Chapter 5. Integration

§1. The Riemann Integral

Let a and b be two real numbers with a < b. Then [a,b] is a closed and bounded
interval in IR. By a partition P of [a,b] we mean a finite ordered set {to,t1,...,t,} such
that

a=th<t1 <---<t,=0.

The norm of P is defined by ||P|| := max{t;, —t;_1 :i=1,2,...,n}.
Suppose [ is a bounded real-valued function on [a, b]. Given a partition {¢g,t1,...,t,}

of [a,b], for each : = 1,2,...,n, let
m; = 1inf{f(x):t;-1 <ax <t} and M, :=sup{f(z):ti1 <z <t}

The upper sum U(f, P) and the lower sum L(f, P) for the function f and the partition
P are defined by

n

U(f, P) = ZMz(tz — ti—l) and L(f, P) = Zmz(tz — ti—l)-

=1

The upper integral U(f) of f over [a,b] is defined by
U(f):=inf{U(f, P) : P is a partition of [a, b]}
and the lower integral L(f) of f over [a,b] is defined by
L(f) :=sup{L(f, P) : P is a partition of [a, b]}.

A bounded function f on [a,b] is said to be (Riemann) integrable if L(f) = U(f). In this

case, we write
b
[ f@yde =15 =0(),
By convention we define

/baf(x)d:czz—/abf(x)dx and /aaf(x)dx:o.

A constant function on [a, ] is integrable. Indeed, if f(x) = ¢ for all = € [a,b], then
L(f,P) =c(b—a) and U(f, P) = c¢(b — a) for any partition P of [a,b]. It follows that

/abcdsc:c(b—a).
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Let f be a bounded function from [a,b] to IR such that |f(z)| < M for all = € [a,]].
Suppose that P = {to,t1,...,t,} is a partition of [a, b], and that P; is a partition obtained
from P by adding one more point t* € (t;—1,t;) for some i. The lower sums for P and P;
are the same except for the terms involving t; 1 or ¢;. Let m; := inf{f(x) : t;_1 < x <t;},
m' :=inf{f(x) : t;—1 <x <t*}, and m” ;= inf{f(z) : t* <2 <t;}. Then

L(f, Pl) - L(f, P) = m/(t* - tifl) + m”(ti - t*) - mi(ti - tifl).

Since m’ > m; and m” > m;, we have L(f, P) < L(f, P1). Moreover, m' —m < 2M and
m' —m < 2M. Tt follows that

m’(t* — ti—l) =+ m"(ti — t*) — ml(tz — ti—l) S 2M(tl — ti—1)~
Consequently,

Now suppose that Py is a mesh obtained from P by adding N points. An induction

argument shows that
L(f,Pn) = 2MN|P| < L(f, P) < L(f, Pn)- (1)

Similarly we have

U(f, Pn) <U(f,P) <U(f, Py) + 2MN| P (2)

By the definition of L(f) and U(f), for each n € IN there exist partitions P and @ of
[a, b] such that

L(f) = 1/n < L(f,P) and U(f)+1/n>U(f,Q).

Consider the partition PUQ of [a,b]. Since P C PUQ and Q C PUQ, by (1) and (2) we
get

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q)

It follows that L(f)—1/n < U(f)+1/n for all n € IN. Letting n — oo in the last inequality,
we obtain L(f) < U(f).
We are in a position to establish the following criterion for a bounded function to be

integrable.



Theorem 1.1. A bounded function f on [a,b] is integrable if and only if for each € > 0
there exists a partition P of [a,b] such that

U(f,P)— L(f,P) < e.

Proof. Suppose that f is integrable on [a,b]. For € > 0, there exist partitions P; and P,
such that
€
L(fP) > L(f) = 5 and U(f,Pa) <U(f) +

DN ™M

For P := P; U P, we have
L) = 5 < L(f, P) < LU, P) S U(f, P) SU(f, Po) < U(f) + 5.

Since L(f) = U(f), it follows that U(f, P) — L(f, P) < e.
Conversely, suppose that for each € > 0 there exists a partition P of [a,b] such that
U(f,P)—L(f,P) <e. Then U(f,P) < L(f, P) +¢. It follows that

U(f) <U(f,P) < L(f,P) +¢ < L(f) +e.

Since € > 0 is arbitrary, we have U(f) < L(f). But L(f) < U(f). Therefore U(f) = L(f);
that is, f is integrable. O

Let f be a bounded real-valued function on [a,b] and let P = {tq,t1,...,t,} be a

partition of [a,b]. For each i =1,2,...,n, choose & € [z;—1,x;]. The sum

n

> fE)(t — tim1)

i=1
is called a Riemann sum of f with respect to the partition P and points {&1,...,&,}.

Theorem 1.2. Let f be a bounded real-valued function on [a,b]. Then f is integrable on
la, b] if and only if there exists a real number I with the following property: For any & > 0

there exists some 6 > 0 such that

> )~ i) - f\ <e 3)

whenever P = {to,t1,...,t,} is a partition of [a,b] with |P| < ¢ and &; € [t;—1,t;] for
1 =1,2,...,n. If this is the case, then

/abf(x)dle.
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Proof. Let ¢ be an arbitrary positive number. Suppose that (3) is true for some partition
P = {to,t1,...,t,} of [a,b] and points &; € [t;—1,t;], i =1,2,...,n. Then

L(f, P) = 1nf{Zf(§Z)(tz — ti—l) 51 < [mi_l,xi] for 7 = 1,2, R ,n} >1—¢
=1

and
U(f, P) = sup{z f(&)(tz — ti—l) (& € [mi_l,xi] for i=1,2,... ,’I‘L} <I+e.
1=1

It follows that U(f, P) — L(f, P) < 2¢. By Theorem 1.1 we conclude that f is integrable
on [a,b]. Moreover, L(f) =U(f) = 1.

Conversely, suppose that f is integrable on [a,b]. Let M := sup{|f(z)| : € [a,b]}
and I := L(f) = U(f). Given an arbitrary € > 0, there exists a partition @ of [a, b
such that L(f,Q) > I —¢/2 and U(f,Q) < I 4+ ¢/2. Suppose that @ has N points. Let
P = {tog,t1,...,t,} be a partition of [a,b] with ||P| < d. Consider the partition P U Q@ of
[a,b]. By (1) and (2) we have

L(f,P) > L(f,PUQ)—2MNG§ and U(f,P)<U(f,PUQ)+2MNS.

But L(f,PUQ) > L(f,Q) > I —¢/2 and U(f,PUQ) < U(f,Q) < I +¢/2. Choose
d:=¢/(AMN). Since | P|| < 0, we deduce from the foregoing inequalities that

I—e<L(f,P)<U(f,P)<I+e.

Thus, with & € [t;—1,t;] for i = 1,2,...,n we obtain
I—e<L(fP)<) f&)(ti —tioa) SU(f,P) <I+e.
i=1

This completes the proof. ]
Theorem 1.3. Let f be a bounded function from a bounded closed interval [a,b] to IR.
If the set of discontinuities of f is finite, then f is integrable on [a, b].

Proof. Let D be the set of discontinuities of f. By our assumption, D is finite. So the
set D U {a,b} can be expressed as {dg,dy,...,dy} witha =dy < dy <--- <dy =b. Let
M := sup{|f(z)| : © € [a,b]}. For an arbitrary positive number ¢, we choose n > 0 such
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that n < ¢/(8MN) and n < (dj —dj_1)/3 forall j =1,...,N. For j =0,1,...,N, let
x; :=d; —n and y; := dj +n. Then we have

a:d0<yo<x1<d1<y1<---<xN<dN:b.

Let E be the union of the intervals [do, o], [z1,d1], [d1,v1], ..., [*N=1,dN-1], [dN-1,YN-1],
and [zy,dn]. There are 2N intervals in total. For j = 1,..., N, let F; := [y;_1,x;].

Further, let F' := UN ", F;. The function f is continuous on F', which is a finite union of
bounded closed intervals. Hence f is uniformly continuous on F. There exists some § > 0
such that |f(z) — f(y)| < €/(2(b — a)) whenever x,y € F satisfying |x — y| < §. For each
j€{l,...,N}, let P; be a partition of F; such that || P;|| < d. Let

P:={a,b}UDU (UL, P).

The set P can be arranged as {to,t1,...,t,} with a =ty <t; <--- <t, =b. Consider

n

U(f,P)—L(f,P)= Z(Mz —m;)(ti —ti—1),

i=1
where M; :=sup{f(z) : t;_1 <z <t;} and m; := inf{f(z) : t;_1 < x <t;}. Each interval
[ti—1,;] is either contained in E or in F, but not in both. Hence

n

Z(Mz —my)(ti —tic1) = Z (M; —mg)(t; — ti—1) + Z (M; —m;)(t; — tiz1).

=1 [ti—1,t]CE [ti—1,t:;]CF

There are 2N intervals [t;_1,t;] contained in E. Each interval has length n < ¢/(8MN).
Noting that M; — m; < 2M, we obtain

[ti—1,t:]CE
If [t;—1,t;] C F, then t; — t;—1 < 6; hence M; —m; < ¢/(2(b— a)). Therefore,
€ €
M; —mg)(t; —ti1) < 57— ti — ti— b—a)=
S Mm-S s 3 (-t < g b—a)

[ti_l,ti}gF [tz—lvtz]gF

From the above estimates we conclude that U(f, P) — L(f, P) < e. By Theorem 1.1, the

function f is integrable on |[a, b]. [

Example 1. Let [a,b] be a closed interval with a < b, and let f be the function on [a, b]
given by f(z) = x. By Theorem 1.3, f is integrable on [a,b]. Let P = {to,t1,...,t,} be a
partition of [a, b] and choose &; := (t;—1 +t;)/2 € [ti—1,t;] for i = 1,2,...,n. Then

n

S FE) i —tim) :%Ztm ) t¢—1)=%Z(t?—tf_l):%(ti—t%):%(bz—a2).

=1
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By Theorem 1.2 we have
b
1
/ rdr = 5(62 —a?).

More generally, for a positive integer k, let fi be the function given by fix(z) = z* for
x € [a,b]. Choose

¢ (tf_1+t§:fti+---+t?)”‘“ 19
i:: 5 1 = y ,...7n.
k+1
We have t;,_1 < §; <t; fort=1,2,...,n. Moreover,
S A€t — tir) = e S ) — i gty g )
A k14 RO IR T 0 k+1

By Theorem 1.2 we conclude that

b
1
k. _ k+1 _ k+1
/aw dz k—|—1<b a®m).

Example 2. Let g be the function on [0, 1] defined by g(z) := cos(1/z) for 0 < z < 1
and ¢g(0) := 0. The only discontinuity point of g is 0. By Theorem 1.3, g is integrable on
[0,1]. Note that g is not uniformly continuous on (0, 1). Indeed, let z,, := 1/(2nm) and
Yn = 1/(2nm + 7/2) for n € IN. Then lim, o (2, — yn) = 0. But

\f(zn) — f(yn)| = | cos(2nm) — cos(2nm +7/2)| =1 Vn € IN.

Hence ¢ is not uniformly continuous on (0,1). On the other hand, the function u given
by u(z) := 1/x for 0 < x < 1 and »(0) := 0 is not integrable on [0, 1], even though w is

continuous on (0, 1]. Theorem 1.3 is not applicable to u, because u is unbounded.

Example 3. Let h be the function on [0, 1] defined by h(x) := 1 if z is a rational number
in [0,1] and h(z) := 0 if = is an irrational number in [0,1]. Let P = {to,t1,...,t,} be a

partition of [0,1]. For ¢ = 1,...,n we have
m; = inf{h(z) : x € [t;_1,t;]} =0 and M,; :=sup{h(z):z € [ti_1,t;]} = 1.

Hence L(h, P) = 0 and U(h, P) = 1 for every partition P of [0, 1]. Consequently, L(h) =0
and U(h) = 1. This shows that h is not Riemann integrable on [0, 1].
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§2. Properties of the Riemann Integral
In this section we establish some basic properties of the Riemann integral.

Theorem 2.1. Let f and g be integrable functions from a bounded closed interval [a, b]
to IR. Then

(1) For any real number c, cf is integrable on |a,b] and f (cf)(x)dx = cf f

(2) f+ g is integrable on [a, b] and fa f+g)(x)dx = fa f(z dx - fa g(x

Proof. Suppose that f and g are integrable functions on [a,b]. Write I(f) := f: f(x)dz
and I(g) := f g(z)dx. Let € be an arbitrary positive number. By Theorem 1.2, there

exists some & > 0 such that

n

Zf(fi)(ti —ti—1) — I(f)’ <e and

=1

Zg(&)(ti —ti_1) — I(g)' <e

whenever P = {tg,t1,...,t,} is a partition of [a,b] with ||P|| < § and &; € [t;—1,t;] for
1=1,2,...,n. It follows that

n

S NENE —tir) — cl(f)' oy

=1

> FE) i — tia) — I(f)‘ < cfe.
i=1

Hence cf is integrable on [a, b] and f;(cf)(x) dzx = cf: f(x) dz. Moreover,

n

S+ )&t — ) — () + I<g>]\

=1

< S sttt — ) - 1) +

=1

Yt —tic1) — I(g)| < 2e.

Therefore f + g is integrable on [a, b] and f:(f +9)(x)dx = f; f(z)dx + f;g(a:) de. L

Theorem 2.2. Let f and g be integrable functions on [a,b]. Then fg is an integrable

function on [a, b].

Proof. Let us first show that f? is integrable on [a,b]. Since f is bounded, there exists
some M > 0 such that |f(z)| < M for all = € [a,b]. It follows that

|[f @) = [f )] = £ (2) + FW)I f(2) = fy)| < 2M|f(z) - f(y)| for all z,y € [a,D].

We deduce from the above inequality that U(f?, P) — L(f?, P) < 2M[U(f,P) — L(f, P)]
for any partition P of [a,b]. Let € > 0. Since f is integrable on |[a,b], by Theorem 1.1
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there exists a partition P of [a,b] such that U(f, P) — L(f,P) < ¢/(2M). Consequently,
U(f?,P)—L(f% P) < e. By Theorem 1.1 again we conclude that f? is integrable on [a, b].

Note that fg = [(f +9)% — (f —g)?]/4. By Theorem 2.1, f +g and f — g are integrable
on [a,b]. By what has been proved, both (f + g)? and (f — g)? are integrable on [a, b].
Using Theorem 2.1 again, we conclude that fg is integrable on [a, b]. ]

Theorem 2.3. Let a,b,c,d be real numbers such that a < ¢ < d < b. If a real-valued
function f is integrable on |a,b], then f|. q is integrable on [c,d].

Proof. Suppose that f is integrable on [a,b]. Let € be an arbitrary positive number. By
Theorem 1.1, there exists a partition P of [a, b] such that U(f, P) — L(f, P) < e. It follows
that U(f, P U{c,d}) — L(f, P U{c,d}) < e. Let Q := (PU{¢c,d}) N[e,d]. Then @ is a
partition of [c, d]. We have

U(fl[c,d]vQ) - L(f'[c,d]v@) < U(f7PU {C7 d}) - L(faPU {Ca d}) <e¢

Hence f|c,q) is integrable on |, d]. []

Theorem 2.4. Let f be a bounded real-valued function on [a,b]. If a < ¢ < b, and if f is

integrable on [a, c| and [c,b], then f is integrable on [a,b] and

/abf(:v)dx:/acf(a:)dx—l—/cbf(:c)dx

Proof. Suppose that f is integrable on [a,c] and [c,b]. We write I; := [ f(z)dz and
Iy = fcb f(z)dx. Let € > 0. By Theorem 1.1, there exist a partition P; = {sg, S1,...,Sm}
of [a, c| and a partition P, = {tg,t1,...,t,} of [¢,b] such that

U(f,P1)— L(f,P1) < and U(f,P2)— L(f,P2) <

N ™
DN ™

Let P:= P, UP, ={s0,...,8m—1,t0,.-.,tn}t. Then P is a partition of [a,b]. We have
L(f) 2 L(f, P) = L(f; P) + L(f, P2) > U(f, ) + U(f, P) —e 2 hi+ I = ¢
and
U(f) SU(£,P)=U(f, P0) + U(f,Po) <L(f,P1) + L(f. ) +e < i + Ir + e

It follows that

/f d:z:—i—/f Ydr —e < L(f) < U(f /f d$+/f )dx + €.
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Since the above inequalities are valid for all € > 0, we conclude that f is integrable on

[a,] and [* f(z)dx = [€ f(z)de + [° f(z) da. ]

Let a, b, c be real numbers in any order, and let J be a bounded closed interval con-

taining a, b, and c. If f is integrable on J, then by Theorems 2.3 and 2.4 we have

/f m_/f m+/f ) dz.

Theorem 2.5. Let f andg be integrable functions on [a,b]. If f(x) < g(x) for allx € [a, b],
then fa flz)dx < fa g(x

Proof. By Theorem 2.1, h := g — f is integrable on [a, b]. Since h(x) > 0 for all = € [a, b],
it is clear that L(h,P) > 0 for any partition P of [a,b]. Hence, ff h(z)dx = L(h) > 0.
Applying Theorem 2.1 again, we see that

/bg(x)da:—/bf(x)dx:/bh(x)datZO. ]

Theorem 2.6. If f is an 1ntegrable function on [a,b], then |f| is integrable on [a,b] and

/|f )| da.

Proof. Let P = {tg,t1,...,tn} be a partition of [a, b]. For each i € {1,...,n}, let M; and

m; denote the supremum and infimun respectively of f on [t;_1,t;], and let M and m}

x)dz

denote the supremum and infimun respectively of |f| on [t;—1,?;]. Then

M; —m; = sup{f(z) — f(y) : z,y € [ti—1, i}
and
M —mi =sup{|f(z)| = |f(y)| : z,y € [ti—1, L]}
[F(@)] = 1f )| < [f(x) = f(y)]. Hence Mj —m7 < M; —m

By the triangle inequality,

and
n

Z(M* zl <ZM mz zl)

i=1
It follows that U(|f|,P) — L(|f], P) < U(f, P) — L(f,P). Let € be an arbitrary positive
number. By our assumption, f is integrable on [a,b]. By Theorem 1.1, there exists
a partition P such that U(f, P) — L(f,P) < e. Hence U(|f|,P) — L(|f|,P) < . By
using Theorem 1.1 again we conclude that |f| is integrable on [a,b]. Furthermore, since
f(z) <|f(z)| and —f(x) < |f(z)] for all z € [a, b], by Theorem 2.5 we have

/f dm</|f )|dz and /f dm</|f )| dz.

Therefore ‘fa flz)da| < fa |f(z)| dz. [



§3. Fundamental Theorem of Calculus

In this section we give two versions of the Fundamental Theorem of Calculus and their
applications.

Let f be a real-valued function on an interval I. A function F' on [ is called an
antiderivative of f on I if F'(z) = f(x) for all x € I. If F' is an antiderivative of f, then
so is F' 4 C for any constant C'. Conversely, if F' and G are antiderivatives of f on I, then
G'(x)—F'(x) =0 for all x € I. Thus, there exists a constant C such that G(z)— F(z) = C
for all x € I. Consequently, G = F' + C.

The following is the first version of the Fundamental Theorem of Calculus.

Theorem 3.1. Let f be an integrable function on [a,b]. If F' is a continuous function on

[a,b] and if F' is an antiderivative of f on (a,b), then

b

b
/ f(x)dx = F(z)| := F(b) — F(a).

a

Proof. Let ¢ > 0. By Theorem 1.1, there exists a partition P = {tg,t1,...,t,} of [a,b]
such that U(f, P) — L(f, P) < e. Since to = a and t,, = b we have

n

F(b) = F(a) =) _[F(t:) = F(ti-1)]:

1=1

By the Mean Value Theorem, for each ¢ € {1,...,n} there exists x; € (t;—1,t;) such that
F(t;) = F(ti-1) = F'(i)(t; — ti1) = f(@:)(ti — tiz1)-

Consequently,

n

L(f,P) < F(b)— F(a) = > _ f(z:)(t; — ti-1) S U(f, P).

i=1
On the other hand,
b
LUAP) < [ fla)de <U(LP),

Thus both F(b) — F(a) and [* f(x)dz lie in [L(f, P), U(f, P)] with U(f, P) — L(f, P) < e.
Hence

<E&.

\[F(b) -r@)- [  fla)d

Since the above inequality is valid for all € > 0, we obtain ff f(z)dx = F(b) — F(a). [J
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Example 1. Let k be a positive integer. Find f; z* dz.

Solution. We know that the function gy : = + 2**!/(k 4 1) is an antiderivative of the

function fj : # — z*. By the Fundamental Theorem of Calculus we obtain

b k+1 |b
k T
dxr = =
/Gx x s

Example 2. Find the integral ff 1/zdx.

bk—|—1 k+1

—a
E+1

Solution. On the interval (0,00), the function = — Inx is an antiderivative the function

x + 1/z. By the Fundamental Theorem of Calculus we obtain

2 9
/ —dlenx‘ =ln2—-Inl=1n2.
1 X 1

This integral can be used to find the limit

I L o

im e — ).

Indeed, let f(x) := 1/x for x = [1,2], and let t;, = 1 +i/n for i = 0,1,...,n. Then
P :={to,t1,...,t,} is a partition of [1,2] and

1 1 o
. )t —t
n—|—1+n—|—2 z} 11)

is a Riemann sum of f with respect to P and points {t1,...,t,}. By Theorem 1.2 we get

, 1 1 1 21
nlinéo<n+1+n+2+ +_) hlréozf i >_/1de_1“2'

Example 3. A curve in plane is represented by a continuous mapping v = (u1, us2) from
[a,b] to IR*. We use L(u) to denote the length of the curve. Suppose that ) and u), are
continuous on [a,b]. Then u is rectifiable. For ¢ € [a, b], let s(t) denote the length of the

curve ulj, 4. It was proved in Theorem 7.1 of Chapter 4 that

$'(t) = /[y (]2 + [y (]2, 1 € [a,]

By Theorem 3.1 (the Fundamental Theorem of Calculus), we obtain

L(u) = s(b) — s(a) = / P dt = /¢ L2 dt.

The following is the second version of the Fundamental Theorem of Calculus.
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Theorem 3.2. Let f be an integrable function on |a,b]. Define

F(x) := /fﬂ f(t)dt, =z €la,b].

Then F is a continuous function on |a,b]. Furthermore, if f is continuous at a point
¢ € [a,b], then F is differentiable at ¢ and

Proof. Since f is bounded on [a, b], there exists a constant M > 0 such that |f(z)| < M
for all = € [a,b]. If z,y € [a,b] and x < y, then

Fo) - Flo) = [ sodi- [ swae= [ s

Since —M < f(t) < M for x <t <y, by Theorem 2.5 we have

—M(y—@s/yf(t)dtswy—w).

It follows that |F'(y) — F(z)| < M|y—z|. For given € > 0, choose 6 = ¢/M. Then |y—z| < §
implies |F(y) — F(z)| < M|y — x| < e. This shows that F is continuous on |[a, b].
Now suppose that f is continuous at ¢ € [a,b). Let h > 0. By Theorem 2.4 we have

F(c+h)—F(c) 1 1

ct+h c+h
g =g [ swd- s =5 [0 - @] ar

Let ¢ > 0 be given. Since f is continuous at ¢, there exists some § > 0 such that
|f(t) — f(c)| < e whenever ¢ <t < c+ d. Therefore, if 0 < h < J, then

F(c+h)— F(c 1 [eth 1[eth
T g0 = |5 [0 sl <5 [0 - sola<e
Consequently,
. F(c+h)—F(c)
1 )
hg(r)l+ h /()
Similarly, if f is continuous at ¢ € (a, b, then
. F(c+h)—F(c)
1 = .
T fle)
This completes the proof of the theorem. ]
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Example 4. Let f be a continuous function on [a, b], and let F(z) := f; f(t)dt for each
x € [a,b]. Then we have

Flz) :/:f(t) dt = —/:f(t) dt.

By Theorem 3.2, F' is differentiable on [a,b] and F'(z) = —f(z) for a <z <.
Example 5. Let F(z) = [* A+ 2dt, z € R. Find F'(z) for = € R.
Solution. We have

0 x? —x z?
F(a:):/ \/4+t2dt+/ \/4+t2dt:—/ \/4+t2dt+/ V4 + 2 dt.
—z 0 0 0
By using the chain rule and Theorem 3.2 we obtain
F'(z) =4+ 2% + 22/4 + 2*.

Example 6. Let G(z) := [, zcos(t?) dt, z € R. Find G”(z) for = € R.

Solution. We have G(z) = z [, cos(t®)dt. By Theorem 3.2 and the product rule for

differentiation, we obtain
xX
G'(r) = / cos(t®) dt + x cos(x?).
2
Taking derivative once more, we get

G"(x) = cos(x®) + cos(x®) + z[— sin(2*)](32%) = 2 cos(z®) — 32° sin(x?).

84. Indefinite Integrals

An antiderivative of a function f is also called an indefinite integral of f. It is

customary to denote an indefinite integral of f by

/f(:r:) dzx.

For example, for p € R\ {—1} we have

e
/x”dx: +C, z¢€(0,00).
p+1

13



If © € INg, then the above formula is valid for all x € IR. If p € Z and p < —2, then the
formula holds for z € (—o00,0) U (0,00). For = —1 we have

1
/de:ln|x|+0, x € (—00,0) U (0, 00).

The following formulas for integration are easily derived from the corresponding formulas

for differentiation:
/emdac =e"+C, z¢€(—00,00).

/cosxdx =sinz+C, =z € (—00,00),

/sinxdw =—cosz+C, z¢€(—00,00),

1
/ I 22 dr = arctanz + C  x € (—00,00),

1
———=dx =arcsinz +C x € (—1,1).
/ V1—22 ( )
If F; and F, are differentiable functions on an interval, and if F| = f; and Fj = fs,

then for c1,co € IR we have
(1 F1 + 2 Fy] = a1 F + o Fy = c1 f1 + ca fa.

It follows that

/ e fi (@) + 0 fol@)] dz = 1 / i) dz + ¢ / fo(x) da.

Now let u and v be differentiable functions on an interval. By the product rule for

differentiation we have

(uwv) = u'v + uv'.

From this we deduce the following formula for integration by parts:

It can also be written as

/udv:uv—/vdu.

14



Example 1. Find [ z%e” dz.

Solution. By integration by parts we have

/91:263j dx = /xzd(ex) = 2%e® — /emd(xz) = 2%e” — 2/:1:6’J dzx.

By using integration by parts again we obtain
/xemdacz /acd(ex) = ze” —/emdac:xem —e’+C.

/xgewdw—xe — 2ze® 4 2e* + C.

Therefore

In general, if p is a polynomial, then

[parerds = [ pa)aie) = pwyer - [ ()er i,

where the degree of p’ is one less than that of p. Thus the integral [ p(z)e® can be com-
puted by using integration by parts repeatedly. This method also applies to the integrals
[ p(z)sinzdz and [ p(z)cosz dx.

Example 2. Find [zInzdz.

Solution. Integration by parts gives

x? z?
/xlnxda::/lnxd(a:2/2) = Elnx—/?d(lnx)

1
:—lnx—/——dx— lnx—zlw +C.

In general, if p is a polynomial given by p(z) = >, _, axz”, then

n

_ _Ok_kt1
dx = C.
/p(a:) T 2 Tl 1 +

Let s(z) := > p_oarx™ 1 /(k + 1). By using integration by parts we get

/p(x) lnzde = /mxd(s(x)) = s(z)lnz — /s(x) d(lnz) = s(z)Inz — / ) 4.

x
This method also applies to the integral [ p(z)arctanz dz.
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Let u be a differentiable function from an interval I to an interval J, and let F' be a
differentiable function from J to IR. Suppose F’ = f. By the chain rule the composition

F o is differentiable on I and
(Fou)(x) = F'(u(x)u(z) = f(u(z))u'(z), =€l

Thus we have the following formula for change of variables in an integral:
/f(u(:z:))u'(x) dx = F(u(z)) + C.

Example 3. Find [ sin®zcosz dx.

Solution. Let v := sinz. Then du = cos z dxz. Hence
) 2 1 4 I .5
sin“xzcoszdr = [ u du:§u —|—C':§sm x4+ C.

We can use this integral together with the identity sin® z + cos? z = 1 to find the integral

[ cos® x da:

/cosgscdx:/COSQxcosxdx:/(1—sin2x)cosxd:c

. . 1 .
:/Cosxda:—/st:ccos:z:d:z::sma:—gsm?’x+C’.

For integrals involving sine and cosine, the following double angle formulas will be
useful:
sin(2x) = 2sinx cos z,

cos(2z) = cos® z — sin? z.

2

The second formula together with the identity sin® z + cos? z = 1 gives

1— 2 1 2
:% and :%H

Thus we have

1 1
/sin2xdx:/§dx—é/cos(Qx)dx:

In general, for nonnegative integers m and n, the integral

1
—1 sin(2z) + C.

N8

/ sin” x cos™ x dx
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can be calculated as follows: (1) If m is odd, use the substitution u = cosz and the

identity sin? 2z = 1 — cos? x. (2) If n is odd, use the substitution v = sinz and the identity

cos?z = 1 —sin®z. (3) If both m and n are even, use sin®z = (1 — cos(2x))/2 and

cos?x = (1 + cos(2x))/2 to reduce the exponents of sine and cosine.

Example 4. Find the following integrals:

/tanxdaz, /cotxda:, /secxdm, /cscxdx.

Solution. For the first integral we use the substitution u = cosz and get

i 1
/tanxdx:/Smxdx:—/—du:—ln|u|+C:—1n|cosx|+C:ln|secx|+C’.
cos T u

dlsi
/Cotxdx:/cf)swdx:/ (s.lna:) =In|sinz| + C.
sin z sin

In order to find f sec x dx, we observe that

Similarly,

—(secx + tanz) = secx tanz + sec’ x = sec z(tan x + sec z).
x

It follows that

d t
/Secxdx:/ (sec + tan ) =In|secx + tanx| + C.
secr + tanx

Similarly,

d t
/csca:da::—/ (csca + cot ) = —In|cscz + cot x| + C.
cscx + cotw

Example 5. For a > 0, calculate the following integrals:

/ L 4 and / L 4
———dxr an - dx
V2 +a? Va2 — a?

Solution. For the first integral we let © = atant for —w/2 <t < 7/2. Then sect > 0 and

22 +a? = a®(tan?t + 1) = a?sec® t. Hence

asec”t

d —
/\/(1324—@2 v /asect

But sect = vtan?t + 1. Consequently,

1 T x?
— — — _ — 2 2
/ $2+a2dx_ln<a+\/a2+1>+C_ln(x+ 2% +a?) + C4,

17
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where C; = C' — Ina. Similarly,

/ﬁdx—ln}m—k\/ 2-a?|+C, |z|>a

Let us consider f Vax? + fdzx, where a, § € IR. Integrating by parts, we obtain

/ Vaxr? + fdr = x/ax? + / \/owc27

Note that ) )
ar _ox +5—ﬁ: [0z + 8 _L_
Voar? + 3 Vox? + 8 ar?+
Hence

/\/a:cQ Bdr =x a.rQ /\/ch2 Bdr +

It follows that

B
/ \/ ox? +6dw

2 _1 2 B 1
/\/ax + Bdx STV ar +B+2/\/mdx

In particular, we get
1 a?
\/x2+a2dx:§x m2+a2—|—51n(m+ 22 +a?)+C

and

2
/\/mQ—QQda:: %x\/m2—a2—%ln‘x+\/x2—a2‘+0

For a > 0, a simple substitution gives

T
arcsin — +C, —a<zx <a.

| o = e

Therefore,

1 2
/\/az—xzdx:ix\/a2—x2+%arcsin£+0, —a <z < a.
a

A rational function has the form p(x)/s(x), where p and s are polynomials. There
exist unique polynomials ¢ and r such that p(x) = q(x)s(z) + r(z), where the degree of r
is less than the degree of s. It follows that




In order to find [ r(z)/s(z) dz, we decompose r(z)/s(z) as the sum of terms of the following

type:

c1 Cn di +eix A + emx
i-a w—a) o+ [@— B+
Example 6. For b,c, A\, u € IR, find the integral
/ Az + 1 d
——dzx.
2 +bxr+c

Solution. We may write
AT+ p A 240 pw—bA/2
———dr= | -———F——d ——d
/a:2+b:c—|—c o /2x2+bm+c x+/m2—|—bx+c v

A 22 4b Ay
_—_ :—1 .
/2x2+bx+cdx 5 nlz®+bxr+c+C

Clearly,

So it remains to find the integral [dz/(z® 4+ bz + ¢). There are three possible cases:
b2 —4c>0,b%> —4c =0, and b —4c < 0. If b* —4c > 0, then 22 +bx +c = (z — a)(z — ),

where o and 3 are distinct real numbers. In this case,

1 1 1 1 1
/(ﬂc—a)(x—ﬂ) dx:/a—ﬁ(x—a_a:—6> dw:m[ln|x—a1—ln|x_5”+a

If ¥ — 4c = 0, then 22 + bx + ¢ = (z — a)?, where a = —b/2. In this case,

1 1
[ Gmap o= imae

Finally, if b — 4c < 0, we have 22 + bx + ¢ = (z +b/2)? + 42, where v = y/c — b2 /4. Thus

/;daj:/( 1 :larctanx+b/2+0.

22 +bx+c r+0/2)2+~2 v v

65. Definite Integrals

As an application of the Fundamental Theorem of Calculus, we establish the following

formula of integration by parts.

Theorem 5.1. Ifu and v are continuous functions on [a, b] that are differentiable on (a,b),

and if v’ and v’ are integrable on |a,b], then

/ (@) (z)dz + / o (@)o(x) dz = u(b)u(b) — ula)v(a).
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Proof. Let F := uv. Then F'(z) = u/(x)v(z) + u(x)v'(x) for z € (a,b). By Theorem 3.1

we have ,
/ F'(z)dr = F(b) — F(a) = u(b)v(b) — u(a)v(a) []
Example 1. Find fola:ln:l: dx.
Solution. For k = 1,2,..., let fi(z) := 2¥Inz, > 0. Then f; is continuous on (0, c0).
Moreover,
1 In(1 —1
lim zFlnz = lim nr im n(1/y) = lim Ny =0.
z—0t z—0t+ (l/l')k y——+o00 yk y—+00 yk

Thus, by defining f;(0) := 0, fi is extended to a continuous function on [0, 00). Integration

' 2ot 1,1 1
/ xlnxdmzx—lnx‘ —/ zdl‘:——xQ‘ - __.
0 2 T ), 2 A PR

Now let us consider the integral fol Inx dx. The function fy :  — Inzx is unbounded

by parts gives

on (0,1). So this is an improper integral. We define

1 1
/lna:da: = lim Inz dx.
0

a—0t J,
Integration by parts gives

1

1 1
/lnxdm:xlnx —/ dx = —alna — (1 —a).

a

Consequently,

1
/ Inzxdr= lim [—alna — (1 —a)] =—1.
0

a—0t

Example 2. Forn=20,1,2,..., let

1
I, ::/ (1 —2%)"dx.
0

Find I,.

Solution. We have Iy = 1. For n > 1, integrating by parts, we get

1

_ /01 zd((1 —2?)") = 2n /01 22(1 — 2?)" ! da.

20

1
L= [ G-a?)do=a(1-a?)"
0

0



We may write z2(1 —22)" 1 = [1 - (1 —2?)](1 —2?)" ! = (1 —2?)"! — (1 — 2%)". Hence
1 1
I, = 2n/ (1—2*)""1da — 2n/ (1 —2*)"dx = 2nl,_ — 2nl,.
0 0
It follows that (2n + 1)I,, = 2nl,_1. Thus I; = 2/3. In general,

n

2n _ 2n 2n -2 2_12[ 2k
m+1 "' oap+ioam—1 3

As another application of the Fundamental Theorem of Calculus, we give the following

formula for change of variables in a definite integral.

Theorem 5.2. Let u be a differentiable function on [a,b] such that u' is integrable on

la,b]. If f is continuous on I := u([a,b]), then

b u(b)
w(t)u' (t) dt = x) dx.
/afu»() /u(a)f()

Proof. Since u is continuous, I = u([a,b]) is a closed and bounded interval. Also, since
fouw is continuous and u’ is integrable on [a, b], the function (fowu)u’ is integrable on [a, b].
If I = u([a,b]) is a single point, then u is constant on [a,b]. In this case u/(¢) = 0 for all

t € [a,b] and both integrals above are zero. Otherwise, for x € I define

F(z):= ’ f(s)ds.
u(a)

Since f is continuous on I, F'(x) = f(x) for all € I, by Theorem 3.2. By the chain rule

we have

(Fou)(t) = F'(u(t)u'(t) = f(u(®)u'(t), t€ la,b].

Therefore by Theorem 3.1 we obtain

b u(b)
/ fu(®)w! (t) dt = (F ou)(b) — (F ou)(a) = F(u(b)) — F(u(a)) = / flz)de. T
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Example 3. For a > 0, find [ Va? — 22 dx.
Solution. Let = asint. When t =0, z = 0. When ¢t = /2, x = a. By Theorem 5.2 we

get
a /2 a
/ \/aQ—xde:/ \/@2(1—Sin2t)acostdt:/ a*Vcos? tcost dt.
0 0 0

Since cost > 0 for 0 < ¢ < w/2, we have v cos?t = cost. Thus

a w/2 /2 1 2%
/ \/az—x2dx:a2/ Cos2tdt:a2/ Lwdt
0 0 0

2

2 /2

= % (t + % sin(?t))

s
= —a”.
0 4

Example 4. Let a > 0. Suppose that f is a continuous function on [—a,a]. Prove the
following statements.
(1) If f is an even function, i.e., f(—z) = f(z) for all z € [0, a], then

) f(x)dx = 2/: f(x)dz.

(2) If f is an odd function, i.e., f(—z) = —f(x) for all z € [0,qa], then [ f(z)dz =0.
Proof. We have

a 0 a
ﬂlf(m)dx: af(x)dx+/0 f(z)dx.

In the integral fi)a f(x) dz we make the change of variables: © = —t. When t = a, z = —a;
when ¢t = 0, x = 0. By Theorem 5.2 we get

0 0 0 a
dz = —0)d(—t) = — —tydt = ) dt.
[ t@dr= [ penan == [ rena [ a
It follows that
’ dz = ' —t)d ’ dt = ’ — dt.
[ f@ae= [Crndes [ a0+ s
If f is an even function, then f(—t) = f(t) for all ¢ € [0, a]; hence

_a f(ac)dac:2/0af(t)dt:2/0af(gc)dx,

If f is an odd function, then f(—t) = —f(t) for all ¢ € [0, a]; hence
/ f(z)dx =0.

—a
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