Chapter 5. Integration

§1. The Riemann Integral

Let a and b be two real numbers with $a<b$. Then $[a, b]$ is a closed and bounded interval in \mathbb{R}. By a partition P of $[a, b]$ we mean a finite ordered set $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ such that

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b .
$$

The norm of P is defined by $\|P\|:=\max \left\{t_{i}-t_{i-1}: i=1,2, \ldots, n\right\}$.
Suppose f is a bounded real-valued function on $[a, b]$. Given a partition $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[a, b]$, for each $i=1,2, \ldots, n$, let

$$
m_{i}:=\inf \left\{f(x): t_{i-1} \leq x \leq t_{i}\right\} \quad \text { and } \quad M_{i}:=\sup \left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}
$$

The upper sum $U(f, P)$ and the lower sum $L(f, P)$ for the function f and the partition P are defined by

$$
U(f, P):=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right) \quad \text { and } \quad L(f, P):=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
$$

The upper integral $U(f)$ of f over $[a, b]$ is defined by

$$
U(f):=\inf \{U(f, P): P \text { is a partition of }[a, b]\}
$$

and the lower integral $L(f)$ of f over $[a, b]$ is defined by

$$
L(f):=\sup \{L(f, P): P \text { is a partition of }[a, b]\} .
$$

A bounded function f on $[a, b]$ is said to be (Riemann) integrable if $L(f)=U(f)$. In this case, we write

$$
\int_{a}^{b} f(x) d x=L(f)=U(f) .
$$

By convention we define

$$
\int_{b}^{a} f(x) d x:=-\int_{a}^{b} f(x) d x \quad \text { and } \quad \int_{a}^{a} f(x) d x:=0
$$

A constant function on $[a, b]$ is integrable. Indeed, if $f(x)=c$ for all $x \in[a, b]$, then $L(f, P)=c(b-a)$ and $U(f, P)=c(b-a)$ for any partition P of $[a, b]$. It follows that

$$
\int_{a}^{b} c d x=c(b-a)
$$

Let f be a bounded function from $[a, b]$ to \mathbb{R} such that $|f(x)| \leq M$ for all $x \in[a, b]$. Suppose that $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$, and that P_{1} is a partition obtained from P by adding one more point $t^{*} \in\left(t_{i-1}, t_{i}\right)$ for some i. The lower sums for P and P_{1} are the same except for the terms involving t_{i-1} or t_{i}. Let $m_{i}:=\inf \left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}$, $m^{\prime}:=\inf \left\{f(x): t_{i-1} \leq x \leq t^{*}\right\}$, and $m^{\prime \prime}:=\inf \left\{f(x): t^{*} \leq x \leq t_{i}\right\}$. Then

$$
L\left(f, P_{1}\right)-L(f, P)=m^{\prime}\left(t^{*}-t_{i-1}\right)+m^{\prime \prime}\left(t_{i}-t^{*}\right)-m_{i}\left(t_{i}-t_{i-1}\right)
$$

Since $m^{\prime} \geq m_{i}$ and $m^{\prime \prime} \geq m_{i}$, we have $L(f, P) \leq L\left(f, P_{1}\right)$. Moreover, $m^{\prime}-m \leq 2 M$ and $m^{\prime \prime}-m \leq 2 M$. It follows that

$$
m^{\prime}\left(t^{*}-t_{i-1}\right)+m^{\prime \prime}\left(t_{i}-t^{*}\right)-m_{i}\left(t_{i}-t_{i-1}\right) \leq 2 M\left(t_{i}-t_{i-1}\right)
$$

Consequently,

$$
L\left(f, P_{1}\right)-2 M\|P\| \leq L(f, P) \leq L\left(f, P_{1}\right) .
$$

Now suppose that P_{N} is a mesh obtained from P by adding N points. An induction argument shows that

$$
\begin{equation*}
L\left(f, P_{N}\right)-2 M N\|P\| \leq L(f, P) \leq L\left(f, P_{N}\right) \tag{1}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
U\left(f, P_{N}\right) \leq U(f, P) \leq U\left(f, P_{N}\right)+2 M N\|P\| . \tag{2}
\end{equation*}
$$

By the definition of $L(f)$ and $U(f)$, for each $n \in \mathbb{N}$ there exist partitions P and Q of $[a, b]$ such that

$$
L(f)-1 / n \leq L(f, P) \quad \text { and } \quad U(f)+1 / n \geq U(f, Q)
$$

Consider the partition $P \cup Q$ of $[a, b]$. Since $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$, by (1) and (2) we get

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

It follows that $L(f)-1 / n \leq U(f)+1 / n$ for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in the last inequality, we obtain $L(f) \leq U(f)$.

We are in a position to establish the following criterion for a bounded function to be integrable.

Theorem 1.1. A bounded function f on $[a, b]$ is integrable if and only if for each $\varepsilon>0$ there exists a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Proof. Suppose that f is integrable on $[a, b]$. For $\varepsilon>0$, there exist partitions P_{1} and P_{2} such that

$$
L\left(f, P_{1}\right)>L(f)-\frac{\varepsilon}{2} \quad \text { and } \quad U\left(f, P_{2}\right)<U(f)+\frac{\varepsilon}{2} .
$$

For $P:=P_{1} \cup P_{2}$ we have

$$
L(f)-\frac{\varepsilon}{2}<L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right)<U(f)+\frac{\varepsilon}{2}
$$

Since $L(f)=U(f)$, it follows that $U(f, P)-L(f, P)<\varepsilon$.
Conversely, suppose that for each $\varepsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$. Then $U(f, P)<L(f, P)+\varepsilon$. It follows that

$$
U(f) \leq U(f, P)<L(f, P)+\varepsilon \leq L(f)+\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we have $U(f) \leq L(f)$. But $L(f) \leq U(f)$. Therefore $U(f)=L(f)$; that is, f is integrable.

Let f be a bounded real-valued function on $[a, b]$ and let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. For each $i=1,2, \ldots, n$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$. The sum

$$
\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

is called a Riemann sum of f with respect to the partition P and points $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
Theorem 1.2. Let f be a bounded real-valued function on $[a, b]$. Then f is integrable on $[a, b]$ if and only if there exists a real number I with the following property: For any $\varepsilon>0$ there exists some $\delta>0$ such that

$$
\begin{equation*}
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I\right| \leq \varepsilon \tag{3}
\end{equation*}
$$

whenever $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $\|P\|<\delta$ and $\xi_{i} \in\left[t_{i-1}, t_{i}\right]$ for $i=1,2, \ldots, n$. If this is the case, then

$$
\int_{a}^{b} f(x) d x=I
$$

Proof. Let ε be an arbitrary positive number. Suppose that (3) is true for some partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[a, b]$ and points $\xi_{i} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$. Then

$$
L(f, P)=\inf \left\{\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right): \xi_{i} \in\left[x_{i-1}, x_{i}\right] \text { for } i=1,2, \ldots, n\right\} \geq I-\varepsilon
$$

and

$$
U(f, P)=\sup \left\{\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right): \xi_{i} \in\left[x_{i-1}, x_{i}\right] \text { for } i=1,2, \ldots, n\right\} \leq I+\varepsilon
$$

It follows that $U(f, P)-L(f, P) \leq 2 \varepsilon$. By Theorem 1.1 we conclude that f is integrable on $[a, b]$. Moreover, $L(f)=U(f)=I$.

Conversely, suppose that f is integrable on $[a, b]$. Let $M:=\sup \{|f(x)|: x \in[a, b]\}$ and $I:=L(f)=U(f)$. Given an arbitrary $\varepsilon>0$, there exists a partition Q of $[a, b]$ such that $L(f, Q)>I-\varepsilon / 2$ and $U(f, Q)<I+\varepsilon / 2$. Suppose that Q has N points. Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$ with $\|P\|<\delta$. Consider the partition $P \cup Q$ of $[a, b]$. By (1) and (2) we have

$$
L(f, P) \geq L(f, P \cup Q)-2 M N \delta \quad \text { and } \quad U(f, P) \leq U(f, P \cup Q)+2 M N \delta
$$

But $L(f, P \cup Q) \geq L(f, Q)>I-\varepsilon / 2$ and $U(f, P \cup Q) \leq U(f, Q)<I+\varepsilon / 2$. Choose $\delta:=\varepsilon /(4 M N)$. Since $\|P\|<\delta$, we deduce from the foregoing inequalities that

$$
I-\varepsilon<L(f, P) \leq U(f, P)<I+\varepsilon
$$

Thus, with $\xi_{i} \in\left[t_{i-1}, t_{i}\right]$ for $i=1,2, \ldots, n$ we obtain

$$
I-\varepsilon<L(f, P) \leq \sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right) \leq U(f, P)<I+\varepsilon
$$

This completes the proof.

Theorem 1.3. Let f be a bounded function from a bounded closed interval $[a, b]$ to \mathbb{R}. If the set of discontinuities of f is finite, then f is integrable on $[a, b]$.

Proof. Let D be the set of discontinuities of f. By our assumption, D is finite. So the set $D \cup\{a, b\}$ can be expressed as $\left\{d_{0}, d_{1}, \ldots, d_{N}\right\}$ with $a=d_{0}<d_{1}<\cdots<d_{N}=b$. Let $M:=\sup \{|f(x)|: x \in[a, b]\}$. For an arbitrary positive number ε, we choose $\eta>0$ such
that $\eta<\varepsilon /(8 M N)$ and $\eta<\left(d_{j}-d_{j-1}\right) / 3$ for all $j=1, \ldots, N$. For $j=0,1, \ldots, N$, let $x_{j}:=d_{j}-\eta$ and $y_{j}:=d_{j}+\eta$. Then we have

$$
a=d_{0}<y_{0}<x_{1}<d_{1}<y_{1}<\cdots<x_{N}<d_{N}=b .
$$

Let E be the union of the intervals $\left[d_{0}, y_{0}\right],\left[x_{1}, d_{1}\right],\left[d_{1}, y_{1}\right], \ldots,\left[x_{N-1}, d_{N-1}\right],\left[d_{N-1}, y_{N-1}\right]$, and $\left[x_{N}, d_{N}\right]$. There are $2 N$ intervals in total. For $j=1, \ldots, N$, let $F_{j}:=\left[y_{j-1}, x_{j}\right]$. Further, let $F:=\cup_{j=1}^{N} F_{j}$. The function f is continuous on F, which is a finite union of bounded closed intervals. Hence f is uniformly continuous on F. There exists some $\delta>0$ such that $|f(x)-f(y)|<\varepsilon /(2(b-a))$ whenever $x, y \in F$ satisfying $|x-y|<\delta$. For each $j \in\{1, \ldots, N\}$, let P_{j} be a partition of F_{j} such that $\left\|P_{j}\right\|<\delta$. Let

$$
P:=\{a, b\} \cup D \cup\left(\cup_{j=1}^{N} P_{j}\right) .
$$

The set P can be arranged as $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ with $a=t_{0}<t_{1}<\cdots<t_{n}=b$. Consider

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

where $M_{i}:=\sup \left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}$ and $m_{i}:=\inf \left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}$. Each interval $\left[t_{i-1}, t_{i}\right]$ is either contained in E or in F, but not in both. Hence
$\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)=\sum_{\left[t_{i-1}, t_{i}\right] \subseteq E}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)+\sum_{\left[t_{i-1}, t_{i}\right] \subseteq F}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)$.
There are $2 N$ intervals $\left[t_{i-1}, t_{i}\right]$ contained in E. Each interval has length $\eta<\varepsilon /(8 M N)$. Noting that $M_{i}-m_{i} \leq 2 M$, we obtain

$$
\sum_{\left[t_{i-1}, t_{i}\right] \subseteq E}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right) \leq 2 N(2 M) \eta<\frac{\varepsilon}{2} .
$$

If $\left[t_{i-1}, t_{i}\right] \subseteq F$, then $t_{i}-t_{i-1}<\delta$; hence $M_{i}-m_{i}<\varepsilon /(2(b-a))$. Therefore,

$$
\sum_{\left[t_{i-1}, t_{i}\right] \subseteq F}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right) \leq \frac{\varepsilon}{2(b-a)} \sum_{\left[t_{i-1}, t_{i}\right] \subseteq F}\left(t_{i}-t_{i-1}\right)<\frac{\varepsilon}{2(b-a)}(b-a)=\frac{\varepsilon}{2}
$$

From the above estimates we conclude that $U(f, P)-L(f, P)<\varepsilon$. By Theorem 1.1, the function f is integrable on $[a, b]$.

Example 1. Let $[a, b]$ be a closed interval with $a<b$, and let f be the function on $[a, b]$ given by $f(x)=x$. By Theorem 1.3, f is integrable on $[a, b]$. Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$ and choose $\xi_{i}:=\left(t_{i-1}+t_{i}\right) / 2 \in\left[t_{i-1}, t_{i}\right]$ for $i=1,2, \ldots, n$. Then

$$
\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(t_{i}+t_{i-1}\right)\left(t_{i}-t_{i-1}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(t_{i}^{2}-t_{i-1}^{2}\right)=\frac{1}{2}\left(t_{n}^{2}-t_{0}^{2}\right)=\frac{1}{2}\left(b^{2}-a^{2}\right)
$$

By Theorem 1.2 we have

$$
\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)
$$

More generally, for a positive integer k, let f_{k} be the function given by $f_{k}(x)=x^{k}$ for $x \in[a, b]$. Choose

$$
\xi_{i}:=\left(\frac{t_{i-1}^{k}+t_{i-1}^{k-1} t_{i}+\cdots+t_{i}^{k}}{k+1}\right)^{1 / k}, \quad i=1,2, \ldots, n .
$$

We have $t_{i-1} \leq \xi_{i} \leq t_{i}$ for $i=1,2, \ldots, n$. Moreover,
$\sum_{i=1}^{n} f_{k}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)=\frac{1}{k+1} \sum_{i=1}^{n}\left(t_{i}^{k+1}-t_{i-1}^{k+1}\right)=\frac{1}{k+1}\left(t_{n}^{k+1}-t_{0}^{k+1}\right)=\frac{1}{k+1}\left(b^{k+1}-a^{k+1}\right)$.
By Theorem 1.2 we conclude that

$$
\int_{a}^{b} x^{k} d x=\frac{1}{k+1}\left(b^{k+1}-a^{k+1}\right)
$$

Example 2. Let g be the function on [0, 1] defined by $g(x):=\cos (1 / x)$ for $0<x \leq 1$ and $g(0):=0$. The only discontinuity point of g is 0 . By Theorem $1.3, g$ is integrable on $[0,1]$. Note that g is not uniformly continuous on $(0,1)$. Indeed, let $x_{n}:=1 /(2 n \pi)$ and $y_{n}:=1 /(2 n \pi+\pi / 2)$ for $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. But

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|\cos (2 n \pi)-\cos (2 n \pi+\pi / 2)|=1 \quad \forall n \in \mathbb{N} .
$$

Hence g is not uniformly continuous on $(0,1)$. On the other hand, the function u given by $u(x):=1 / x$ for $0<x \leq 1$ and $u(0):=0$ is not integrable on $[0,1]$, even though u is continuous on $(0,1]$. Theorem 1.3 is not applicable to u, because u is unbounded.

Example 3. Let h be the function on $[0,1]$ defined by $h(x):=1$ if x is a rational number in $[0,1]$ and $h(x):=0$ if x is an irrational number in $[0,1]$. Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[0,1]$. For $i=1, \ldots, n$ we have

$$
m_{i}:=\inf \left\{h(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=0 \quad \text { and } \quad M_{i}:=\sup \left\{h(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=1
$$

Hence $L(h, P)=0$ and $U(h, P)=1$ for every partition P of $[0,1]$. Consequently, $L(h)=0$ and $U(h)=1$. This shows that h is not Riemann integrable on $[0,1]$.

§2. Properties of the Riemann Integral

In this section we establish some basic properties of the Riemann integral.
Theorem 2.1. Let f and g be integrable functions from a bounded closed interval $[a, b]$ to \mathbb{R}. Then
(1) For any real number c, $c f$ is integrable on $[a, b]$ and $\int_{a}^{b}(c f)(x) d x=c \int_{a}^{b} f(x) d x$;
(2) $f+g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.

Proof. Suppose that f and g are integrable functions on $[a, b]$. Write $I(f):=\int_{a}^{b} f(x) d x$ and $I(g):=\int_{a}^{b} g(x) d x$. Let ε be an arbitrary positive number. By Theorem 1.2, there exists some $\delta>0$ such that

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I(f)\right| \leq \varepsilon \quad \text { and } \quad\left|\sum_{i=1}^{n} g\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I(g)\right| \leq \varepsilon
$$

whenever $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $\|P\|<\delta$ and $\xi_{i} \in\left[t_{i-1}, t_{i}\right]$ for $i=1,2, \ldots, n$. It follows that

$$
\left|\sum_{i=1}^{n}(c f)\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-c I(f)\right|=|c|\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I(f)\right| \leq|c| \varepsilon
$$

Hence $c f$ is integrable on $[a, b]$ and $\int_{a}^{b}(c f)(x) d x=c \int_{a}^{b} f(x) d x$. Moreover,

$$
\begin{aligned}
& \left|\sum_{i=1}^{n}(f+g)\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-[I(f)+I(g)]\right| \\
& \leq\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I(f)\right|+\left|\sum_{i=1}^{n} g\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I(g)\right| \leq 2 \varepsilon
\end{aligned}
$$

Therefore $f+g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
Theorem 2.2. Let f and g be integrable functions on $[a, b]$. Then $f g$ is an integrable function on $[a, b]$.

Proof. Let us first show that f^{2} is integrable on $[a, b]$. Since f is bounded, there exists some $M>0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$. It follows that

$$
\left|[f(x)]^{2}-[f(y)]^{2}\right|=|f(x)+f(y)||f(x)-f(y)| \leq 2 M|f(x)-f(y)| \quad \text { for all } x, y \in[a, b]
$$

We deduce from the above inequality that $U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 M[U(f, P)-L(f, P)]$ for any partition P of $[a, b]$. Let $\varepsilon>0$. Since f is integrable on $[a, b]$, by Theorem 1.1
there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon /(2 M)$. Consequently, $U\left(f^{2}, P\right)-L\left(f^{2}, P\right)<\varepsilon$. By Theorem 1.1 again we conclude that f^{2} is integrable on $[a, b]$.

Note that $f g=\left[(f+g)^{2}-(f-g)^{2}\right] / 4$. By Theorem 2.1, $f+g$ and $f-g$ are integrable on $[a, b]$. By what has been proved, both $(f+g)^{2}$ and $(f-g)^{2}$ are integrable on $[a, b]$. Using Theorem 2.1 again, we conclude that $f g$ is integrable on $[a, b]$.

Theorem 2.3. Let a, b, c, d be real numbers such that $a \leq c<d \leq b$. If a real-valued function f is integrable on $[a, b]$, then $\left.f\right|_{[c, d]}$ is integrable on $[c, d]$.

Proof. Suppose that f is integrable on $[a, b]$. Let ε be an arbitrary positive number. By Theorem 1.1, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$. It follows that $U(f, P \cup\{c, d\})-L(f, P \cup\{c, d\})<\varepsilon$. Let $Q:=(P \cup\{c, d\}) \cap[c, d]$. Then Q is a partition of $[c, d]$. We have

$$
U\left(\left.f\right|_{[c, d]}, Q\right)-L\left(\left.f\right|_{[c, d]}, Q\right) \leq U(f, P \cup\{c, d\})-L(f, P \cup\{c, d\})<\varepsilon
$$

Hence $\left.f\right|_{[c, d]}$ is integrable on $[c, d]$.
Theorem 2.4. Let f be a bounded real-valued function on $[a, b]$. If $a<c<b$, and if f is integrable on $[a, c]$ and $[c, b]$, then f is integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Proof. Suppose that f is integrable on $[a, c]$ and $[c, b]$. We write $I_{1}:=\int_{a}^{c} f(x) d x$ and $I_{2}:=\int_{c}^{b} f(x) d x$. Let $\varepsilon>0$. By Theorem 1.1, there exist a partition $P_{1}=\left\{s_{0}, s_{1}, \ldots, s_{m}\right\}$ of $[a, c]$ and a partition $P_{2}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[c, b]$ such that

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\varepsilon}{2} \quad \text { and } \quad U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\frac{\varepsilon}{2} .
$$

Let $P:=P_{1} \cup P_{2}=\left\{s_{0}, \ldots, s_{m-1}, t_{0}, \ldots, t_{n}\right\}$. Then P is a partition of $[a, b]$. We have

$$
L(f) \geq L(f, P)=L\left(f, P_{1}\right)+L\left(f, P_{2}\right)>U\left(f, P_{1}\right)+U\left(f, P_{2}\right)-\varepsilon \geq I_{1}+I_{2}-\varepsilon
$$

and

$$
U(f) \leq U(f, P)=U\left(f, P_{1}\right)+U\left(f, P_{2}\right)<L\left(f, P_{1}\right)+L\left(f, P_{2}\right)+\varepsilon \leq I_{1}+I_{2}+\varepsilon
$$

It follows that

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x-\varepsilon<L(f) \leq U(f)<\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x+\varepsilon
$$

Since the above inequalities are valid for all $\varepsilon>0$, we conclude that f is integrable on $[a, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.

Let a, b, c be real numbers in any order, and let J be a bounded closed interval containing a, b, and c. If f is integrable on J, then by Theorems 2.3 and 2.4 we have

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Theorem 2.5. Let f and g be integrable functions on $[a, b]$. If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

Proof. By Theorem 2.1, $h:=g-f$ is integrable on $[a, b]$. Since $h(x) \geq 0$ for all $x \in[a, b]$, it is clear that $L(h, P) \geq 0$ for any partition P of $[a, b]$. Hence, $\int_{a}^{b} h(x) d x=L(h) \geq 0$. Applying Theorem 2.1 again, we see that

$$
\int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) d x=\int_{a}^{b} h(x) d x \geq 0
$$

Theorem 2.6. If f is an integrable function on $[a, b]$, then $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Proof. Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. For each $i \in\{1, \ldots, n\}$, let M_{i} and m_{i} denote the supremum and infimun respectively of f on $\left[t_{i-1}, t_{i}\right]$, and let M_{i}^{*} and m_{i}^{*} denote the supremum and infimun respectively of $|f|$ on $\left[t_{i-1}, t_{i}\right]$. Then

$$
M_{i}-m_{i}=\sup \left\{f(x)-f(y): x, y \in\left[t_{i-1}, t_{i}\right]\right\}
$$

and

$$
M_{i}^{*}-m_{i}^{*}=\sup \left\{|f(x)|-|f(y)|: x, y \in\left[t_{i-1}, t_{i}\right]\right\}
$$

By the triangle inequality, $||f(x)|-|f(y)|| \leq|f(x)-f(y)|$. Hence $M_{i}^{*}-m_{i}^{*} \leq M_{i}-m_{i}$ and

$$
\sum_{i=1}^{n}\left(M_{i}^{*}-m_{i}^{*}\right)\left(t_{i}-t_{i-1}\right) \leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

It follows that $U(|f|, P)-L(|f|, P) \leq U(f, P)-L(f, P)$. Let ε be an arbitrary positive number. By our assumption, f is integrable on $[a, b]$. By Theorem 1.1, there exists a partition P such that $U(f, P)-L(f, P)<\varepsilon$. Hence $U(|f|, P)-L(|f|, P)<\varepsilon$. By using Theorem 1.1 again we conclude that $|f|$ is integrable on $[a, b]$. Furthermore, since $f(x) \leq|f(x)|$ and $-f(x) \leq|f(x)|$ for all $x \in[a, b]$, by Theorem 2.5 we have

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x \quad \text { and } \quad-\int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x
$$

Therefore $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.

§3. Fundamental Theorem of Calculus

In this section we give two versions of the Fundamental Theorem of Calculus and their applications.

Let f be a real-valued function on an interval I. A function F on I is called an antiderivative of f on I if $F^{\prime}(x)=f(x)$ for all $x \in I$. If F is an antiderivative of f, then so is $F+C$ for any constant C. Conversely, if F and G are antiderivatives of f on I, then $G^{\prime}(x)-F^{\prime}(x)=0$ for all $x \in I$. Thus, there exists a constant C such that $G(x)-F(x)=C$ for all $x \in I$. Consequently, $G=F+C$.

The following is the first version of the Fundamental Theorem of Calculus.
Theorem 3.1. Let f be an integrable function on $[a, b]$. If F is a continuous function on $[a, b]$ and if F is an antiderivative of f on (a, b), then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}:=F(b)-F(a)
$$

Proof. Let $\varepsilon>0$. By Theorem 1.1, there exists a partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$. Since $t_{0}=a$ and $t_{n}=b$ we have

$$
F(b)-F(a)=\sum_{i=1}^{n}\left[F\left(t_{i}\right)-F\left(t_{i-1}\right)\right]
$$

By the Mean Value Theorem, for each $i \in\{1, \ldots, n\}$ there exists $x_{i} \in\left(t_{i-1}, t_{i}\right)$ such that

$$
F\left(t_{i}\right)-F\left(t_{i-1}\right)=F^{\prime}\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)=f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

Consequently,

$$
L(f, P) \leq F(b)-F(a)=\sum_{i=1}^{n} f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right) \leq U(f, P)
$$

On the other hand,

$$
L(f, P) \leq \int_{a}^{b} f(x) d x \leq U(f, P)
$$

Thus both $F(b)-F(a)$ and $\int_{a}^{b} f(x) d x$ lie in $[L(f, P), U(f, P)]$ with $U(f, P)-L(f, P)<\varepsilon$. Hence

$$
\left|[F(b)-F(a)]-\int_{a}^{b} f(x) d x\right|<\varepsilon .
$$

Since the above inequality is valid for all $\varepsilon>0$, we obtain $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Example 1. Let k be a positive integer. Find $\int_{a}^{b} x^{k} d x$.
Solution. We know that the function $g_{k}: x \mapsto x^{k+1} /(k+1)$ is an antiderivative of the function $f_{k}: x \mapsto x^{k}$. By the Fundamental Theorem of Calculus we obtain

$$
\int_{a}^{b} x^{k} d x=\left.\frac{x^{k+1}}{k+1}\right|_{a} ^{b}=\frac{b^{k+1}-a^{k+1}}{k+1}
$$

Example 2. Find the integral $\int_{1}^{2} 1 / x d x$.
Solution. On the interval $(0, \infty)$, the function $x \mapsto \ln x$ is an antiderivative the function $x \mapsto 1 / x$. By the Fundamental Theorem of Calculus we obtain

$$
\int_{1}^{2} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{2}=\ln 2-\ln 1=\ln 2 .
$$

This integral can be used to find the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)
$$

Indeed, let $f(x):=1 / x$ for $x=[1,2]$, and let $t_{i}=1+i / n$ for $i=0,1, \ldots, n$. Then $P:=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ is a partition of $[1,2]$ and

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}=\sum_{i=1}^{n} f\left(t_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

is a Riemann sum of f with respect to P and points $\left\{t_{1}, \ldots, t_{n}\right\}$. By Theorem 1.2 we get

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right)\left(t_{i}-t_{i-1}\right)=\int_{1}^{2} \frac{1}{x} d x=\ln 2
$$

Example 3. A curve in plane is represented by a continuous mapping $u=\left(u_{1}, u_{2}\right)$ from $[a, b]$ to \mathbb{R}^{2}. We use $L(u)$ to denote the length of the curve. Suppose that u_{1}^{\prime} and u_{2}^{\prime} are continuous on $[a, b]$. Then u is rectifiable. For $t \in[a, b]$, let $s(t)$ denote the length of the curve $\left.u\right|_{[a, t]}$. It was proved in Theorem 7.1 of Chapter 4 that

$$
s^{\prime}(t)=\sqrt{\left[u_{1}^{\prime}(t)\right]^{2}+\left[u_{2}^{\prime}(t)\right]^{2}}, \quad t \in[a, b] .
$$

By Theorem 3.1 (the Fundamental Theorem of Calculus), we obtain

$$
L(u)=s(b)-s(a)=\int_{a}^{b} s^{\prime}(t) d t=\int_{a}^{b} \sqrt{\left[u_{1}^{\prime}(t)\right]^{2}+\left[u_{2}^{\prime}(t)\right]^{2}} d t .
$$

The following is the second version of the Fundamental Theorem of Calculus.

Theorem 3.2. Let f be an integrable function on $[a, b]$. Define

$$
F(x):=\int_{a}^{x} f(t) d t, \quad x \in[a, b] .
$$

Then F is a continuous function on $[a, b]$. Furthermore, if f is continuous at a point $c \in[a, b]$, then F is differentiable at c and

$$
F^{\prime}(c)=f(c)
$$

Proof. Since f is bounded on $[a, b]$, there exists a constant $M>0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$. If $x, y \in[a, b]$ and $x<y$, then

$$
F(y)-F(x)=\int_{a}^{y} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{y} f(t) d t
$$

Since $-M \leq f(t) \leq M$ for $x \leq t \leq y$, by Theorem 2.5 we have

$$
-M(y-x) \leq \int_{x}^{y} f(t) d t \leq M(y-x)
$$

It follows that $|F(y)-F(x)| \leq M|y-x|$. For given $\varepsilon>0$, choose $\delta=\varepsilon / M$. Then $|y-x|<\delta$ implies $|F(y)-F(x)| \leq M|y-x|<\varepsilon$. This shows that F is continuous on $[a, b]$.

Now suppose that f is continuous at $c \in[a, b)$. Let $h>0$. By Theorem 2.4 we have

$$
\frac{F(c+h)-F(c)}{h}-f(c)=\frac{1}{h} \int_{c}^{c+h} f(t) d t-f(c)=\frac{1}{h} \int_{c}^{c+h}[f(t)-f(c)] d t
$$

Let $\varepsilon>0$ be given. Since f is continuous at c, there exists some $\delta>0$ such that $|f(t)-f(c)| \leq \varepsilon$ whenever $c \leq t \leq c+\delta$. Therefore, if $0<h<\delta$, then

$$
\left|\frac{F(c+h)-F(c)}{h}-f(c)\right|=\left|\frac{1}{h} \int_{c}^{c+h}[f(t)-f(c)] d t\right| \leq \frac{1}{h} \int_{c}^{c+h}|f(t)-f(c)| d t \leq \varepsilon
$$

Consequently,

$$
\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c) .
$$

Similarly, if f is continuous at $c \in(a, b]$, then

$$
\lim _{h \rightarrow 0^{-}} \frac{F(c+h)-F(c)}{h}=f(c) .
$$

This completes the proof of the theorem.

Example 4. Let f be a continuous function on $[a, b]$, and let $F(x):=\int_{x}^{b} f(t) d t$ for each $x \in[a, b]$. Then we have

$$
F(x)=\int_{x}^{b} f(t) d t=-\int_{b}^{x} f(t) d t
$$

By Theorem 3.2, F is differentiable on $[a, b]$ and $F^{\prime}(x)=-f(x)$ for $a \leq x \leq b$.
Example 5. Let $F(x):=\int_{-x}^{x^{2}} \sqrt{4+t^{2}} d t, x \in \mathbb{R}$. Find $F^{\prime}(x)$ for $x \in \mathbb{R}$.
Solution. We have

$$
F(x)=\int_{-x}^{0} \sqrt{4+t^{2}} d t+\int_{0}^{x^{2}} \sqrt{4+t^{2}} d t=-\int_{0}^{-x} \sqrt{4+t^{2}} d t+\int_{0}^{x^{2}} \sqrt{4+t^{2}} d t
$$

By using the chain rule and Theorem 3.2 we obtain

$$
F^{\prime}(x)=\sqrt{4+x^{2}}+2 x \sqrt{4+x^{4}}
$$

Example 6. Let $G(x):=\int_{2}^{x} x \cos \left(t^{3}\right) d t, x \in \mathbb{R}$. Find $G^{\prime \prime}(x)$ for $x \in \mathbb{R}$.
Solution. We have $G(x)=x \int_{2}^{x} \cos \left(t^{3}\right) d t$. By Theorem 3.2 and the product rule for differentiation, we obtain

$$
G^{\prime}(x)=\int_{2}^{x} \cos \left(t^{3}\right) d t+x \cos \left(x^{3}\right)
$$

Taking derivative once more, we get

$$
G^{\prime \prime}(x)=\cos \left(x^{3}\right)+\cos \left(x^{3}\right)+x\left[-\sin \left(x^{3}\right)\right]\left(3 x^{2}\right)=2 \cos \left(x^{3}\right)-3 x^{3} \sin \left(x^{3}\right)
$$

§4. Indefinite Integrals

An antiderivative of a function f is also called an indefinite integral of f. It is customary to denote an indefinite integral of f by

$$
\int f(x) d x
$$

For example, for $\mu \in \mathbb{R} \backslash\{-1\}$ we have

$$
\int x^{\mu} d x=\frac{x^{\mu+1}}{\mu+1}+C, \quad x \in(0, \infty)
$$

If $\mu \in \mathbb{N}_{0}$, then the above formula is valid for all $x \in \mathbb{R}$. If $\mu \in \mathbb{Z}$ and $\mu \leq-2$, then the formula holds for $x \in(-\infty, 0) \cup(0, \infty)$. For $\mu=-1$ we have

$$
\int \frac{1}{x} d x=\ln |x|+C, \quad x \in(-\infty, 0) \cup(0, \infty)
$$

The following formulas for integration are easily derived from the corresponding formulas for differentiation:

$$
\begin{gathered}
\int e^{x} d x=e^{x}+C, \quad x \in(-\infty, \infty) \\
\int \cos x d x=\sin x+C, \quad x \in(-\infty, \infty) \\
\int \sin x d x=-\cos x+C, \quad x \in(-\infty, \infty) \\
\int \frac{1}{1+x^{2}} d x=\arctan x+C \quad x \in(-\infty, \infty) \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C \quad x \in(-1,1)
\end{gathered}
$$

If F_{1} and F_{2} are differentiable functions on an interval, and if $F_{1}^{\prime}=f_{1}$ and $F_{2}^{\prime}=f_{2}$, then for $c_{1}, c_{2} \in \mathbb{R}$ we have

$$
\left[c_{1} F_{1}+c_{2} F_{2}\right]^{\prime}=c_{1} F_{1}^{\prime}+c_{2} F_{2}^{\prime}=c_{1} f_{1}+c_{2} f_{2}
$$

It follows that

$$
\int\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right] d x=c_{1} \int f_{1}(x) d x+c_{2} \int f_{2}(x) d x
$$

Now let u and v be differentiable functions on an interval. By the product rule for differentiation we have

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} .
$$

From this we deduce the following formula for integration by parts:

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int u^{\prime}(x) v(x) d x
$$

It can also be written as

$$
\int u d v=u v-\int v d u
$$

Example 1. Find $\int x^{2} e^{x} d x$.
Solution. By integration by parts we have

$$
\int x^{2} e^{x} d x=\int x^{2} d\left(e^{x}\right)=x^{2} e^{x}-\int e^{x} d\left(x^{2}\right)=x^{2} e^{x}-2 \int x e^{x} d x
$$

By using integration by parts again we obtain

$$
\int x e^{x} d x=\int x d\left(e^{x}\right)=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

Therefore

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C
$$

In general, if p is a polynomial, then

$$
\int p(x) e^{x} d x=\int p(x) d\left(e^{x}\right)=p(x) e^{x}-\int p^{\prime}(x) e^{x} d x
$$

where the degree of p^{\prime} is one less than that of p. Thus the integral $\int p(x) e^{x}$ can be computed by using integration by parts repeatedly. This method also applies to the integrals $\int p(x) \sin x d x$ and $\int p(x) \cos x d x$.
Example 2. Find $\int x \ln x d x$.
Solution. Integration by parts gives

$$
\begin{aligned}
\int x \ln x d x & =\int \ln x d\left(x^{2} / 2\right)=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} d(\ln x) \\
& =\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \frac{1}{x} d x=\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}+C .
\end{aligned}
$$

In general, if p is a polynomial given by $p(x)=\sum_{k=0} a_{k} x^{k}$, then

$$
\int p(x) d x=\sum_{k=0}^{n} \frac{a_{k}}{k+1} x^{k+1}+C
$$

Let $s(x):=\sum_{k=0}^{n} a_{k} x^{k+1} /(k+1)$. By using integration by parts we get

$$
\int p(x) \ln x d x=\int \ln x d(s(x))=s(x) \ln x-\int s(x) d(\ln x)=s(x) \ln x-\int \frac{s(x)}{x} d x
$$

This method also applies to the integral $\int p(x) \arctan x d x$.

Let u be a differentiable function from an interval I to an interval J, and let F be a differentiable function from J to \mathbb{R}. Suppose $F^{\prime}=f$. By the chain rule the composition $F \circ u$ is differentiable on I and

$$
(F \circ u)^{\prime}(x)=F^{\prime}(u(x)) u^{\prime}(x)=f(u(x)) u^{\prime}(x), \quad x \in I
$$

Thus we have the following formula for change of variables in an integral:

$$
\int f(u(x)) u^{\prime}(x) d x=F(u(x))+C
$$

Example 3. Find $\int \sin ^{2} x \cos x d x$.
Solution. Let $u:=\sin x$. Then $d u=\cos x d x$. Hence

$$
\int \sin ^{2} x \cos x d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \sin ^{3} x+C .
$$

We can use this integral together with the identity $\sin ^{2} x+\cos ^{2} x=1$ to find the integral $\int \cos ^{3} x d x$:

$$
\begin{aligned}
\int \cos ^{3} x d x & =\int \cos ^{2} x \cos x d x=\int\left(1-\sin ^{2} x\right) \cos x d x \\
& =\int \cos x d x-\int \sin ^{2} x \cos x d x=\sin x-\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

For integrals involving sine and cosine, the following double angle formulas will be useful:

$$
\begin{gathered}
\sin (2 x)=2 \sin x \cos x \\
\cos (2 x)=\cos ^{2} x-\sin ^{2} x
\end{gathered}
$$

The second formula together with the identity $\sin ^{2} x+\cos ^{2} x=1$ gives

$$
\sin ^{2} x=\frac{1-\cos (2 x)}{2} \quad \text { and } \quad \cos ^{2} x=\frac{1+\cos (2 x)}{2} .
$$

Thus we have

$$
\int \sin ^{2} x d x=\int \frac{1}{2} d x-\frac{1}{2} \int \cos (2 x) d x=\frac{x}{2}-\frac{1}{4} \sin (2 x)+C
$$

In general, for nonnegative integers m and n, the integral

$$
\int \sin ^{m} x \cos ^{n} x d x
$$

can be calculated as follows: (1) If m is odd, use the substitution $u=\cos x$ and the identity $\sin ^{2} x=1-\cos ^{2} x$. (2) If n is odd, use the substitution $u=\sin x$ and the identity $\cos ^{2} x=1-\sin ^{2} x$. (3) If both m and n are even, use $\sin ^{2} x=(1-\cos (2 x)) / 2$ and $\cos ^{2} x=(1+\cos (2 x)) / 2$ to reduce the exponents of sine and cosine.
Example 4. Find the following integrals:

$$
\int \tan x d x, \quad \int \cot x d x, \quad \int \sec x d x, \quad \int \csc x d x
$$

Solution. For the first integral we use the substitution $u=\cos x$ and get

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{1}{u} d u=-\ln |u|+C=-\ln |\cos x|+C=\ln |\sec x|+C
$$

Similarly,

$$
\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\int \frac{d(\sin x)}{\sin x}=\ln |\sin x|+C
$$

In order to find $\int \sec x d x$, we observe that

$$
\frac{d}{d x}(\sec x+\tan x)=\sec x \tan x+\sec ^{2} x=\sec x(\tan x+\sec x)
$$

It follows that

$$
\int \sec x d x=\int \frac{d(\sec x+\tan x)}{\sec x+\tan x}=\ln |\sec x+\tan x|+C .
$$

Similarly,

$$
\int \csc x d x=-\int \frac{d(\csc x+\cot x)}{\csc x+\cot x}=-\ln |\csc x+\cot x|+C
$$

Example 5. For $a>0$, calculate the following integrals:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad \text { and } \quad \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x
$$

Solution. For the first integral we let $x=a \tan t$ for $-\pi / 2<t<\pi / 2$. Then $\sec t>0$ and $x^{2}+a^{2}=a^{2}\left(\tan ^{2} t+1\right)=a^{2} \sec ^{2} t$. Hence

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{a \sec ^{2} t}{a \sec t} d t=\int \sec t d t=\ln (\tan t+\sec t)
$$

But $\sec t=\sqrt{\tan ^{2} t+1}$. Consequently,

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(\frac{x}{a}+\sqrt{\frac{x^{2}}{a^{2}}+1}\right)+C=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C_{1}
$$

where $C_{1}=C-\ln a$. Similarly,

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C, \quad|x|>a
$$

Let us consider $\int \sqrt{\alpha x^{2}+\beta} d x$, where $\alpha, \beta \in \mathbb{R}$. Integrating by parts, we obtain

$$
\int \sqrt{\alpha x^{2}+\beta} d x=x \sqrt{\alpha x^{2}+\beta}-\int \frac{\alpha x^{2}}{\sqrt{\alpha x^{2}+\beta}} d x
$$

Note that

$$
\frac{\alpha x^{2}}{\sqrt{\alpha x^{2}+\beta}}=\frac{\alpha x^{2}+\beta-\beta}{\sqrt{\alpha x^{2}+\beta}}=\sqrt{\alpha x^{2}+\beta}-\frac{\beta}{\sqrt{\alpha x^{2}+\beta}} .
$$

Hence

$$
\int \sqrt{\alpha x^{2}+\beta} d x=x \sqrt{\alpha x^{2}+\beta}-\int \sqrt{\alpha x^{2}+\beta} d x+\int \frac{\beta}{\sqrt{\alpha x^{2}+\beta}} d x
$$

It follows that

$$
\int \sqrt{\alpha x^{2}+\beta} d x=\frac{1}{2} x \sqrt{\alpha x^{2}+\beta}+\frac{\beta}{2} \int \frac{1}{\sqrt{\alpha x^{2}+\beta}} d x
$$

In particular, we get

$$
\int \sqrt{x^{2}+a^{2}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
$$

and

$$
\int \sqrt{x^{2}-a^{2}} d x=\frac{1}{2} x \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C
$$

For $a>0$, a simple substitution gives

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C, \quad-a<x<a
$$

Therefore,

$$
\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C, \quad-a<x<a .
$$

A rational function has the form $p(x) / s(x)$, where p and s are polynomials. There exist unique polynomials q and r such that $p(x)=q(x) s(x)+r(x)$, where the degree of r is less than the degree of s. It follows that

$$
\frac{p(x)}{s(x)}=q(x)+\frac{r(x)}{s(x)}
$$

In order to find $\int r(x) / s(x) d x$, we decompose $r(x) / s(x)$ as the sum of terms of the following type:

$$
\frac{c_{1}}{x-\alpha}+\cdots+\frac{c_{n}}{(x-\alpha)^{n}}+\frac{d_{1}+e_{1} x}{(x-\beta)^{2}+\gamma^{2}}+\cdots+\frac{d_{m}+e_{m} x}{\left[(x-\beta)^{2}+\gamma^{2}\right]^{m}}
$$

Example 6. For $b, c, \lambda, \mu \in \mathbb{R}$, find the integral

$$
\int \frac{\lambda x+\mu}{x^{2}+b x+c} d x
$$

Solution. We may write

$$
\int \frac{\lambda x+\mu}{x^{2}+b x+c} d x=\int \frac{\lambda}{2} \frac{2 x+b}{x^{2}+b x+c} d x+\int \frac{\mu-b \lambda / 2}{x^{2}+b x+c} d x
$$

Clearly,

$$
\int \frac{\lambda}{2} \frac{2 x+b}{x^{2}+b x+c} d x=\frac{\lambda}{2} \ln \left|x^{2}+b x+c\right|+C .
$$

So it remains to find the integral $\int d x /\left(x^{2}+b x+c\right)$. There are three possible cases: $b^{2}-4 c>0, b^{2}-4 c=0$, and $b^{2}-4 c<0$. If $b^{2}-4 c>0$, then $x^{2}+b x+c=(x-\alpha)(x-\beta)$, where α and β are distinct real numbers. In this case, $\int \frac{1}{(x-\alpha)(x-\beta)} d x=\int \frac{1}{\alpha-\beta}\left(\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right) d x=\frac{1}{\alpha-\beta}[\ln |x-\alpha|-\ln |x-\beta|]+C$. If $b^{2}-4 c=0$, then $x^{2}+b x+c=(x-\alpha)^{2}$, where $\alpha=-b / 2$. In this case,

$$
\int \frac{1}{(x-\alpha)^{2}} d x=-\frac{1}{x-\alpha}+C
$$

Finally, if $b^{2}-4 c<0$, we have $x^{2}+b x+c=(x+b / 2)^{2}+\gamma^{2}$, where $\gamma=\sqrt{c-b^{2} / 4}$. Thus

$$
\int \frac{1}{x^{2}+b x+c} d x=\int \frac{1}{(x+b / 2)^{2}+\gamma^{2}}=\frac{1}{\gamma} \arctan \frac{x+b / 2}{\gamma}+C .
$$

§5. Definite Integrals

As an application of the Fundamental Theorem of Calculus, we establish the following formula of integration by parts.

Theorem 5.1. If u and v are continuous functions on $[a, b]$ that are differentiable on (a, b), and if u^{\prime} and v^{\prime} are integrable on $[a, b]$, then

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x+\int_{a}^{b} u^{\prime}(x) v(x) d x=u(b) v(b)-u(a) v(a)
$$

Proof. Let $F:=u v$. Then $F^{\prime}(x)=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)$ for $x \in(a, b)$. By Theorem 3.1 we have

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)=u(b) v(b)-u(a) v(a)
$$

Example 1. Find $\int_{0}^{1} x \ln x d x$.
Solution. For $k=1,2, \ldots$, let $f_{k}(x):=x^{k} \ln x, x>0$. Then f_{k} is continuous on $(0, \infty)$. Moreover,

$$
\lim _{x \rightarrow 0^{+}} x^{k} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{(1 / x)^{k}}=\lim _{y \rightarrow+\infty} \frac{\ln (1 / y)}{y^{k}}=\lim _{y \rightarrow+\infty} \frac{-\ln y}{y^{k}}=0 .
$$

Thus, by defining $f_{k}(0):=0, f_{k}$ is extended to a continuous function on $[0, \infty)$. Integration by parts gives

$$
\int_{0}^{1} x \ln x d x=\left.\frac{x^{2}}{2} \ln x\right|_{0} ^{1}-\int_{0}^{1} \frac{x}{2} d x=-\left.\frac{1}{4} x^{2}\right|_{0} ^{1}=-\frac{1}{4}
$$

Now let us consider the integral $\int_{0}^{1} \ln x d x$. The function $f_{0}: x \mapsto \ln x$ is unbounded on $(0,1)$. So this is an improper integral. We define

$$
\int_{0}^{1} \ln x d x:=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \ln x d x
$$

Integration by parts gives

$$
\int_{a}^{1} \ln x d x=\left.x \ln x\right|_{a} ^{1}-\int_{a}^{1} d x=-a \ln a-(1-a)
$$

Consequently,

$$
\int_{0}^{1} \ln x d x=\lim _{a \rightarrow 0^{+}}[-a \ln a-(1-a)]=-1
$$

Example 2. For $n=0,1,2, \ldots$, let

$$
I_{n}:=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x
$$

Find I_{n}.
Solution. We have $I_{0}=1$. For $n \geq 1$, integrating by parts, we get

$$
I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\left.x\left(1-x^{2}\right)^{n}\right|_{0} ^{1}-\int_{0}^{1} x d\left(\left(1-x^{2}\right)^{n}\right)=2 n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n-1} d x
$$

We may write $x^{2}\left(1-x^{2}\right)^{n-1}=\left[1-\left(1-x^{2}\right)\right]\left(1-x^{2}\right)^{n-1}=\left(1-x^{2}\right)^{n-1}-\left(1-x^{2}\right)^{n}$. Hence

$$
I_{n}=2 n \int_{0}^{1}\left(1-x^{2}\right)^{n-1} d x-2 n \int_{0}^{1}\left(1-x^{2}\right)^{n} d x=2 n I_{n-1}-2 n I_{n}
$$

It follows that $(2 n+1) I_{n}=2 n I_{n-1}$. Thus $I_{1}=2 / 3$. In general,

$$
I_{n}=\frac{2 n}{2 n+1} I_{n-1}=\frac{2 n}{2 n+1} \frac{2 n-2}{2 n-1} \cdots \frac{2}{3}=\prod_{k=1}^{n} \frac{2 k}{2 k+1}
$$

As another application of the Fundamental Theorem of Calculus, we give the following formula for change of variables in a definite integral.

Theorem 5.2. Let u be a differentiable function on $[a, b]$ such that u^{\prime} is integrable on $[a, b]$. If f is continuous on $I:=u([a, b])$, then

$$
\int_{a}^{b} f(u(t)) u^{\prime}(t) d t=\int_{u(a)}^{u(b)} f(x) d x
$$

Proof. Since u is continuous, $I=u([a, b])$ is a closed and bounded interval. Also, since $f \circ u$ is continuous and u^{\prime} is integrable on $[a, b]$, the function $(f \circ u) u^{\prime}$ is integrable on $[a, b]$. If $I=u([a, b])$ is a single point, then u is constant on $[a, b]$. In this case $u^{\prime}(t)=0$ for all $t \in[a, b]$ and both integrals above are zero. Otherwise, for $x \in I$ define

$$
F(x):=\int_{u(a)}^{x} f(s) d s
$$

Since f is continuous on $I, F^{\prime}(x)=f(x)$ for all $x \in I$, by Theorem 3.2. By the chain rule we have

$$
(F \circ u)^{\prime}(t)=F^{\prime}(u(t)) u^{\prime}(t)=f(u(t)) u^{\prime}(t), \quad t \in[a, b] .
$$

Therefore by Theorem 3.1 we obtain

$$
\int_{a}^{b} f(u(t)) u^{\prime}(t) d t=(F \circ u)(b)-(F \circ u)(a)=F(u(b))-F(u(a))=\int_{u(a)}^{u(b)} f(x) d x .
$$

Example 3. For $a>0$, find $\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$.
Solution. Let $x=a \sin t$. When $t=0, x=0$. When $t=\pi / 2, x=a$. By Theorem 5.2 we get

$$
\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=\int_{0}^{\pi / 2} \sqrt{a^{2}\left(1-\sin ^{2} t\right)} a \cos t d t=\int_{0}^{a} a^{2} \sqrt{\cos ^{2} t} \cos t d t
$$

Since $\cos t \geq 0$ for $0 \leq t \leq \pi / 2$, we have $\sqrt{\cos ^{2} t}=\cos t$. Thus

$$
\begin{aligned}
\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x & =a^{2} \int_{0}^{\pi / 2} \cos ^{2} t d t=a^{2} \int_{0}^{\pi / 2} \frac{1+\cos (2 t)}{2} d t \\
& =\left.\frac{a^{2}}{2}\left(t+\frac{1}{2} \sin (2 t)\right)\right|_{0} ^{\pi / 2}=\frac{\pi}{4} a^{2}
\end{aligned}
$$

Example 4. Let $a>0$. Suppose that f is a continuous function on $[-a, a]$. Prove the following statements.
(1) If f is an even function, i.e., $f(-x)=f(x)$ for all $x \in[0, a]$, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

(2) If f is an odd function, i.e., $f(-x)=-f(x)$ for all $x \in[0, a]$, then $\int_{-a}^{a} f(x) d x=0$. Proof. We have

$$
\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x
$$

In the integral $\int_{-a}^{0} f(x) d x$ we make the change of variables: $x=-t$. When $t=a, x=-a$; when $t=0, x=0$. By Theorem 5.2 we get

$$
\int_{-a}^{0} f(x) d x=\int_{a}^{0} f(-t) d(-t)=-\int_{a}^{0} f(-t) d t=\int_{0}^{a} f(-t) d t
$$

It follows that

$$
\int_{-a}^{a} f(x) d x=\int_{0}^{a} f(-t) d t+\int_{0}^{a} f(t) d t=\int_{0}^{a}[f(-t)+f(t)] d t
$$

If f is an even function, then $f(-t)=f(t)$ for all $t \in[0, a]$; hence

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(t) d t=2 \int_{0}^{a} f(x) d x
$$

If f is an odd function, then $f(-t)=-f(t)$ for all $t \in[0, a]$; hence

$$
\int_{-a}^{a} f(x) d x=0
$$

