
Chapter 5. Integration

§1. The Riemann Integral

Let a and b be two real numbers with a < b. Then [a, b] is a closed and bounded

interval in IR. By a partition P of [a, b] we mean a finite ordered set {t0, t1, . . . , tn} such

that

a = t0 < t1 < · · · < tn = b.

The norm of P is defined by ∥P∥ := max{ti − ti−1 : i = 1, 2, . . . , n}.
Suppose f is a bounded real-valued function on [a, b]. Given a partition {t0, t1, . . . , tn}

of [a, b], for each i = 1, 2, . . . , n, let

mi := inf{f(x) : ti−1 ≤ x ≤ ti} and Mi := sup{f(x) : ti−1 ≤ x ≤ ti}.

The upper sum U(f, P ) and the lower sum L(f, P ) for the function f and the partition

P are defined by

U(f, P ) :=
n∑

i=1

Mi(ti − ti−1) and L(f, P ) :=
n∑

i=1

mi(ti − ti−1).

The upper integral U(f) of f over [a, b] is defined by

U(f) := inf{U(f, P ) : P is a partition of [a, b]}

and the lower integral L(f) of f over [a, b] is defined by

L(f) := sup{L(f, P ) : P is a partition of [a, b]}.

A bounded function f on [a, b] is said to be (Riemann) integrable if L(f) = U(f). In this

case, we write ∫ b

a

f(x) dx = L(f) = U(f).

By convention we define∫ a

b

f(x) dx := −
∫ b

a

f(x) dx and

∫ a

a

f(x) dx := 0.

A constant function on [a, b] is integrable. Indeed, if f(x) = c for all x ∈ [a, b], then

L(f, P ) = c(b− a) and U(f, P ) = c(b− a) for any partition P of [a, b]. It follows that∫ b

a

c dx = c(b− a).
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Let f be a bounded function from [a, b] to IR such that |f(x)| ≤ M for all x ∈ [a, b].

Suppose that P = {t0, t1, . . . , tn} is a partition of [a, b], and that P1 is a partition obtained

from P by adding one more point t∗ ∈ (ti−1, ti) for some i. The lower sums for P and P1

are the same except for the terms involving ti−1 or ti. Let mi := inf{f(x) : ti−1 ≤ x ≤ ti},
m′ := inf{f(x) : ti−1 ≤ x ≤ t∗}, and m′′ := inf{f(x) : t∗ ≤ x ≤ ti}. Then

L(f, P1)− L(f, P ) = m′(t∗ − ti−1) +m′′(ti − t∗)−mi(ti − ti−1).

Since m′ ≥ mi and m′′ ≥ mi, we have L(f, P ) ≤ L(f, P1). Moreover, m′ −m ≤ 2M and

m′′ −m ≤ 2M . It follows that

m′(t∗ − ti−1) +m′′(ti − t∗)−mi(ti − ti−1) ≤ 2M(ti − ti−1).

Consequently,

L(f, P1)− 2M∥P∥ ≤ L(f, P ) ≤ L(f, P1).

Now suppose that PN is a mesh obtained from P by adding N points. An induction

argument shows that

L(f, PN )− 2MN∥P∥ ≤ L(f, P ) ≤ L(f, PN ). (1)

Similarly we have

U(f, PN ) ≤ U(f, P ) ≤ U(f, PN ) + 2MN∥P∥. (2)

By the definition of L(f) and U(f), for each n ∈ IN there exist partitions P and Q of

[a, b] such that

L(f)− 1/n ≤ L(f, P ) and U(f) + 1/n ≥ U(f,Q).

Consider the partition P ∪Q of [a, b]. Since P ⊆ P ∪Q and Q ⊆ P ∪Q, by (1) and (2) we

get

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

It follows that L(f)−1/n ≤ U(f)+1/n for all n ∈ IN. Letting n → ∞ in the last inequality,

we obtain L(f) ≤ U(f).

We are in a position to establish the following criterion for a bounded function to be

integrable.
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Theorem 1.1. A bounded function f on [a, b] is integrable if and only if for each ε > 0

there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. Suppose that f is integrable on [a, b]. For ε > 0, there exist partitions P1 and P2

such that

L(f, P1) > L(f)− ε

2
and U(f, P2) < U(f) +

ε

2
.

For P := P1 ∪ P2 we have

L(f)− ε

2
< L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2) < U(f) +

ε

2
.

Since L(f) = U(f), it follows that U(f, P )− L(f, P ) < ε.

Conversely, suppose that for each ε > 0 there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε. Then U(f, P ) < L(f, P ) + ε. It follows that

U(f) ≤ U(f, P ) < L(f, P ) + ε ≤ L(f) + ε.

Since ε > 0 is arbitrary, we have U(f) ≤ L(f). But L(f) ≤ U(f). Therefore U(f) = L(f);

that is, f is integrable.

Let f be a bounded real-valued function on [a, b] and let P = {t0, t1, . . . , tn} be a

partition of [a, b]. For each i = 1, 2, . . . , n, choose ξi ∈ [xi−1, xi]. The sum

n∑
i=1

f(ξi)(ti − ti−1)

is called a Riemann sum of f with respect to the partition P and points {ξ1, . . . , ξn}.

Theorem 1.2. Let f be a bounded real-valued function on [a, b]. Then f is integrable on

[a, b] if and only if there exists a real number I with the following property: For any ε > 0

there exists some δ > 0 such that∣∣∣∣ n∑
i=1

f(ξi)(ti − ti−1)− I

∣∣∣∣ ≤ ε (3)

whenever P = {t0, t1, . . . , tn} is a partition of [a, b] with ∥P∥ < δ and ξi ∈ [ti−1, ti] for

i = 1, 2, . . . , n. If this is the case, then∫ b

a

f(x) dx = I.
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Proof. Let ε be an arbitrary positive number. Suppose that (3) is true for some partition

P = {t0, t1, . . . , tn} of [a, b] and points ξi ∈ [ti−1, ti], i = 1, 2, . . . , n. Then

L(f, P ) = inf

{ n∑
i=1

f(ξi)(ti − ti−1) : ξi ∈ [xi−1, xi] for i = 1, 2, . . . , n

}
≥ I − ε

and

U(f, P ) = sup

{ n∑
i=1

f(ξi)(ti − ti−1) : ξi ∈ [xi−1, xi] for i = 1, 2, . . . , n

}
≤ I + ε.

It follows that U(f, P ) − L(f, P ) ≤ 2ε. By Theorem 1.1 we conclude that f is integrable

on [a, b]. Moreover, L(f) = U(f) = I.

Conversely, suppose that f is integrable on [a, b]. Let M := sup{|f(x)| : x ∈ [a, b]}
and I := L(f) = U(f). Given an arbitrary ε > 0, there exists a partition Q of [a, b]

such that L(f,Q) > I − ε/2 and U(f,Q) < I + ε/2. Suppose that Q has N points. Let

P = {t0, t1, . . . , tn} be a partition of [a, b] with ∥P∥ < δ. Consider the partition P ∪Q of

[a, b]. By (1) and (2) we have

L(f, P ) ≥ L(f, P ∪Q)− 2MNδ and U(f, P ) ≤ U(f, P ∪Q) + 2MNδ.

But L(f, P ∪ Q) ≥ L(f,Q) > I − ε/2 and U(f, P ∪ Q) ≤ U(f,Q) < I + ε/2. Choose

δ := ε/(4MN). Since ∥P∥ < δ, we deduce from the foregoing inequalities that

I − ε < L(f, P ) ≤ U(f, P ) < I + ε.

Thus, with ξi ∈ [ti−1, ti] for i = 1, 2, . . . , n we obtain

I − ε < L(f, P ) ≤
n∑

i=1

f(ξi)(ti − ti−1) ≤ U(f, P ) < I + ε.

This completes the proof.

Theorem 1.3. Let f be a bounded function from a bounded closed interval [a, b] to IR.

If the set of discontinuities of f is finite, then f is integrable on [a, b].

Proof. Let D be the set of discontinuities of f . By our assumption, D is finite. So the

set D ∪ {a, b} can be expressed as {d0, d1, . . . , dN} with a = d0 < d1 < · · · < dN = b. Let

M := sup{|f(x)| : x ∈ [a, b]}. For an arbitrary positive number ε, we choose η > 0 such
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that η < ε/(8MN) and η < (dj − dj−1)/3 for all j = 1, . . . , N . For j = 0, 1, . . . , N , let

xj := dj − η and yj := dj + η. Then we have

a = d0 < y0 < x1 < d1 < y1 < · · · < xN < dN = b.

Let E be the union of the intervals [d0, y0], [x1, d1], [d1, y1], . . . , [xN−1, dN−1], [dN−1, yN−1],

and [xN , dN ]. There are 2N intervals in total. For j = 1, . . . , N , let Fj := [yj−1, xj ].

Further, let F := ∪N
j=1Fj . The function f is continuous on F , which is a finite union of

bounded closed intervals. Hence f is uniformly continuous on F . There exists some δ > 0

such that |f(x)− f(y)| < ε/(2(b− a)) whenever x, y ∈ F satisfying |x− y| < δ. For each

j ∈ {1, . . . , N}, let Pj be a partition of Fj such that ∥Pj∥ < δ. Let

P := {a, b} ∪D ∪
(
∪N
j=1Pj

)
.

The set P can be arranged as {t0, t1, . . . , tn} with a = t0 < t1 < · · · < tn = b. Consider

U(f, P )− L(f, P ) =

n∑
i=1

(Mi −mi)(ti − ti−1),

where Mi := sup{f(x) : ti−1 ≤ x ≤ ti} and mi := inf{f(x) : ti−1 ≤ x ≤ ti}. Each interval

[ti−1, ti] is either contained in E or in F , but not in both. Hence

n∑
i=1

(Mi −mi)(ti − ti−1) =
∑

[ti−1,ti]⊆E

(Mi −mi)(ti − ti−1) +
∑

[ti−1,ti]⊆F

(Mi −mi)(ti − ti−1).

There are 2N intervals [ti−1, ti] contained in E. Each interval has length η < ε/(8MN).

Noting that Mi −mi ≤ 2M , we obtain∑
[ti−1,ti]⊆E

(Mi −mi)(ti − ti−1) ≤ 2N(2M)η <
ε

2
.

If [ti−1, ti] ⊆ F , then ti − ti−1 < δ; hence Mi −mi < ε/(2(b− a)). Therefore,∑
[ti−1,ti]⊆F

(Mi −mi)(ti − ti−1) ≤
ε

2(b− a)

∑
[ti−1,ti]⊆F

(ti − ti−1) <
ε

2(b− a)
(b− a) =

ε

2
.

From the above estimates we conclude that U(f, P ) − L(f, P ) < ε. By Theorem 1.1, the

function f is integrable on [a, b].

Example 1. Let [a, b] be a closed interval with a < b, and let f be the function on [a, b]

given by f(x) = x. By Theorem 1.3, f is integrable on [a, b]. Let P = {t0, t1, . . . , tn} be a

partition of [a, b] and choose ξi := (ti−1 + ti)/2 ∈ [ti−1, ti] for i = 1, 2, . . . , n. Then

n∑
i=1

f(ξi)(ti−ti−1) =
1

2

n∑
i=1

(ti+ti−1)(ti−ti−1) =
1

2

n∑
i=1

(t2i −t2i−1) =
1

2
(t2n−t20) =

1

2
(b2−a2).
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By Theorem 1.2 we have ∫ b

a

x dx =
1

2
(b2 − a2).

More generally, for a positive integer k, let fk be the function given by fk(x) = xk for

x ∈ [a, b]. Choose

ξi :=

(
tki−1 + tk−1

i−1 ti + · · ·+ tki
k + 1

)1/k

, i = 1, 2, . . . , n.

We have ti−1 ≤ ξi ≤ ti for i = 1, 2, . . . , n. Moreover,

n∑
i=1

fk(ξi)(ti − ti−1) =
1

k + 1

n∑
i=1

(tk+1
i − tk+1

i−1 ) =
1

k + 1
(tk+1

n − tk+1
0 ) =

1

k + 1
(bk+1 − ak+1).

By Theorem 1.2 we conclude that

∫ b

a

xk dx =
1

k + 1
(bk+1 − ak+1).

Example 2. Let g be the function on [0, 1] defined by g(x) := cos(1/x) for 0 < x ≤ 1

and g(0) := 0. The only discontinuity point of g is 0. By Theorem 1.3, g is integrable on

[0, 1]. Note that g is not uniformly continuous on (0, 1). Indeed, let xn := 1/(2nπ) and

yn := 1/(2nπ + π/2) for n ∈ IN. Then limn→∞(xn − yn) = 0. But

|f(xn)− f(yn)| = | cos(2nπ)− cos(2nπ + π/2)| = 1 ∀n ∈ IN.

Hence g is not uniformly continuous on (0, 1). On the other hand, the function u given

by u(x) := 1/x for 0 < x ≤ 1 and u(0) := 0 is not integrable on [0, 1], even though u is

continuous on (0, 1]. Theorem 1.3 is not applicable to u, because u is unbounded.

Example 3. Let h be the function on [0, 1] defined by h(x) := 1 if x is a rational number

in [0, 1] and h(x) := 0 if x is an irrational number in [0, 1]. Let P = {t0, t1, . . . , tn} be a

partition of [0, 1]. For i = 1, . . . , n we have

mi := inf{h(x) : x ∈ [ti−1, ti]} = 0 and Mi := sup{h(x) : x ∈ [ti−1, ti]} = 1.

Hence L(h, P ) = 0 and U(h, P ) = 1 for every partition P of [0, 1]. Consequently, L(h) = 0

and U(h) = 1. This shows that h is not Riemann integrable on [0, 1].
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§2. Properties of the Riemann Integral

In this section we establish some basic properties of the Riemann integral.

Theorem 2.1. Let f and g be integrable functions from a bounded closed interval [a, b]

to IR. Then

(1) For any real number c, cf is integrable on [a, b] and
∫ b

a
(cf)(x) dx = c

∫ b

a
f(x) dx;

(2) f + g is integrable on [a, b] and
∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Proof. Suppose that f and g are integrable functions on [a, b]. Write I(f) :=
∫ b

a
f(x) dx

and I(g) :=
∫ b

a
g(x) dx. Let ε be an arbitrary positive number. By Theorem 1.2, there

exists some δ > 0 such that∣∣∣∣ n∑
i=1

f(ξi)(ti − ti−1)− I(f)

∣∣∣∣ ≤ ε and

∣∣∣∣ n∑
i=1

g(ξi)(ti − ti−1)− I(g)

∣∣∣∣ ≤ ε

whenever P = {t0, t1, . . . , tn} is a partition of [a, b] with ∥P∥ < δ and ξi ∈ [ti−1, ti] for

i = 1, 2, . . . , n. It follows that∣∣∣∣ n∑
i=1

(cf)(ξi)(ti − ti−1)− cI(f)

∣∣∣∣ = |c|
∣∣∣∣ n∑
i=1

f(ξi)(ti − ti−1)− I(f)

∣∣∣∣ ≤ |c|ε.

Hence cf is integrable on [a, b] and
∫ b

a
(cf)(x) dx = c

∫ b

a
f(x) dx. Moreover,∣∣∣∣ n∑

i=1

(f + g)(ξi)(ti − ti−1)− [I(f) + I(g)]

∣∣∣∣
≤

∣∣∣∣ n∑
i=1

f(ξi)(ti − ti−1)− I(f)

∣∣∣∣+ ∣∣∣∣ n∑
i=1

g(ξi)(ti − ti−1)− I(g)

∣∣∣∣ ≤ 2ε.

Therefore f + g is integrable on [a, b] and
∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Theorem 2.2. Let f and g be integrable functions on [a, b]. Then fg is an integrable

function on [a, b].

Proof. Let us first show that f2 is integrable on [a, b]. Since f is bounded, there exists

some M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. It follows that∣∣[f(x)]2 − [f(y)]2
∣∣ = |f(x) + f(y)||f(x)− f(y)| ≤ 2M |f(x)− f(y)| for all x, y ∈ [a, b].

We deduce from the above inequality that U(f2, P ) − L(f2, P ) ≤ 2M [U(f, P ) − L(f, P )]

for any partition P of [a, b]. Let ε > 0. Since f is integrable on [a, b], by Theorem 1.1
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there exists a partition P of [a, b] such that U(f, P ) − L(f, P ) < ε/(2M). Consequently,

U(f2, P )−L(f2, P ) < ε. By Theorem 1.1 again we conclude that f2 is integrable on [a, b].

Note that fg = [(f+g)2− (f−g)2]/4. By Theorem 2.1, f+g and f−g are integrable

on [a, b]. By what has been proved, both (f + g)2 and (f − g)2 are integrable on [a, b].

Using Theorem 2.1 again, we conclude that fg is integrable on [a, b].

Theorem 2.3. Let a, b, c, d be real numbers such that a ≤ c < d ≤ b. If a real-valued

function f is integrable on [a, b], then f |[c,d] is integrable on [c, d].

Proof. Suppose that f is integrable on [a, b]. Let ε be an arbitrary positive number. By

Theorem 1.1, there exists a partition P of [a, b] such that U(f, P )−L(f, P ) < ε. It follows

that U(f, P ∪ {c, d}) − L(f, P ∪ {c, d}) < ε. Let Q := (P ∪ {c, d}) ∩ [c, d]. Then Q is a

partition of [c, d]. We have

U(f |[c,d], Q)− L(f |[c,d], Q) ≤ U(f, P ∪ {c, d})− L(f, P ∪ {c, d}) < ε.

Hence f |[c,d] is integrable on [c, d].

Theorem 2.4. Let f be a bounded real-valued function on [a, b]. If a < c < b, and if f is

integrable on [a, c] and [c, b], then f is integrable on [a, b] and∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof. Suppose that f is integrable on [a, c] and [c, b]. We write I1 :=
∫ c

a
f(x) dx and

I2 :=
∫ b

c
f(x) dx. Let ε > 0. By Theorem 1.1, there exist a partition P1 = {s0, s1, . . . , sm}

of [a, c] and a partition P2 = {t0, t1, . . . , tn} of [c, b] such that

U(f, P1)− L(f, P1) <
ε

2
and U(f, P2)− L(f, P2) <

ε

2
.

Let P := P1 ∪ P2 = {s0, . . . , sm−1, t0, . . . , tn}. Then P is a partition of [a, b]. We have

L(f) ≥ L(f, P ) = L(f, P1) + L(f, P2) > U(f, P1) + U(f, P2)− ε ≥ I1 + I2 − ε

and

U(f) ≤ U(f, P ) = U(f, P1) + U(f, P2) < L(f, P1) + L(f, P2) + ε ≤ I1 + I2 + ε

It follows that∫ c

a

f(x) dx+

∫ b

c

f(x) dx− ε < L(f) ≤ U(f) <

∫ c

a

f(x) dx+

∫ b

c

f(x) dx+ ε.
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Since the above inequalities are valid for all ε > 0, we conclude that f is integrable on

[a, b] and
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Let a, b, c be real numbers in any order, and let J be a bounded closed interval con-

taining a, b, and c. If f is integrable on J , then by Theorems 2.3 and 2.4 we have∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Theorem 2.5. Let f and g be integrable functions on [a, b]. If f(x) ≤ g(x) for all x ∈ [a, b],

then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Proof. By Theorem 2.1, h := g− f is integrable on [a, b]. Since h(x) ≥ 0 for all x ∈ [a, b],

it is clear that L(h, P ) ≥ 0 for any partition P of [a, b]. Hence,
∫ b

a
h(x) dx = L(h) ≥ 0.

Applying Theorem 2.1 again, we see that∫ b

a

g(x) dx−
∫ b

a

f(x) dx =

∫ b

a

h(x) dx ≥ 0.

Theorem 2.6. If f is an integrable function on [a, b], then |f | is integrable on [a, b] and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Proof. Let P = {t0, t1, . . . , tn} be a partition of [a, b]. For each i ∈ {1, . . . , n}, let Mi and

mi denote the supremum and infimun respectively of f on [ti−1, ti], and let M∗
i and m∗

i

denote the supremum and infimun respectively of |f | on [ti−1, ti]. Then

Mi −mi = sup{f(x)− f(y) : x, y ∈ [ti−1, ti]}

and

M∗
i −m∗

i = sup{|f(x)| − |f(y)| : x, y ∈ [ti−1, ti]}.

By the triangle inequality,
∣∣|f(x)| − |f(y)|

∣∣ ≤ |f(x) − f(y)|. Hence M∗
i −m∗

i ≤ Mi −mi

and
n∑

i=1

(M∗
i −m∗

i )(ti − ti−1) ≤
n∑

i=1

(Mi −mi)(ti − ti−1).

It follows that U(|f |, P ) − L(|f |, P ) ≤ U(f, P ) − L(f, P ). Let ε be an arbitrary positive

number. By our assumption, f is integrable on [a, b]. By Theorem 1.1, there exists

a partition P such that U(f, P ) − L(f, P ) < ε. Hence U(|f |, P ) − L(|f |, P ) < ε. By

using Theorem 1.1 again we conclude that |f | is integrable on [a, b]. Furthermore, since

f(x) ≤ |f(x)| and −f(x) ≤ |f(x)| for all x ∈ [a, b], by Theorem 2.5 we have∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx and −
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx.

Therefore
∣∣ ∫ b

a
f(x) dx

∣∣ ≤ ∫ b

a
|f(x)| dx.
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§3. Fundamental Theorem of Calculus

In this section we give two versions of the Fundamental Theorem of Calculus and their

applications.

Let f be a real-valued function on an interval I. A function F on I is called an

antiderivative of f on I if F ′(x) = f(x) for all x ∈ I. If F is an antiderivative of f , then

so is F +C for any constant C. Conversely, if F and G are antiderivatives of f on I, then

G′(x)−F ′(x) = 0 for all x ∈ I. Thus, there exists a constant C such that G(x)−F (x) = C

for all x ∈ I. Consequently, G = F + C.

The following is the first version of the Fundamental Theorem of Calculus.

Theorem 3.1. Let f be an integrable function on [a, b]. If F is a continuous function on

[a, b] and if F is an antiderivative of f on (a, b), then∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

:= F (b)− F (a).

Proof. Let ε > 0. By Theorem 1.1, there exists a partition P = {t0, t1, . . . , tn} of [a, b]

such that U(f, P )− L(f, P ) < ε. Since t0 = a and tn = b we have

F (b)− F (a) =

n∑
i=1

[F (ti)− F (ti−1)].

By the Mean Value Theorem, for each i ∈ {1, . . . , n} there exists xi ∈ (ti−1, ti) such that

F (ti)− F (ti−1) = F ′(xi)(ti − ti−1) = f(xi)(ti − ti−1).

Consequently,

L(f, P ) ≤ F (b)− F (a) =

n∑
i=1

f(xi)(ti − ti−1) ≤ U(f, P ).

On the other hand,

L(f, P ) ≤
∫ b

a

f(x) dx ≤ U(f, P ).

Thus both F (b)−F (a) and
∫ b

a
f(x) dx lie in [L(f, P ), U(f, P )] with U(f, P )−L(f, P ) < ε.

Hence ∣∣∣∣[F (b)− F (a)]−
∫ b

a

f(x) dx

∣∣∣∣ < ε.

Since the above inequality is valid for all ε > 0, we obtain
∫ b

a
f(x) dx = F (b)− F (a).
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Example 1. Let k be a positive integer. Find
∫ b

a
xk dx.

Solution. We know that the function gk : x 7→ xk+1/(k + 1) is an antiderivative of the

function fk : x 7→ xk. By the Fundamental Theorem of Calculus we obtain∫ b

a

xk dx =
xk+1

k + 1

∣∣∣∣b
a

=
bk+1 − ak+1

k + 1
.

Example 2. Find the integral
∫ 2

1
1/x dx.

Solution. On the interval (0,∞), the function x 7→ lnx is an antiderivative the function

x 7→ 1/x. By the Fundamental Theorem of Calculus we obtain∫ 2

1

1

x
dx = lnx

∣∣∣2
1
= ln 2− ln 1 = ln 2.

This integral can be used to find the limit

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
.

Indeed, let f(x) := 1/x for x = [1, 2], and let ti = 1 + i/n for i = 0, 1, . . . , n. Then

P := {t0, t1, . . . , tn} is a partition of [1, 2] and

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
=

n∑
i=1

f(ti)(ti − ti−1)

is a Riemann sum of f with respect to P and points {t1, . . . , tn}. By Theorem 1.2 we get

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
= lim

n→∞

n∑
i=1

f(ti)(ti − ti−1) =

∫ 2

1

1

x
dx = ln 2.

Example 3. A curve in plane is represented by a continuous mapping u = (u1, u2) from

[a, b] to IR2. We use L(u) to denote the length of the curve. Suppose that u′
1 and u′

2 are

continuous on [a, b]. Then u is rectifiable. For t ∈ [a, b], let s(t) denote the length of the

curve u|[a,t]. It was proved in Theorem 7.1 of Chapter 4 that

s′(t) =
√
[u′

1(t)]
2 + [u′

2(t)]
2, t ∈ [a, b].

By Theorem 3.1 (the Fundamental Theorem of Calculus), we obtain

L(u) = s(b)− s(a) =

∫ b

a

s′(t) dt =

∫ b

a

√
[u′

1(t)]
2 + [u′

2(t)]
2 dt.

The following is the second version of the Fundamental Theorem of Calculus.

11



Theorem 3.2. Let f be an integrable function on [a, b]. Define

F (x) :=

∫ x

a

f(t) dt, x ∈ [a, b].

Then F is a continuous function on [a, b]. Furthermore, if f is continuous at a point

c ∈ [a, b], then F is differentiable at c and

F ′(c) = f(c).

Proof. Since f is bounded on [a, b], there exists a constant M > 0 such that |f(x)| ≤ M

for all x ∈ [a, b]. If x, y ∈ [a, b] and x < y, then

F (y)− F (x) =

∫ y

a

f(t) dt−
∫ x

a

f(t) dt =

∫ y

x

f(t) dt.

Since −M ≤ f(t) ≤ M for x ≤ t ≤ y, by Theorem 2.5 we have

−M(y − x) ≤
∫ y

x

f(t) dt ≤ M(y − x).

It follows that |F (y)−F (x)| ≤ M |y−x|. For given ε > 0, choose δ = ε/M . Then |y−x| < δ

implies |F (y)− F (x)| ≤ M |y − x| < ε. This shows that F is continuous on [a, b].

Now suppose that f is continuous at c ∈ [a, b). Let h > 0. By Theorem 2.4 we have

F (c+ h)− F (c)

h
− f(c) =

1

h

∫ c+h

c

f(t) dt− f(c) =
1

h

∫ c+h

c

[
f(t)− f(c)

]
dt.

Let ε > 0 be given. Since f is continuous at c, there exists some δ > 0 such that

|f(t)− f(c)| ≤ ε whenever c ≤ t ≤ c+ δ. Therefore, if 0 < h < δ, then∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ = ∣∣∣∣ 1h
∫ c+h

c

[
f(t)− f(c)

]
dt

∣∣∣∣ ≤ 1

h

∫ c+h

c

∣∣f(t)− f(c)
∣∣ dt ≤ ε.

Consequently,

lim
h→0+

F (c+ h)− F (c)

h
= f(c).

Similarly, if f is continuous at c ∈ (a, b], then

lim
h→0−

F (c+ h)− F (c)

h
= f(c).

This completes the proof of the theorem.
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Example 4. Let f be a continuous function on [a, b], and let F (x) :=
∫ b

x
f(t) dt for each

x ∈ [a, b]. Then we have

F (x) =

∫ b

x

f(t) dt = −
∫ x

b

f(t) dt.

By Theorem 3.2, F is differentiable on [a, b] and F ′(x) = −f(x) for a ≤ x ≤ b.

Example 5. Let F (x) :=
∫ x2

−x

√
4 + t2 dt, x ∈ IR. Find F ′(x) for x ∈ IR.

Solution. We have

F (x) =

∫ 0

−x

√
4 + t2 dt+

∫ x2

0

√
4 + t2 dt = −

∫ −x

0

√
4 + t2 dt+

∫ x2

0

√
4 + t2 dt.

By using the chain rule and Theorem 3.2 we obtain

F ′(x) =
√
4 + x2 + 2x

√
4 + x4.

Example 6. Let G(x) :=
∫ x

2
x cos(t3) dt, x ∈ IR. Find G′′(x) for x ∈ IR.

Solution. We have G(x) = x
∫ x

2
cos(t3) dt. By Theorem 3.2 and the product rule for

differentiation, we obtain

G′(x) =

∫ x

2

cos(t3) dt+ x cos(x3).

Taking derivative once more, we get

G′′(x) = cos(x3) + cos(x3) + x[− sin(x3)](3x2) = 2 cos(x3)− 3x3 sin(x3).

§4. Indefinite Integrals

An antiderivative of a function f is also called an indefinite integral of f . It is

customary to denote an indefinite integral of f by∫
f(x) dx.

For example, for µ ∈ IR \ {−1} we have∫
xµ dx =

xµ+1

µ+ 1
+ C, x ∈ (0,∞).
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If µ ∈ IN0, then the above formula is valid for all x ∈ IR. If µ ∈ ZZ and µ ≤ −2, then the

formula holds for x ∈ (−∞, 0) ∪ (0,∞). For µ = −1 we have∫
1

x
dx = ln |x|+ C, x ∈ (−∞, 0) ∪ (0,∞).

The following formulas for integration are easily derived from the corresponding formulas

for differentiation: ∫
ex dx = ex + C, x ∈ (−∞,∞).∫

cosx dx = sinx+ C, x ∈ (−∞,∞),∫
sinx dx = − cosx+ C, x ∈ (−∞,∞),∫
1

1 + x2
dx = arctanx+ C x ∈ (−∞,∞),∫

1√
1− x2

dx = arcsinx+ C x ∈ (−1, 1).

If F1 and F2 are differentiable functions on an interval, and if F ′
1 = f1 and F ′

2 = f2,

then for c1, c2 ∈ IR we have

[c1F1 + c2F2]
′ = c1F

′
1 + c2F

′
2 = c1f1 + c2f2.

It follows that ∫
[c1f1(x) + c2f2(x)] dx = c1

∫
f1(x) dx+ c2

∫
f2(x) dx.

Now let u and v be differentiable functions on an interval. By the product rule for

differentiation we have

(uv)′ = u′v + uv′.

From this we deduce the following formula for integration by parts:∫
u(x)v′(x) dx = u(x)v(x)−

∫
u′(x)v(x) dx.

It can also be written as ∫
u dv = uv −

∫
v du.
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Example 1. Find
∫
x2ex dx.

Solution. By integration by parts we have∫
x2ex dx =

∫
x2d(ex) = x2ex −

∫
exd(x2) = x2ex − 2

∫
xex dx.

By using integration by parts again we obtain∫
xex dx =

∫
xd(ex) = xex −

∫
ex dx = xex − ex + C.

Therefore ∫
x2ex dx = x2ex − 2xex + 2ex + C.

In general, if p is a polynomial, then∫
p(x)ex dx =

∫
p(x)d(ex) = p(x)ex −

∫
p′(x)ex dx,

where the degree of p′ is one less than that of p. Thus the integral
∫
p(x)ex can be com-

puted by using integration by parts repeatedly. This method also applies to the integrals∫
p(x) sinx dx and

∫
p(x) cosx dx.

Example 2. Find
∫
x lnx dx.

Solution. Integration by parts gives∫
x lnx dx =

∫
lnx d(x2/2) =

x2

2
lnx−

∫
x2

2
d(lnx)

=
x2

2
lnx−

∫
x2

2

1

x
dx =

x2

2
lnx− 1

4
x2 + C.

In general, if p is a polynomial given by p(x) =
∑

k=0 akx
k, then

∫
p(x) dx =

n∑
k=0

ak
k + 1

xk+1 + C.

Let s(x) :=
∑n

k=0 akx
k+1/(k + 1). By using integration by parts we get∫

p(x) lnx dx =

∫
lnxd(s(x)) = s(x) lnx−

∫
s(x) d(lnx) = s(x) lnx−

∫
s(x)

x
dx.

This method also applies to the integral
∫
p(x) arctanx dx.
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Let u be a differentiable function from an interval I to an interval J , and let F be a

differentiable function from J to IR. Suppose F ′ = f . By the chain rule the composition

F ◦ u is differentiable on I and

(F ◦ u)′(x) = F ′(u(x))u′(x) = f(u(x))u′(x), x ∈ I.

Thus we have the following formula for change of variables in an integral:∫
f(u(x))u′(x) dx = F (u(x)) + C.

Example 3. Find
∫
sin2 x cosx dx.

Solution. Let u := sinx. Then du = cosx dx. Hence∫
sin2 x cosx dx =

∫
u2 du =

1

3
u3 + C =

1

3
sin3 x+ C.

We can use this integral together with the identity sin2 x+ cos2 x = 1 to find the integral∫
cos3 x dx:∫

cos3 x dx =

∫
cos2 x cosx dx =

∫
(1− sin2 x) cosx dx

=

∫
cosx dx−

∫
sin2 x cosx dx = sinx− 1

3
sin3 x+ C.

For integrals involving sine and cosine, the following double angle formulas will be

useful:

sin(2x) = 2 sinx cosx,

cos(2x) = cos2 x− sin2 x.

The second formula together with the identity sin2 x+ cos2 x = 1 gives

sin2 x =
1− cos(2x)

2
and cos2 x =

1 + cos(2x)

2
.

Thus we have ∫
sin2 x dx =

∫
1

2
dx− 1

2

∫
cos(2x) dx =

x

2
− 1

4
sin(2x) + C.

In general, for nonnegative integers m and n, the integral∫
sinm x cosn x dx
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can be calculated as follows: (1) If m is odd, use the substitution u = cosx and the

identity sin2 x = 1− cos2 x. (2) If n is odd, use the substitution u = sinx and the identity

cos2 x = 1 − sin2 x. (3) If both m and n are even, use sin2 x = (1 − cos(2x))/2 and

cos2 x = (1 + cos(2x))/2 to reduce the exponents of sine and cosine.

Example 4. Find the following integrals:∫
tanx dx,

∫
cotx dx,

∫
secx dx,

∫
cscx dx.

Solution. For the first integral we use the substitution u = cosx and get∫
tanx dx =

∫
sinx

cosx
dx = −

∫
1

u
du = − ln |u|+ C = − ln | cosx|+ C = ln | secx|+ C.

Similarly, ∫
cotx dx =

∫
cosx

sinx
dx =

∫
d(sinx)

sinx
= ln | sinx|+ C.

In order to find
∫
secx dx, we observe that

d

dx
(secx+ tanx) = secx tanx+ sec2 x = secx(tanx+ secx).

It follows that ∫
secx dx =

∫
d(secx+ tanx)

secx+ tanx
= ln | secx+ tanx|+ C.

Similarly, ∫
cscx dx = −

∫
d(cscx+ cotx)

cscx+ cotx
= − ln | cscx+ cotx|+ C.

Example 5. For a > 0, calculate the following integrals:∫
1√

x2 + a2
dx and

∫
1√

x2 − a2
dx.

Solution. For the first integral we let x = a tan t for −π/2 < t < π/2. Then sec t > 0 and

x2 + a2 = a2(tan2 t+ 1) = a2 sec2 t. Hence∫
1√

x2 + a2
dx =

∫
a sec2 t

a sec t
dt =

∫
sec t dt = ln(tan t+ sec t).

But sec t =
√
tan2 t+ 1. Consequently,∫

1√
x2 + a2

dx = ln

(
x

a
+

√
x2

a2
+ 1

)
+ C = ln

(
x+

√
x2 + a2

)
+ C1,
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where C1 = C − ln a. Similarly,∫
1√

x2 − a2
dx = ln

∣∣x+
√
x2 − a2

∣∣+ C, |x| > a.

Let us consider
∫ √

αx2 + β dx, where α, β ∈ IR. Integrating by parts, we obtain∫ √
αx2 + β dx = x

√
αx2 + β −

∫
αx2√
αx2 + β

dx.

Note that
αx2√
αx2 + β

=
αx2 + β − β√

αx2 + β
=

√
αx2 + β − β√

αx2 + β
.

Hence ∫ √
αx2 + β dx = x

√
αx2 + β −

∫ √
αx2 + β dx+

∫
β√

αx2 + β
dx.

It follows that ∫ √
αx2 + β dx =

1

2
x
√

αx2 + β +
β

2

∫
1√

αx2 + β
dx.

In particular, we get∫ √
x2 + a2 dx =

1

2
x
√
x2 + a2 +

a2

2
ln
(
x+

√
x2 + a2

)
+ C

and ∫ √
x2 − a2 dx =

1

2
x
√

x2 − a2 − a2

2
ln
∣∣x+

√
x2 − a2

∣∣+ C

For a > 0, a simple substitution gives∫
dx√

a2 − x2
= arcsin

x

a
+ C, −a < x < a.

Therefore, ∫ √
a2 − x2 dx =

1

2
x
√
a2 − x2 +

a2

2
arcsin

x

a
+ C, −a < x < a.

A rational function has the form p(x)/s(x), where p and s are polynomials. There

exist unique polynomials q and r such that p(x) = q(x)s(x) + r(x), where the degree of r

is less than the degree of s. It follows that

p(x)

s(x)
= q(x) +

r(x)

s(x)
.
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In order to find
∫
r(x)/s(x) dx, we decompose r(x)/s(x) as the sum of terms of the following

type:
c1

x− α
+ · · ·+ cn

(x− α)n
+

d1 + e1x

(x− β)2 + γ2
+ · · ·+ dm + emx

[(x− β)2 + γ2]m
.

Example 6. For b, c, λ, µ ∈ IR, find the integral∫
λx+ µ

x2 + bx+ c
dx.

Solution. We may write∫
λx+ µ

x2 + bx+ c
dx =

∫
λ

2

2x+ b

x2 + bx+ c
dx+

∫
µ− bλ/2

x2 + bx+ c
dx.

Clearly, ∫
λ

2

2x+ b

x2 + bx+ c
dx =

λ

2
ln |x2 + bx+ c|+ C.

So it remains to find the integral
∫
dx/(x2 + bx + c). There are three possible cases:

b2 − 4c > 0, b2 − 4c = 0, and b2 − 4c < 0. If b2 − 4c > 0, then x2 + bx+ c = (x−α)(x−β),

where α and β are distinct real numbers. In this case,∫
1

(x− α)(x− β)
dx =

∫
1

α− β

(
1

x− α
− 1

x− β

)
dx =

1

α− β

[
ln |x−α|− ln |x−β|

]
+C.

If b2 − 4c = 0, then x2 + bx+ c = (x− α)2, where α = −b/2. In this case,∫
1

(x− α)2
dx = − 1

x− α
+ C.

Finally, if b2 − 4c < 0, we have x2 + bx+ c = (x+ b/2)2 + γ2, where γ =
√
c− b2/4. Thus∫

1

x2 + bx+ c
dx =

∫
1

(x+ b/2)2 + γ2
=

1

γ
arctan

x+ b/2

γ
+ C.

§5. Definite Integrals

As an application of the Fundamental Theorem of Calculus, we establish the following

formula of integration by parts.

Theorem 5.1. If u and v are continuous functions on [a, b] that are differentiable on (a, b),

and if u′ and v′ are integrable on [a, b], then∫ b

a

u(x)v′(x)dx+

∫ b

a

u′(x)v(x) dx = u(b)v(b)− u(a)v(a).
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Proof. Let F := uv. Then F ′(x) = u′(x)v(x) + u(x)v′(x) for x ∈ (a, b). By Theorem 3.1

we have ∫ b

a

F ′(x) dx = F (b)− F (a) = u(b)v(b)− u(a)v(a).

Example 1. Find
∫ 1

0
x lnx dx.

Solution. For k = 1, 2, . . ., let fk(x) := xk lnx, x > 0. Then fk is continuous on (0,∞).

Moreover,

lim
x→0+

xk lnx = lim
x→0+

lnx

(1/x)k
= lim

y→+∞

ln(1/y)

yk
= lim

y→+∞

− ln y

yk
= 0.

Thus, by defining fk(0) := 0, fk is extended to a continuous function on [0,∞). Integration

by parts gives ∫ 1

0

x lnx dx =
x2

2
lnx

∣∣∣1
0
−
∫ 1

0

x

2
dx = −1

4
x2

∣∣∣1
0
= −1

4
.

Now let us consider the integral
∫ 1

0
lnx dx. The function f0 : x 7→ lnx is unbounded

on (0, 1). So this is an improper integral. We define∫ 1

0

lnx dx := lim
a→0+

∫ 1

a

lnx dx.

Integration by parts gives∫ 1

a

lnx dx = x lnx
∣∣∣1
a
−
∫ 1

a

dx = −a ln a− (1− a).

Consequently, ∫ 1

0

lnx dx = lim
a→0+

[−a ln a− (1− a)] = −1.

Example 2. For n = 0, 1, 2, . . ., let

In :=

∫ 1

0

(1− x2)n dx.

Find In.

Solution. We have I0 = 1. For n ≥ 1, integrating by parts, we get

In =

∫ 1

0

(1− x2)n dx = x(1− x2)n
∣∣∣1
0
−
∫ 1

0

xd
(
(1− x2)n

)
= 2n

∫ 1

0

x2(1− x2)n−1 dx.
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We may write x2(1− x2)n−1 = [1− (1− x2)](1− x2)n−1 = (1− x2)n−1 − (1− x2)n. Hence

In = 2n

∫ 1

0

(1− x2)n−1 dx− 2n

∫ 1

0

(1− x2)n dx = 2nIn−1 − 2nIn.

It follows that (2n+ 1)In = 2nIn−1. Thus I1 = 2/3. In general,

In =
2n

2n+ 1
In−1 =

2n

2n+ 1

2n− 2

2n− 1
· · · 2

3
=

n∏
k=1

2k

2k + 1
.

As another application of the Fundamental Theorem of Calculus, we give the following

formula for change of variables in a definite integral.

Theorem 5.2. Let u be a differentiable function on [a, b] such that u′ is integrable on

[a, b]. If f is continuous on I := u([a, b]), then

∫ b

a

f(u(t))u′(t) dt =

∫ u(b)

u(a)

f(x) dx.

Proof. Since u is continuous, I = u([a, b]) is a closed and bounded interval. Also, since

f ◦u is continuous and u′ is integrable on [a, b], the function (f ◦u)u′ is integrable on [a, b].

If I = u([a, b]) is a single point, then u is constant on [a, b]. In this case u′(t) = 0 for all

t ∈ [a, b] and both integrals above are zero. Otherwise, for x ∈ I define

F (x) :=

∫ x

u(a)

f(s) ds.

Since f is continuous on I, F ′(x) = f(x) for all x ∈ I, by Theorem 3.2. By the chain rule

we have

(F ◦ u)′(t) = F ′(u(t))u′(t) = f(u(t))u′(t), t ∈ [a, b].

Therefore by Theorem 3.1 we obtain

∫ b

a

f(u(t))u′(t) dt = (F ◦ u)(b)− (F ◦ u)(a) = F (u(b))− F (u(a)) =

∫ u(b)

u(a)

f(x) dx.
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Example 3. For a > 0, find
∫ a

0

√
a2 − x2 dx.

Solution. Let x = a sin t. When t = 0, x = 0. When t = π/2, x = a. By Theorem 5.2 we

get ∫ a

0

√
a2 − x2 dx =

∫ π/2

0

√
a2(1− sin2 t) a cos t dt =

∫ a

0

a2
√
cos2 t cos t dt.

Since cos t ≥ 0 for 0 ≤ t ≤ π/2, we have
√
cos2 t = cos t. Thus∫ a

0

√
a2 − x2 dx = a2

∫ π/2

0

cos2 t dt = a2
∫ π/2

0

1 + cos(2t)

2
dt

=
a2

2

(
t+

1

2
sin(2t)

)∣∣∣∣π/2
0

=
π

4
a2.

Example 4. Let a > 0. Suppose that f is a continuous function on [−a, a]. Prove the

following statements.

(1) If f is an even function, i.e., f(−x) = f(x) for all x ∈ [0, a], then∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx.

(2) If f is an odd function, i.e., f(−x) = −f(x) for all x ∈ [0, a], then
∫ a

−a
f(x) dx = 0.

Proof. We have ∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx.

In the integral
∫ 0

−a
f(x) dx we make the change of variables: x = −t. When t = a, x = −a;

when t = 0, x = 0. By Theorem 5.2 we get∫ 0

−a

f(x) dx =

∫ 0

a

f(−t)d(−t) = −
∫ 0

a

f(−t) dt =

∫ a

0

f(−t) dt.

It follows that∫ a

−a

f(x) dx =

∫ a

0

f(−t) dt+

∫ a

0

f(t) dt =

∫ a

0

[f(−t) + f(t)] dt.

If f is an even function, then f(−t) = f(t) for all t ∈ [0, a]; hence∫ a

−a

f(x) dx = 2

∫ a

0

f(t) dt = 2

∫ a

0

f(x) dx.

If f is an odd function, then f(−t) = −f(t) for all t ∈ [0, a]; hence∫ a

−a

f(x) dx = 0.
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