
Chapter 3. Continuous Functions

§1. Limits of Functions

Let E be a subset of IR and c a point of IR. We say that c is a limit point of E if there

exists a sequence (xn)n=1,2,... in E such that xn ̸= c for all n ∈ IN and limn→∞ xn = c.

The set of all limit points of E is denoted by E′.

For example, if E is the interval (0, 1], then E′ = [0, 1]. If F is the set {1/n : n ∈ IN},
then F ′ = {0}.

Let f be a function from a subset E of IR to IR and let c be a limit point of E. We

say that a real number L is a limit of f at c, and we write limx→c f(x) = L, if for each

ε > 0 there exists some δ > 0 such that

x ∈ E and 0 < |x− c| < δ imply |f(x)− L| < ε.

For example, let f be the function from IR to IR given by f(x) = x, x ∈ IR For each

c ∈ IR we have limx→c f(x) = c. Indeed, for given ε > 0, choose δ = ε > 0. Then

x ∈ IR and 0 < |x− c| < δ imply |f(x)− c| = |x− c| < ε.

Similarly, if b ∈ IR and g is the function from IR to IR given by g(x) = b for all x ∈ IR,

then limx→c g(x) = b for each c ∈ IR.

The following theorem establishes the relationship between limits of functions and

limits of sequences.

Theorem 1.1. Let f be a function from a subset E of IR to IR and let c be a limit point of

E. Then limx→c f(x) = L if and only if for every sequence (xn)n=1,2... in E that converges

to c with xn ̸= c for all n ∈ IN, the sequence (f(xn))n=1,2,... converges to L.

Proof. Suppose that limx→c f(x) = L. Let (xn)n=1,2,... be a sequence in E such that

xn ̸= c for all n ∈ IN and limn→∞ xn = c. We wish to show that limn→∞ f(xn) = L. For

given ε > 0, there exists some δ > 0 such that

x ∈ E and 0 < |x− c| < δ imply |f(x)− L| < ε.

Furthermore, since limn→∞ xn = c, there exists a positive integer N such that n > N

implies |xn − c| < δ. Thus for n > N we have 0 < |xn − c| < δ and xn ∈ E, so that

|f(xn)− L| < ε. This shows that limn→∞ f(xn) = L.
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Conversely, suppose that L is not a limit of f at c. Then there exists some ε > 0 such

that for every δ > 0 there exists a point x ∈ E such that 0 < |x−c| < δ and |f(x)−L| ≥ ε.

In particular, for each n ∈ IN, there exists some xn ∈ E such that 0 < |xn − c| < 1/n and

|f(xn)− L| ≥ ε. Now the sequence (xn)n=1,2,... converges to c with xn ̸= c for all n ∈ IN,

but the sequence (f(xn))n=1,2,... does not converge to L.

As a corollary of the above theorem, we see that a function can have at most one limit

at a given point.

Let f and g be two functions from E to IR. We define the sum f+g and the product

fg to be the functions from E to IR given by

(f + g)(x) := f(x) + g(x) and (fg)(x) := f(x)g(x), x ∈ E.

Moreover, if g(x) ̸= 0 for all x ∈ E, then the quotient f/g is the function from E to IR

defined by (
f

g

)
(x) =

f(x)

g(x)
, x ∈ E.

The following theorem can be easily proved by combining Theorem 1.1 and Theorems

2.1 and 2.2 in Chapter 2.

Theorem 1.2. Let f and g be two functions from a subset E of IR to IR, and let c be a

limit point of E. If limx→c f(x) = L and limx→c g(x) = M , then

lim
x→c

(f + g)(x) = L+M and lim
x→c

(fg)(x) = LM.

Furthermore, if g(x) ̸= 0 for all x ∈ E and M ̸= 0, then

lim
x→c

(
f

g

)
(x) =

L

M
.

The following theorem follows from Theorem 1.1 and the squeeze theorem given in

Chapter 2.

Theorem 1.3. Suppose that E is a subset of IR, c is a limit point of E, and f, g, h are

real-valued functions on E satisfying

g(x) ≤ f(x) ≤ h(x) for all x ∈ E.

If limx→c g(x) = limx→c h(x) = L, then limx→c f(x) = L.

Let f be a function from a subset E of IR to IR and let c be a limit point of E. We

write limx→c f(x) = ∞, if for each M > 0 there exists some δ > 0 such that

x ∈ E and 0 < |x− c| < δ imply f(x) > M.
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We write limx→c f(x) = −∞, if for each M < 0 there exists some δ > 0 such that

x ∈ E and 0 < |x− c| < δ imply f(x) < M.

Example 1. Show that

lim
x→0

1

|x|
= +∞.

Proof . Let f(x) := 1/|x|. Then f is defined on the set E := IR \ {0} and 0 is a limit point

of E. For given M > 0, we choose δ = 1/M > 0. Then

x ∈ E and |x− 0| < δ imply
1

|x|
>

1

δ
= M.

This shows that limx→0
1
|x| = +∞.

Now we consider limits at infinity. Let f be a function from a subset E of IR to IR

such that E ∩ (a,∞) ̸= ∅ for every a ∈ IR. We say that a real number L is a limit of f

at ∞, and we write limx→∞ f(x) = L, if for each ε > 0 there exists some real number K

such that

x ∈ E and x > K imply |f(x)− L| < ε.

Similarly, let f be a function from E to IR such that E ∩ (−∞, b) ̸= ∅ for every b ∈ IR. We

say that a real number L is a limit of f at −∞, and we write limx→−∞ f(x) = L, if for

each ε > 0 there exists some real number K such that

x ∈ E and x < K imply |f(x)− L| < ε.

Analogously, we can define limx→∞ f(x) = ∞, limx→∞ f(x) = −∞, limx→−∞ f(x) = ∞,

and limx→−∞ f(x) = −∞.

Theorems 1.1, 1.2, and 1.3 can be easily extended to limits at infinity.

Example 2. Find the limit

lim
x→∞

(√
x2 + x− x

)
.

Solution. Let f(x) :=
√
x2 + x− x for x > 0. We have

f(x) =
(
√
x2 + x− x)(

√
x2 + x+ x)√

x2 + x+ x
=

x√
x2 + x+ x

.

But x > 0 implies x ≤
√
x2 + x ≤ x+1. It follows that 2x ≤

√
x2 + x+x ≤ 2x+1. Hence,

x

2x+ 1
≤ f(x) ≤ x

2x
=

1

2
, x > 0.

Since limx→∞ x/(2x+ 1) = 1/2, by Theorem 1.3 we conclude that limx→∞ f(x) = 1/2.
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§2. Continuous Functions

Let f be a function from a subset E of IR to IR and let c ∈ E. We say that f is

continuous at c if for each ε > 0 there exists some δ > 0 such that

x ∈ E and |x− c| < δ imply |f(x)− f(c)| < ε.

If f is continuous at every point of a subset S of E, then f is said to be continuous on

S. If f is continuous on its domain E, then f is said to be continuous.

The following theorem can be proved in a way analogous to the proof of Theorem 1.1.

Theorem 2.1. Let f be a function from a subset E of IR to IR and let c ∈ E. Then f is

continuous at c if and only if for every sequence (xn)n=1,2... in E that converges to c, the

sequence (f(xn))n=1,2,... converges to f(c).

Combining Theorem 2.1 with Theorems 2.1 and 2.2 in Chapter 2, we obtain the

following result.

Theorem 2.2. Let f and g be two functions from a subset E of IR to IR, and let c ∈ E.

If f and g are continuous at c, then f + g and fg are continuous at c. Furthermore, if

g(c) ̸= 0, then f/g is continuous at c.

Example 1. Let f, g, u, v be the functions from IR to IR defined by

f(x) := x2, g(x) := x3, u(x) := x3 − x, v(x) :=
x

1 + |x|
, x ∈ IR.

The functions f, g, u, v are all continuous on IR. Moreover, f is neither one-to-one nor

onto, g is bijective, u is onto but not one-to-one, and v is one-to-one but not onto.

Let A and B be two subsets of IR. Suppose that f is a function from A to B and g is

a function from B to IR. Then the composition g ◦f is the function from A to IR defined

by

g ◦ f(x) = g(f(x)), x ∈ A.

Example 2. Let f and g be the functions from IR to IR given by

f(x) = 1− x and g(x) =
x

x2 + 1
, x ∈ IR.

Find g ◦ f and f ◦ g.

Solution. We have

g ◦ f(x) = 1− x

(1− x)2 + 1
and f ◦ g(x) = 1− x

x2 + 1
, x ∈ IR.

Note that f ◦ g ̸= g ◦ f .
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Theorem 2.3. Suppose that f is a function from A to B and g is a function from B to

IR. If f is continuous at c ∈ A and g is continuous at f(c) ∈ B, then g ◦ f is continuous

at c.

Proof. Let (xn)n=1,2,... be a sequence in A that converges to c. Since f is continuous at

c, the sequence f(xn) converges to f(c), by Theorem 2.1. Since g is continuous at f(c), by

Theorem 2.1 again we obtain

lim
n→∞

g ◦ f(xn) = lim
n→∞

g(f(xn)) = g(f(c)) = g ◦ f(c).

This is true for every sequence (xn)n=1,2,... in A that converges to c. Therefore, g ◦ f is

continuous at c.

Suppose that p is a function from IR to IR given by

p(x) = anx
n + · · ·+ a1x+ a0, x ∈ IR,

where a0, a1, . . . , an ∈ IR. Then p is called a polynomial function. If n is the largest

integer such that an ̸= 0, then we say that n is the degree of f . By Theorem 2.2, a

polynomial function is continuous on IR.

Let p be a polynomial of degree n ≥ 1. A real number c is said to be a root of p, if

p(c) = 0. It is known that p(c) = 0 if and only if there exists a polynomial p1 of degree

n− 1 such that

p(x) = (x− c)p1(x), x ∈ IR.

Consequently, a polynomial of degree n can have at most n roots.

A function r is said to be a rational function if r = p/q, where p and q are two

polynomials and q ̸= 0. Let Z(q) := {x ∈ IR : q(x) = 0} be the set of the roots of q. Then

the domain of r is the set IR \Z(q). By Theorem 2.2, a rational function is continuous on

its domain. Thus, if q(c) ̸= 0, we have

lim
x→c

r(x) = lim
x→c

p(x)

q(x)
=

p(c)

q(c)
.

If q(c) = 0 but p(c) ̸= 0, then limx→c r(x) does not exist. If p and q are polynomials of

positive degree, and if p(c) = 0 and q(c) = 0, then there exist polynomials p1 and q1 such

that p(x) = (x− c)p1(x) and q(x) = (x− c)q1(x) for all x ∈ IR. In this case we have

lim
x→c

p(x)

q(x)
= lim

x→c

(x− c)p1(x)

(x− c)q1(x)
= lim

x→c

p1(x)

q1(x)
.
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Example 3. Find the limit

lim
x→2

x2 − x− 2

x2 − 4
.

Solution. We have

lim
x→2

x2 − x− 2

x2 − 4
= lim

x→2

(x− 2)(x+ 1)

(x− 2)(x+ 2)
= lim

x→2

x+ 1

x+ 2
=

3

4
.

§3. Properties of Continuous Functions

Let f be a function from a set X to a set Y . If A ⊆ X, then f(A), the image of A

under f , is defined by

f(A) := {f(x) : x ∈ A}.

If B ⊆ Y , the inverse image of B is the set

f−1(B) := {x ∈ X : f(x) ∈ B}.

A function f from a subset E of IR to IR is said to be bounded if the set {f(x) : x ∈ E}
is bounded, that is, if there exists a real number M such that |f(x)| ≤ M for all x ∈ E.

Theorem 3.1. Let f be a continuous function from a closed interval [a, b] to IR. Then

f is a bounded function. Moreover, f attains its maximum and minimum values on [a, b];

that is, there exist s, t ∈ [a, b] such that f(s) ≤ f(x) ≤ f(t) for all x ∈ [a, b].

Proof. Let M := sup{f([a, b])}, where f([a, b]) := {f(x) : x ∈ [a, b]}. Note that M could

be ∞ or a real number. Let c := (a+ b)/2, M1 := sup{f([a, c])} and M2 := sup{f([c, b])}.
Then we have M = max{M1,M2}. If M1 = M , choose [a1, b1] := [a, c]; otherwise, choose

[a2, b2] := [c, b]. Suppose that [a1, b1], [a2, b2], . . . , [ak, bk] have been constructed so that

sup{f([ak, bk])} = M . Let ck := (ak + bk)/2. If sup{f([ak, bk])} = M , let [ak+1, bk+1] :=

[ak, ck]; otherwise, let [ak+1, bk+1] := [ck, bk]. By Theorem 3.2 in Chapter 2, there exists

a real number t such that ak ≤ t ≤ bk ∀ k ∈ IN and limk→∞ ak = limk→∞ bk = t. We

claim that f(t) = M . Suppose to the contrary that f(t) < M . Then there exists some

ε > 0 such that f(t) + ε < M . Since f is continuous at t, there exists δ > 0 such that

x ∈ [a, b] ∩ (t − δ, t + δ) implies f(x) < f(t) + ε. Since limk→∞ ak = limk→∞ bk = t,

there exists a positive integer K such that t − δ < aK < bK < t + δ. It follows that

sup{f([aK , bK ])} ≤ f(t) + ε < M . This is a contradiction. Therefore, f(t) = M . Thus, f

is bounded above and f attains its maximum at t.

In a similar way we can prove that f is bounded below and attains its minimum at

some point s ∈ [a, b].
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The above theorem is not valid if the closed interval [a, b] is replaced by an open

interval.

Example 1. Let f(x) = 1/x, x ∈ (0, 1). Then f is continuous but unbounded on (0, 1).

Moreover, we have inf{f(x) : x ∈ (0, 1)} = 1. But f does not attain the value 1.

We are in a position to establish the following intermediate value theorem for contin-

uous functions.

Theorem 3.2. Let f be a continuous function from a closed interval [a, b] to IR. If y lies

between f(a) and f(b), that is, either f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a), then there

exists some c ∈ [a, b] such that f(c) = y.

Proof. We only deal with the case f(a) ≤ y ≤ f(b); the other case can be treated similarly.

We shall construct a nested sequence of closed intervals ([ak, bk])k=1,2,... recursively as

follows. Let a1 := a and b1 := b. Suppose that the intervals [a1, b1], [a2, b2], . . . , [ak, bk]

have been constructed so that f(ak) ≤ y ≤ f(bk). Let ck := (ak + bk)/2. If f(ck) ≥ y,

let ak+1 := ak and bk+1 := ck; otherwise, let ak+1 := ck and bk+1 := bk. Clearly,

f(ak+1) ≤ y ≤ f(bk+1). In light of our construction, [ak+1, bk+1] ⊂ [ak, bk] for all k ∈ IN

and limk→∞(bk−ak) = 0. By Theorem 3.2 in Chapter 2, there exists a real number c such

that ak ≤ c ≤ bk for all k ∈ IN and limk→∞ ak = limk→∞ bk = c. Since f is continuous on

[a, b], we obtain

f(c) = lim
k→∞

f(ak) ≤ y and f(c) = lim
k→∞

f(bk) ≥ y.

Therefore, f(c) = y.

Example 2. Let p(x) := x3 − x − 1, x ∈ IR. Then the cubic polynomial p has a root in

(0, 2).

Proof . We have p(0) = −1 < 0 < p(2) = 5. By the intermediate value theorem, there

exists some c ∈ (0, 2) such that p(c) = 0.

Let f be a continuous function from a closed interval [a, b] to IR. From Theorems

3.1 and 3.2 we see that the range of f is a closed interval: f([a, b]) = [m,M ], where

m := inf{f([a, b])} and M := sup{f([a, b])}.

Theorem 3.3. Let f be a real-valued continuous function on an interval I ⊆ IR. Then

J := f(I) is an interval.

Proof. Letm := inf J andM := sup J . We claim that (m,M) ⊆ J . Indeed, if y ∈ (m,M),

then there exist y1, y2 ∈ J such that y1 < y < y2. Suppose y1 = f(x1) and y2 = f(x2).
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By Theorem 3.2, there exists some c between x1 and x2 such that f(c) = y. Since I is

an interval, the points between x1 and x2 belong to I. Thus c belongs to I, and hence

y = f(c) ∈ f(I) = J . This shows that (m,M) ⊆ J . If m ∈ J and M ∈ J , then J = [m,M ];

If m ∈ J and M /∈ J , then J = [m,M); if m /∈ J and M ∈ J , then J = (m,M ]; if m /∈ J

and M /∈ J , then J = (m,M).

§4. Uniform Continuity

Let f be a function from a subset E of IR to IR. We say that f is uniformly

continuous on E if for each ε > 0 there exists some δ > 0 such that

x1, x2 ∈ E and |x1 − x2| < δ imply |f(x1)− f(x2)| < ε.

A function f from E to IR is said to satisfy a Lipschitz condition on E if there

exists a positive constant M such that

|f(x)− f(y)| ≤ M |x− y| ∀x, y ∈ E.

Clearly, if f : E → IR satisfies a Lipschitz condition on E, then f is uniformly continuous

on E.

Example 1. Let f be the function given by f(x) = 1/x for x ∈ [1,∞). Then f is

uniformly continuous on [1,∞).

Proof. For x, y ∈ [1,∞) we have

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

y

∣∣∣∣ = ∣∣∣∣y − x

xy

∣∣∣∣ = |x− y|
xy

≤ |x− y|.

Thus f satisfies a Lipschitz condition on E, so f is uniformly continuous on [1,∞).

Theorem 4.1. Let f be a function from a subset E of IR to IR. If f is uniformly continuous

on E, then limn→∞[f(xn) − f(yn)] = 0 for any sequences (xn)n=1,2,... and (yn)n=1,2,... in

E with limn→∞(xn − yn) = 0.

Proof. Suppose that f is a uniformly continuous function on E. Given ε > 0, there exists

some δ > 0 such that x, y ∈ E and |x−y| < δ imply |f(x)−f(y)| < ε. Let (xn)n=1,2,... and

(yn)n=1,2,... be two sequences in E such that limn→∞(xn − yn) = 0. Then there exists a

positive integer N such that |xn−yn| < δ for all n > N . Consequently, |f(xn)−f(yn)| < ε

for all n > N . This shows that limn→∞[f(xn)− f(yn)] = 0.

If we wish to prove that a given function is not uniformly continuous, then we may

apply the above theorem in the following way. Suppose that we can find some ε > 0 and
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two sequences (xn)n=1,2,... and (yn)n=1,2,... in E with limn→∞(xn − yn) = 0 such that

|f(xn)− f(yn)| ≥ ε for all n ∈ IN, then f is not uniformly continuous on E.

Example 2. Let g be the function given by g(x) = 1/x for x ∈ (0, 1]. Then g is not

uniformly continuous on (0, 1].

Proof. For n ∈ IN, let xn := 1/n and yn := 1/(n+ 1). Then (xn)n=1,2,... and (yn)n=1,2,...

are sequences in (0, 1] such that limn→∞(xn−yn) = 0. But |g(xn)−g(yn)| = |n−(n+1)| = 1

for all n ∈ IN. Hence g is not uniformly continuous on (0, 1].

Theorem 4.2. If f is continuous on a bounded closed interval [a, b], then f is uniformly

continuous on [a, b].

Proof. Assume that f is not uniformly continuous on [a, b]. Then there exists some ε > 0

such that for each δ > 0 the implication “|x − y| < δ implies |f(x) − f(y)| < ε ” fails.

Consequently, for every n ∈ IN, there exist xn, yn ∈ [a, b] such that |xn − yn| < 1/n and

yet |f(xn)− f(yn)| ≥ ε. By the Bolzano-Weierstrass theorem, a subsequence (xnk
)k=1,2,...

converges. Moreover, if x0 = limk→∞ xnk
, then x0 belongs to [a, b]. Clearly we also have

x0 = limk→∞ ynk
. Since f is continuous at x0, we have

f(x0) = lim
k→∞

f(xnk
) = lim

k→∞
f(ynk

)

and so

lim
k→∞

[
f(xnk

)− f(ynk
)
]
= 0.

But |f(xnk
) − f(ynk

)| ≥ ε for all k. So this is a contradiction. Hence f is uniformly

continuous on [a, b].

§5. Monotone Functions and Inverse Functions

Let f be a real-valued function defined on an interval I. We say that f is strictly

increasing on I if

x1, x2 ∈ I and x1 < x2 imply f(x1) < f(x2),

strictly decreasing on I if

x1, x2 ∈ I and x1 < x2 imply f(x1) > f(x2),

increasing on I if

x1, x2 ∈ I and x1 < x2 imply f(x1) ≤ f(x2),
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decreasing on I if

x1, x2 ∈ I and x1 < x2 imply f(x1) ≥ f(x2).

A real-valued function on I is said to be monotone on I if it is either increasing

or decreasing. A real-valued function on I is said to be strictly monotone on I if it is

either strictly increasing or strictly decreasing. Evidently, a strictly monotone function is

one-to-one.

Example 1. Let f, g, u, v be the functions from IR to IR defined by

f(x) := x2, g(x) := x3, u(x) := 3, v(x) := − x

1 + |x|
, x ∈ IR.

Then f is not monotone, g is strictly increasing, u is monotone but not strictly monotone,

and v is strictly decreasing.

One-sided limits are often useful in the study of monotone functions. Let f be a

function from a subset E of IR to IR. Suppose that c is a limit point of E ∩ (−∞, c). We

say that a real number L is a left limit of f at c, and we write limx→c− f(x) = L, if for

each ε > 0 there exists some δ > 0 such that

x ∈ E and c− δ < x < c imply |f(x)− L| < ε.

Suppose that c is a limit point of E∩ (c,∞). We say that a real number L is a right limit

of f at c, and we write limx→c+ f(x) = L, if for each ε > 0 there exists some δ > 0 such

that

x ∈ E and c < x < c+ δ imply |f(x)− L| < ε.

Let f be a function from a subset E of IR to IR, and let c be a limit point of E. Then

limx→c f(x) exists if and only if both limx→c− f(x) and limx→c+ f(x) exist and they are

equal.

Recall that IR = IR ∪ {−∞,∞}. We have −∞ < a < ∞ for every a ∈ IR.

Theorem 5.1. Let a, b, c ∈ IR with a < c < b. If f is a monotone function from (a, b) to IR,

then limx→a+ f(x) and limx→b− f(x) exist in IR. Moreover, limx→c− f(x) and limx→c+ f(x)

exist in IR.

Proof. Assume that f is increasing. Let s := sup{f(x) : a < x < b}. For each ε > 0, s−ε

is not an upper bound of f((a, b)); there exists some xε ∈ (a, b) such that s−ε < f(xε) ≤ s.

Since f is increasing, s− ε < f(x) ≤ s for all x ∈ (xε, b). Therefore,

lim
x→b−

f(x) = s = sup{f(x) : a < x < b}.

10



Similarly,

lim
x→a+

f(x) = inf{f(x) : a < x < b}.

If a < c < b, then there exist c1, c2 ∈ IR such that a < c1 < c < c2 < b. Let

u := sup{f(x) : c1 < x < c} and v := inf{f(x) : c < x < c2}. Then limx→c− f(x) = u and

limx→c+ f(x) = v. But f(c1) ≤ u ≤ v ≤ f(c2), so u, v ∈ IR.

Theorem 5.2. Let g be a real-valued function on an interval J in IR. If g is monotone

and I := g(J) is an interval, then g is continuous.

Proof. Without loss of generality, we consider the case where g is increasing. If I is a

singleton, then g is constant on J and hence g is continuous in this case. Thus we may

assume that I contains at least two points.

Let x0 ∈ J and y0 = g(x0) ∈ I. We wish to prove that g is continuous at x0.

First, suppose that y0 is not an endpoint of I. For given ε > 0, there exist y1, y2 ∈ I

such that y0 − ε < y1 < y0 < y2 < y0 + ε. Let x1 and x2 be the points in J such that

g(x1) = y1 and g(x2) = y2. Since g is increasing, we have x1 < x0 < x2. Choose δ > 0

such that x1 < x0 − δ < x0 < x0 + δ < x2. Consequently,

x0 − δ < x < x0 + δ implies y0 − ε < y1 = g(x1) ≤ g(x) ≤ g(x2) = y2 < y0 + ε.

This shows that g is continuous at x0.

Second, suppose that y0 is the left endpoint of I. For given ε > 0, there exists y2 ∈ I

such that y0 < y2 < y0 + ε. Let x2 be the point in J such that g(x2) = y2. Since g is

increasing, we have x0 < x2. Choose δ > 0 such that x0 < x0 + δ < x2. Consequently,

x0 − δ < x < x0 + δ and x ∈ J =⇒ y0 ≤ g(x) ≤ g(x2) = y2 < y0 + ε.

This shows that g is continuous at x0.

Third, suppose that y0 is the right endpoint of I. A similar argument shows that g is

continuous at x0.

Since g is continuous at every point in J , we conclude that g is continuous on J .

Theorem 5.3. Let f be a function from an interval I to IR. If f is strictly increasing

(decreasing), then so is its inverse function f−1. If, in addition, f is continuous, then so is

f−1.

Proof. Suppose that f is a strictly increasing function from an interval I to IR. Let

g := f−1. Then g(y) = x if and only if f(x) = y. Suppose that x1 = g(y1) and x2 = g(y2),
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where y1, y2 ∈ J := f(I). If y1 < y2, we must have x1 < x2, for otherwise x1 ≥ x2 would

imply y1 = f(x1) ≥ f(x2) = y2. This shows that g is strictly increasing.

If, in addition, f is continuous, then J = f(I) is an interval by Theorem 3.2. Now g is

a monotone function from the interval J onto the interval I. By Theorem 5.2 we conclude

that g is continuous.

Let us apply the above theorem to the function fn given by fn(x) = xn for x ∈ IR,

where n ∈ IN. Evidently, fn is a continuous function on IR. If n is an odd integer, then

fn is a strictly increasing function on IR and fn maps IR onto IR. Hence, for any b ∈ IR,

there exists a unique a ∈ IR such that an = b. If n is an even integer, then fn is a strictly

increasing function on [0,∞) and fn maps [0,∞) onto [0,∞). Hence, for any b ∈ [0,∞),

there exists a unique a ∈ [0,∞) such that an = b. In both cases, we call a the nth root

of b and write a = n
√
b. If n is an odd integer, then the root function gn : x 7→ n

√
x is a

continuous and strictly increasing function from IR onto IR. If n is an even integer, then

the root function gn : x 7→ n
√
x is a continuous and strictly increasing function from [0,∞)

onto [0,∞).

§6. The Exponential and Logarithmic Functions

For a > 0, let fa be the exponential function on IR given by fa(x) := ax, x ∈ IR. If

(αn)n=1,2,... is a sequence of rational numbers such that limn→∞ αn = x, then

lim
n→∞

aαn = ax.

Moreover, for x, y ∈ IR we have

axay = ax+y, ax/ay = ax−y, and (ax)y = axy.

We claim that, for a > 1, the function fa is strictly increasing on (−∞,∞). Indeed,

if −∞ < x < y < ∞, then there exist rational numbers r and s such that x < r < s < y.

We can find two sequences (αn)n=1,2,... and (βn)n=1,2,... of rational numbers such that

limn→∞ αn = x, limn→∞ βn = y, and that αn ≤ r < s ≤ βn for all n ∈ IN. It follows that

aαn ≤ ar < as ≤ aβn ∀n ∈ IN.

Letting n go to ∞ in the above inequalities, we obtain

ax ≤ ar < as ≤ ay.
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This justifies our claim. If a = 1, fa is the constant function 1. If 0 < a < 1, then

fa(x) = ax = (1/a)−x with 1/a > 1. Hence, for a ∈ (0, 1), the function fa is strictly

decreasing on (−∞,∞).

Fix a > 1. We have limn→∞ an = ∞. Thus, given M > 0, there exists a positive

integer N such that aN > M . Consequently, x > N implies ax > aN > M . This shows

that limx→∞ ax = ∞. It follows that

lim
x→−∞

ax = lim
y→∞

a−y = lim
y→∞

1

ay
= 0.

If 0 < a < 1, then

lim
x→∞

ax = lim
x→∞

(1/a)−x = 0 and lim
x→−∞

ax = lim
x→−∞

(1/a)−x = ∞.

Theorem 6.1. For a > 0, the exponential function fa : x 7→ ax is a continuous function

on IR. If a > 1, fa is a strictly increasing function from (−∞,∞) onto (0,∞). If 0 < a < 1,

fa is a strictly decreasing function from (−∞,∞) onto (0,∞).

Proof. Fix a > 1. Let ε > 0 be given. Since limk→∞ a1/k = a−1/k = 1, there exists a

positive integer K such that 1 − ε < a−1/K < a1/K < 1 + ε. Choose δ := 1/K. Then

−δ < x < δ implies a−1/K < ax < a1/K , and hence 1 − ε < ax < 1 + ε. This shows that

limx→0 a
x = 1. Now let α be an arbitrary real number. Then

lim
x→α

ax = lim
x→α

(
aαax−α

)
= aα lim

x→α
ax−α = aα lim

x−α→0
ax−α = aα · 1 = aα.

Thus, fa is continuous at every point α ∈ IR. If a = 1, then fa is the constant function 1.

If 0 < a < 1, then ax = 1/(1/a)−x. So fa is also continuous on IR.

If a > 1, then fa is strictly increasing on (−∞,∞). Moreover, limx→−∞ ax = 0

and limx→∞ ax = ∞. By the proof of Theorem 3.3 we conclude that the range of fa is

the interval (0,∞). If 0 < a < 1, then fa is strictly decreasing on (−∞,∞). Moreover,

limx→−∞ ax = ∞ and limx→∞ ax = 0. So the range of fa is also the interval (0,∞).

The above theorem tells us that, for a ∈ (0, 1) ∪ (1,∞), fa is a bijective function

from (−∞,∞) to (0,∞). Consequently, for given β ∈ (0,∞), there exists a unique α ∈ IR

such that aα = β. We write α = loga β and call α the logarithm of α to base a. Let

ga(x) := loga x for x ∈ (0,∞). Then ga is the inverse function of fa. We call ga the

logarithmic function to base a. The following identities follow from the definition at

once:

aloga y = y ∀ y ∈ (0,∞) and loga(a
x) = x ∀x ∈ (−∞,∞).

By Theorem 5.3 and Theorem 6.1 we have the following result.
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Theorem 6.2. For a ∈ (0, 1) ∪ (1,∞), the logarithmic function ga : x 7→ loga x is a

continuous function on (0,∞). If a > 1, ga is a strictly increasing function from (0,∞)

onto (−∞,∞). If 0 < a < 1, ga is a strictly decreasing function from (0,∞) onto (−∞,∞).

Let us study some properties of the logarithmic function. For a > 1 we have

lim
x→0+

loga x = −∞ and lim
x→∞

loga x = ∞.

Suppose x, y > 0, u = loga x, and v = loga y. Then we have x = au and y = av. It

follows that

loga(xy) = loga(a
uav) = loga(a

u+v) = u+ v = loga x+ loga y

and

loga(x/y) = loga(a
u/av) = loga(a

u−v) = u− v = loga x− loga y.

Moreover, for µ ∈ IR we have

loga(x
µ) = loga(a

u)µ = loga a
uµ = µu = µ loga x.

Suppose that a, b ∈ (0, 1) ∪ (1,∞). For x ∈ (0,∞), let µ := logb x. Then x = bµ and

loga x = loga b
µ = µ loga b = (logb x)(loga b).

This leads to the following formula for change of bases:

logb x =
loga x

loga b
∀x ∈ (0,∞).

Fix µ ∈ IR. Let hµ be the power function given by

hµ(x) := xµ, x ∈ (0,∞).

Since x = 2log2 x for x > 0, we have

xµ =
(
2log2 x

)µ
= 2µ log2 x, x ∈ (0,∞).

Recall that the composition of two continuous functions is continuous. So the power

function hµ : x 7→ xµ is continuous on its domain (0,∞). Its range is also (0,∞). If µ > 0,

the function x 7→ µ log2 x is strictly increasing on (0,∞); hence hµ : x 7→ xµ is a strictly

increasing function on (0,∞). Moreover,

lim
x→0+

xµ = 0 and lim
x→∞

xµ = ∞.

If µ < 0, hµ : x 7→ xµ is a strictly decreasing function on (0,∞). Further,

lim
x→0+

xµ = ∞ and lim
x→∞

xµ = 0.
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