above equation, we obtain $f^{(k)}(a) = c_k k!$. Therefore,

$$c_k = \frac{f^{(k)}(a)}{k!}, \quad k = 0, 1, 2, \dots$$

Thus, $\sum_{n=0}^{\infty} c_n (x-a)^n$ is the Taylor series of f about a.

Example 4. Let $f(x) = \ln(1+x)$ for x > -1. Find the Taylor series of f about 0. Solution. Let g(x) := f'(x) = 1/(1+x) for x > -1. We have

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n, \quad -1 < x < 1.$$

For -1 < x < 1, let h(x) be the sum of the power series $\sum_{n=0}^{\infty} (-1)^n x^{n+1}/(n+1)$. By Theorem 6.2, h'(x) = g(x) for $x \in (-1, 1)$. On the other hand, f'(x) = g(x) for $x \in (-1, 1)$. Hence, f'(x) - h'(x) = 0 for all $x \in (-1, 1)$. Consequently, f - h is a constant on (-1, 1). But f(0) = 0 and h(0) = 0. Therefore, f(x) = h(x) for all $x \in (-1, 1)$. This shows that

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, \quad x \in (-1,1).$$

Note that the convergence of interval of the above power series is (-1, 1]. But the convergence of interval of the power series $\sum_{n=0}^{\infty} (-1)^n x^n$ is (-1, 1).

$\S7$. Length of Curves

In this section we study lengths of curves in the Euclidean plane.

We use \mathbb{R}^2 to denote the set of ordered pairs (x_1, x_2) of real numbers. For two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , define

$$\rho(x,y) := \sqrt{(x_1 - y_1)^2 + (y_1 - y_2)^2}.$$

Then $\rho(x, y)$ represents the distance between x and y. We call ρ a **metric** on \mathbb{R}^2 . The Euclidean plane is the set \mathbb{R}^2 equipped with the metric ρ . The metric ρ satisfies the following properties for $x, y, z \in \mathbb{R}^2$:

- (1) $\rho(x,y) \ge 0$, and $\rho(x,y) = 0$ if and only if x = y,
- (2) $\rho(x, y) = \rho(y, x)$, and
- (3) $\rho(x, z) \le \rho(x, y) + \rho(y, z).$

The third property is called the **triangle inequality**.

Let u be a mapping from an interval I in \mathbb{R} to \mathbb{R}^2 . We say that u is continuous on I, if for every $a \in I$,

$$\lim_{t \to a} \rho(f(t), f(a)) = 0.$$

A curve in the Euclidean plane \mathbb{R}^2 is represented by a continuous mapping u from a closed interval [a, b] to \mathbb{R}^2 . Suppose $u(t) = (u_1(t), u_2(t))$ for $t \in [a, b]$, where u_1 and u_2 are real-valued continuous functions on [a, b]. Then u is a continuous mapping from [a, b] to \mathbb{R}^2 .

By a **partition** P of [a, b] we mean a finite ordered set $\{t_0, t_1, \ldots, t_n\}$ such that

$$a = t_0 < t_1 < \dots < t_n = b.$$

Let $P := \{t_0, t_1, \ldots, t_n\}$ be a partition of [a, b]. For $j \in \{1, \ldots, n\}$, the length of the line segment connecting two points $u(t_{j-1})$ and $u(t_j)$ is

$$\sqrt{[u_1(t_j) - u_1(t_{j-1})]^2 + [u_2(t_j) - u_2(t_{j-1})]^2}.$$

Let L(u, P) denote the sum of the lengths of the line segments connecting $u(t_{j-1})$ and $u(t_j)$ for j = 1, ..., n. Then

$$L(u, P) = \sum_{j=1}^{n} \sqrt{[u_1(t_j) - u_1(t_{j-1})]^2 + [u_2(t_j) - u_2(t_{j-1})]^2}$$

The **length** of the curve u is defined to be

$$L(u) := \sup\{L(u, P) : P \text{ is a partition of } [a, b]\}.$$

If $L(u) < \infty$, then u is said to be **rectifiable**.

For $a \leq c \leq d \leq b$, we use $u|_{[c,d]}$ to denote the restriction of u to the interval [c,d].

Theorem 7.1. Let $u = (u_1, u_2)$ be a continuous mapping from [a, b] to \mathbb{R}^2 . If u'_1 and u'_2 are continuous on [a, b], then u is rectifiable and the function s given by $s(t) := L(u|_{[a,t]})$ for $a \le t \le b$ has the following property:

$$s'(t) = \sqrt{[u'_1(t)]^2 + [u'_2(t)]^2}, \quad t \in [a, b].$$

Proof. Suppose $a \le c < d \le b$. For k = 1, 2, let

$$m_k := \inf\{|u'_k(t)| : t \in [c,d]\}$$
 and $M_k := \sup\{|u'_k(t)| : t \in [c,d]\}.$

Let $P = \{t_0, t_1, \ldots, t_n\}$ be a partition of [c, d]. By the mean value theorem, for each $j \in \{1, \ldots, n\}$ there exist some ξ_j and η_j in (t_{j-1}, t_j) such that

$$u_1(t_j) - u_1(t_{j-1}) = u'_1(\xi_j)(t_j - t_{j-1})$$
 and $u_2(t_j) - u_2(t_{j-1}) = u'_2(\eta_j)(t_j - t_{j-1}).$

It follows that

$$m_k(t_j - t_{j-1}) \le |u_k(t_j) - u_k(t_{j-1})| \le M_k(t_j - t_{j-1}), \quad k = 1, 2$$

Consequently, with $m := \sqrt{m_1^2 + m_2^2}$ and $M := \sqrt{M_1^2 + M_2^2}$ we have

$$\sum_{j=1}^{n} m(t_j - t_{j-1}) \le \sum_{j=1}^{n} \sqrt{[u_1(t_j) - u_1(t_{j-1})]^2 + [u_2(t_j) - u_2(t_{j-1})]^2} \le \sum_{j=1}^{n} M(t_j - t_{j-1}).$$

Hence, $m(d-c) \leq L(u|_{[c,d]}, P) \leq M(d-c)$. This is true for every partition P of [c,d]. Therefore,

$$m(d-c) \le L(u|_{[c,d]}) \le M(d-c).$$

In particular, u is rectifiable.

Now suppose $t, t+h \in [a, b]$. For k = 1, 2, let $m_{k,h}$ ($M_{k,h}$) be the infimum (supremum) of the function $|u'_k|$ on the interval with t and t+h as the end points. Let

$$m_h := \sqrt{m_{1,h}^2 + m_{2,h}^2}$$
 and $M_h := \sqrt{M_{1,h}^2 + M_{2,h}^2}$

We have $s(t+h) - s(t) = L(u_{[t,t+h]})$ for h > 0 and $s(t+h) - s(t) = -L(u_{[t+h,t]})$ for h < 0. Thus, by what has been proved we obtain

$$m_h \le \frac{s(t+h) - s(t)}{h} \le M_h, \quad h \ne 0.$$

Since u'_1 and u'_2 are continuous on [a, b],

$$\lim_{h \to 0} m_h = \lim_{h \to 0} M_h = \sqrt{[u_1'(t)]^2 + [u_2'(t)]^2}.$$

Consequently,

$$s'(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h} = \sqrt{[u'_1(t)]^2 + [u'_2(t)]^2}, \quad t \in [a, b].$$

This completes the proof of the theorem.

Let us consider the following example: $\gamma(t) = (\gamma_1(t), \gamma_2(t))$, where

$$\gamma_1(t) := \frac{1-t^2}{1+t^2}$$
 and $\gamma_2(t) = \frac{2t}{1+t^2}$, $0 \le t \le 1$.

We have

$$\gamma_1'(t) = \frac{-4t}{(1+t^2)^2}$$
 and $\gamma_2'(t) = \frac{2(1-t^2)}{(1+t^2)^2}, \quad 0 \le t \le 1.$

Clearly, $\gamma'_1(t) < 0$ and $\gamma'_2(t) > 0$ for 0 < t < 1. Hence, γ_1 is strictly decreasing and γ_2 is strictly increasing on [0, 1]. Thus, γ is a one-to-one and onto mapping from [0, 1] to $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 \ge 0, x_2 \ge 0\}$, which is the part of the unit circle in the first quadrant. For $0 \le t \le 1$, let $s(t) := L(\gamma|_{[0,t]})$. Then

$$s'(t) = \sqrt{[\gamma_1'(t)]^2 + [\gamma_2'(t)]^2} = \frac{2}{1+t^2}, \quad t \in [0,1].$$

For $0 \leq t \leq 1$ and $n \in \mathbb{N}$ we observe that

$$\frac{1}{1+t^2} = \sum_{k=0}^{n} (-t^2)^k + \frac{(-t^2)^{n+1}}{1+t^2}.$$

This motivates us to introduce the function

$$r_n(t) := s(t) - \sum_{k=0}^n \frac{2(-1)^k t^{2k+1}}{2k+1}, \quad 0 \le t \le 1.$$

Clearly, $r_n(0) = 0$. Moreover,

$$r'_n(t) = s'(t) - 2\sum_{k=0}^n (-1)^k t^{2k} = \frac{2(-t^2)^{n+1}}{1+t^2}, \quad 0 \le t \le 1.$$

By the mean value theorem we have

$$|r_n(t)| = |r_n(t) - r_n(0)| \le \sup\{|r'_n(\tau)| : \tau \in [0, t]\} \le 2t^{2n+2}, \quad 0 \le t \le 1.$$

It follows that $\lim_{n\to\infty} r_n(t) = 0$ for $0 \le t < 1$. Consequently,

$$s(t) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{2(-1)^k t^{2k+1}}{2k+1} = \sum_{k=0}^{\infty} \frac{2(-1)^k t^{2k+1}}{2k+1}, \quad 0 \le t < 1$$

Furthermore,

$$\sum_{k=0}^{\infty} \frac{2(-1)^k}{2k+1} - s(t) = \sum_{k=0}^{\infty} \frac{2(-1)^k (1-t^{2k+1})}{2k+1} = 2(1-t) \sum_{k=0}^{\infty} (-1)^k b_k(t), \quad 0 \le t < 1$$

where $b_k(t) := (1 + t + \dots + t^{2k})/(2k+1)$. In particular, $b_0(t) = 1$. For $0 \le t < 1$, the series $\sum_{k=0}^{\infty} (-1)^k b_k(t)$ is an alternating series with $b_k(t) \ge b_{k+1}(t)$ for all $k \in \mathbb{N}_0$. Indeed $b_k(t) \ge b_{k+1}(t)$ holds if

$$(2k+3)(1+t+\cdots+t^{2k}) - (2k+1)(1+t+\cdots+t^{2k}+t^{2k+1}+t^{2k+2}) \ge 0.$$

Let w denote the left side of the above inequality. Then for $0 \le t < 1$ we have

$$w = 2(1 + t + \dots + t^{2k}) - (2k+1)(t^{2k+1} + t^{2k+2}) = \sum_{j=0}^{2k} \left[2t^j - (t^{2k+1} + t^{2k+2})\right] \ge 0.$$

This verifies $b_k(t) \ge b_{k+1}(t)$ for $0 \le t < 1$ and $k \in \mathbb{N}_0$. It follows that

$$\sum_{k=0}^{\infty} (-1)^k b_k(t) \le b_0(t) = 1.$$

Consequently,

$$0 \le \sum_{k=0}^{\infty} \frac{2(-1)^k}{2k+1} - s(t) \le 2(1-t), \quad 0 \le t < 1.$$

Finally, by the squeeze theorem for limits, we obtain

$$s(1) = \lim_{t \to 1^{-}} s(t) = \sum_{k=0}^{\infty} \frac{2(-1)^k}{2k+1}.$$

Let π be the perimeter of the half unit circle. Then

$$\frac{\pi}{4} = \frac{s(1)}{2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

The above series gives $\pi \approx 3.141592653589793$.

\S 8. Trigonometric Functions

In this section we introduce trigonometric functions and investigate their properties. Given two distinct points A and B in the Euclidean plane, the ray \overrightarrow{AB} is the set

Given two distinct points A and B in the Euclidean plane, the **ray** AB is the set consisting of A together with all points on the line AB that are on the same side of Aas B. The point A is the origin of the ray. Let \overrightarrow{AB} and \overrightarrow{AC} be two rays originating at the same point A, not lying on the same line. Then the **angle** $\angle BAC$ is the union of the rays \overrightarrow{AB} and \overrightarrow{AC} and the set of those points P satisfying the following two properties: (1) the line segment PC does not intersect the line AB; (2) the line segment PB does not intersect the line AC. The point A is called the **vertex** of $\angle BAC$.

In the Euclidean plane $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$, the x-axis is the line $\{(x, 0) : x \in \mathbb{R}\}$, and the y-axis is the line $\{(0, y) : y \in \mathbb{R}\}$. Let C be the unit circle $\{(x, y) : x^2 + y^2 = 1\}$. The unit circle intersects the x-axis at two points A(1,0) and B(-1,0). The arc AB is the upper half unit circle $\{(x, y) : x^2 + y^2 = 1 \text{ and } y \geq 0\}$. If P(x, y) is a point on the unit circle with y > 0, then the arc AP is the the intersection of the unit circle with $\angle POA$. If P(x, y) is a point on the unit circle with y < 0, then the arc BP is the the intersection of the unit circle with $\angle POB$ and we define the arc AP to be the arc AB followed by the arc BP. For a point P(x, y) on the unit circle, let $\sigma(x, y)$ be the length of the arc AP. If (x, y) = (1, 0), we define $\sigma(1, 0) = 0$. Then σ is a one-to-one function from the unit circle C onto $[0, 2\pi)$. Given $\theta \in [0, 2\pi)$, there exists a unique point P(x, y) on the unit circle such that $\sigma(x, y) = \theta$. We define

$$\cos \theta := x$$
 and $\sin \theta := y$.

It follows that $\cos 0 = 1$, $\sin 0 = 0$, $\cos(\pi/2) = 0$, $\sin(\pi/2) = 1$, $\cos \pi = -1$, $\sin \pi = 0$, $\cos(3\pi/2) = 0$ and $\sin(3\pi/2) = -1$. In general, any $\theta \in \mathbb{R}$ can be uniquely represented as $\theta = \theta_0 + 2k\pi$, where $\theta_0 \in [0, 2\pi)$ and $k \in \mathbb{Z}$. Then we define

$$\cos \theta := \cos \theta_0$$
 and $\sin \theta := \sin \theta_0$.

Thus the cosine and sine functions are 2π -periodic. Since the point $(\cos \theta, \sin \theta)$ lies on the unit circle, we have

$$\cos^2\theta + \sin^2\theta = 1 \quad \forall \theta \in \mathbb{R}.$$

Let us find the derivatives of the sine and cosine functions. For this purpose, we consider the set $E := \{(x, y) : x^2 + y^2 = 1, x \ge 0 \text{ and } y \ge 0\}$, which is the part of the unit circle in the first quadrant. It has the following parametric equations:

$$x = u(t) = \frac{1 - t^2}{1 + t^2}$$
 and $y = v(t) = \frac{2t}{1 + t^2}$, $0 \le t \le 1$.

Given a point P(u(t), v(t)) for some $t \in [0, 1]$, the length of the arc AP is $\theta = \sigma(u(t), v(t))$. Let $s(t) := \sigma(u(t), v(t))$ for $t \in [0, 1]$. In the last section we proved that s is a strictly increasing continuous function from [0, 1] onto $[0, \pi/2]$. Moreover,

$$s'(t) = \frac{2}{1+t^2} \quad \forall t \in [0,1].$$

Since x = u(t), y = v(t) and $\theta = s(t)$, for $\theta \in [0, \pi/2]$ we have

$$\cos'(\theta) = \frac{dx}{d\theta} = \frac{\frac{dx}{dt}}{\frac{d\theta}{dt}} = \frac{\frac{-4t}{(1+t^2)^2}}{\frac{2}{1+t^2}} = \frac{-2t}{1+t^2} = -\sin\theta$$

and

$$\sin'(\theta) = \frac{dy}{d\theta} = \frac{\frac{dy}{dt}}{\frac{d\theta}{dt}} = \frac{\frac{2(1-t^2)}{(1+t^2)^2}}{\frac{2}{1+t^2}} = \frac{1-t^2}{1+t^2} = \cos\theta$$

From the definitions of the cosine and sine functions we can deduce that

 $\cos(\theta + \pi/2) = -\sin\theta$ and $\sin(\theta + \pi/2) = \cos\theta$, $\theta \in [0, \pi/2]$.

Moreover,

$$\cos(\theta + \pi) = -\cos\theta$$
 and $\sin(\theta + \pi) = -\sin\theta$, $\theta \in [0, \pi]$.

Furthermore, the cosine and sine functions are 2π -periodic. Therefore we conclude that

$$\cos'(\theta) = -\sin\theta$$
 and $\sin'(\theta) = \cos\theta \quad \forall \theta \in (-\infty, \infty).$

By using differentiation we can derive the following addition formulas:

 $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ and $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$, $\alpha, \beta \in \mathbb{R}$. Indeed, to prove the first formula, we consider the function q given by

$$q(\theta) := \sin \theta \cos(\gamma - \theta) + \cos \theta \sin(\gamma - \theta), \quad \theta \in \mathbb{R},$$

where $\gamma := \alpha + \beta$ is fixed. For every $\theta \in \mathbb{R}$ we have

$$q'(\theta) = \cos\theta\cos(\gamma - \theta) + \sin\theta\sin(\gamma - \theta) - \sin\theta\sin(\gamma - \theta) - \cos\theta\cos(\gamma - \theta) = 0.$$

Hence, $q(\alpha) = q(0)$. This establishes the first formula. The second formula can be proved similarly.

Now let us find the Taylor series of the sine function about 0. Let $f(x) := \sin x$ for $x \in (-\infty, \infty)$. We have

 $f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f^{(3)}(x) = -\cos x, \quad f^{(4)}(x) = \sin x.$

In general, for j = 0, 1, 2, ...,

$$f^{(4j)}(x) = \sin x, \quad f^{(4j+1)}(x) = \cos x, \quad f^{(4j+2)}(x) = -\sin x, \quad f^{(4j+3)}(x) = -\cos x.$$

It follows that

$$f^{(2k)}(0) = 0$$
 and $f^{(2k+1)}(0) = (-1)^k$, $k = 0, 1, 2, \dots$

By the Taylor theorem we obtain

$$f(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + R_{2n+1}(x),$$

where

$$R_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} x^{2n+2} = (-1)^{n+1} \sin \xi \frac{x^{2n+2}}{(2n+2)!}$$

with ξ between 0 and x. It follows that

$$|R_{2n+1}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!}$$

Consequently,

$$\lim_{n \to \infty} |R_{2n+1}(x)| = 0.$$

Therefore

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots, \quad x \in (-\infty, \infty).$$

Term-by-term differentiation of the above power series gives the Taylor series of the cosine function abbout 0:

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots, \quad x \in (-\infty, \infty).$$

The other trigonometric functions, tangent, cotangent, secant, and cosecant, are defined as follows:

$$\tan \theta := \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta := \frac{1}{\cos \theta} \quad \text{for } \theta \in \mathbb{R} \setminus \{k\pi + \pi/2 : k \in \mathbb{Z}\},\$$

and

$$\cot \theta := \frac{\cos \theta}{\sin \theta}$$
 and $\csc \theta := \frac{1}{\sin \theta}$ for $\theta \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$.

The derivatives of these functions are found by using the quotient rule:

$$\tan'(\theta) = \sec^2 \theta \quad \text{and} \quad \sec'(\theta) = \tan \theta \sec \theta \quad \text{for } \theta \in \mathbb{R} \setminus \{k\pi + \pi/2 : k \in \mathbb{Z}\},$$

and

$$\cot'(\theta) = -\csc^2 \theta$$
 and $\csc'(\theta) = -\cot \theta \csc \theta$ for $\theta \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$

Finally, let us investigate the inverse trigonometric functions. Let $f(\theta) := \sin \theta$ for $-\pi/2 \le \theta \le \pi/2$. Since $f'(\theta) = \cos \theta > 0$ for $-\pi/2 < \theta < \pi/2$, f is strictly increasing on $[-\pi/2, \pi/2]$. Thus, f maps $[-\pi/2, \pi/2]$ one-to-one and onto [-1, 1]. Hence, the inverse function f^{-1} is continuous and strictly increasing on [-1, 1] and its range is $[-\pi/2, \pi/2]$. We define

$$\arcsin x := f^{-1}(x), \quad x \in [-1, 1].$$

By the inverse function theorem, with $x = \sin \theta$ we obtain

$$\arcsin'(x) = \frac{1}{f'(\theta)} = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1 - x^2}}, \quad -1 < x < 1$$

Let $g(\theta) := \cos \theta$ for $0 \le \theta \le \pi$. Since $g'(\theta) = -\sin \theta < 0$ for $0 < \theta < \pi$, g is strictly decreasing on $[0, \pi]$. Thus, g maps $[0, \pi]$ one-to-one and onto [-1, 1]. Hence, the inverse function g^{-1} is continuous and strictly decreasing on [-1, 1] and its range is $[0, \pi]$. We define

$$\arccos x := g^{-1}(x), \quad x \in [-1, 1].$$

It is easily verified that

$$\arccos x = \frac{\pi}{2} - \arcsin x, \quad x \in [-1, 1].$$

Let $h(\theta) := \tan \theta$ for $-\pi/2 < \theta < \pi/2$. Since $h'(\theta) = \sec^2 \theta > 0$ for $-\pi/2 < \theta < \pi/2$, h is strictly increasing on $(-\pi/2, \pi/2)$. Thus, h maps $(-\pi/2, \pi/2)$ one-to-one and onto $(-\infty, \infty)$. Hence, the inverse function h^{-1} is continuous and strictly increasing on $(-\infty, \infty)$ and its range is $(-\pi/2, \pi/2)$. We define

$$\arctan x := h^{-1}(x), \quad x \in (-\infty, \infty).$$

By the inverse function theorem, with $x = \tan \theta$ we obtain

$$\arctan'(x) = \frac{1}{h'(\theta)} = \frac{1}{\sec^2 \theta} = \frac{1}{1+x^2}, \quad -\infty < x < \infty.$$