Chapter 3. Continuous Functions

§1. Limits of Functions

Let F be a subset of IR and ¢ a point of IR. We say that c is a limit point of FE if there
exists a sequence (%, )n=12,.. in E such that z, # ¢ for all n € IN and lim,_,~ =, = c.
The set of all limit points of E is denoted by E’.

For example, if F is the interval (0, 1], then E' = [0, 1]. If F'is the set {1/n:n € IN},
then F' = {0}.

Let f be a function from a subset E of IR to IR and let ¢ be a limit point of £. We
say that a real number L is a limit of f at ¢, and we write lim,_,. f(x) = L, if for each

€ > 0 there exists some 6 > 0 such that
re€FE and 0< |z —¢| <d imply |[f(x)—L|<e.

For example, let f be the function from IR to IR given by f(xz) = z, x € R For each
¢ € IR we have lim,_,. f(z) = ¢. Indeed, for given € > 0, choose § = ¢ > 0. Then

re€R and 0 < |z —c¢/<é imply |[f(z)—c|=|r—c|<e.

Similarly, if b € IR and g is the function from IR to IR given by g(x) = b for all z € 1R,
then lim,_,. g(x) = b for each ¢ € R.
The following theorem establishes the relationship between limits of functions and

limits of sequences.

Theorem 1.1. Let f be a function from a subset E of IR to IR and let ¢ be a limit point of
E. Then lim,_,. f(x) = L if and only if for every sequence (x,)n=1,2... in E that converges

to ¢ with x,, # c for all n € IN, the sequence (f(zy))n=1,2,.. converges to L.

Proof. Suppose that lim,_,. f(z) = L. Let (z,)n=12,.. be a sequence in E such that
x, # c for all n € IN and lim,,_, x,, = ¢. We wish to show that lim,,_,, f(z,) = L. For

given € > 0, there exists some ¢ > 0 such that
r€F and 0<|z—c|<d imply |[f(z)—L|<e.

Furthermore, since lim,_,- x, = ¢, there exists a positive integer N such that n > N
implies |z, — ¢| < 6. Thus for n > N we have 0 < |z, — ¢| < 0 and z,, € E, so that
|f(xn) — L| < e. This shows that lim,_~ f(z,) = L.
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Conversely, suppose that L is not a limit of f at ¢. Then there exists some € > 0 such
that for every § > 0 there exists a point € F such that 0 < |z —¢| < ¢ and |f(x) —L| > e.
In particular, for each n € IN, there exists some z,, € F such that 0 < |z, — ¢| < 1/n and
|f(z,) — L| > . Now the sequence (x,,)p=12,.. converges to ¢ with z,, # ¢ for all n € IN,

but the sequence (f(zy))n=1,2,... does not converge to L. ]

As a corollary of the above theorem, we see that a function can have at most one limit
at a given point.
Let f and g be two functions from E to IR. We define the sum f+ g and the product
fg to be the functions from F to IR given by
(f+9)(@):= f(x) +g(z) and (fg)(z):= f(x)g9(z), =€k
Moreover, if g(z) # 0 for all z € E, then the quotient f/g is the function from E to IR

defined by
(5)(:1:) = %, x € FE.

The following theorem can be easily proved by combining Theorem 1.1 and Theorems
2.1 and 2.2 in Chapter 2.

Theorem 1.2. Let f and g be two functions from a subset E of IR to IR, and let ¢ be a
limit point of E. If lim,_,. f(x) = L and lim,_,. g(x) = M, then

lim (f +g)(#) =L+ M and lim(fg)(z) = LM.

T—cC Tr—cC

Furthermore, if g(x) # 0 for all x € E and M # 0, then

m(5) 0= iy

The following theorem follows from Theorem 1.1 and the squeeze theorem given in
Chapter 2.

Theorem 1.3. Suppose that F is a subset of IR, ¢ is a limit point of E, and f, g, h are

real-valued functions on E satisfying
g(z) < f(x) < h(x) forall x € E.

If lim, . g(z) = lim,_,. h(x) = L, then lim,_,. f(x) = L.

Let f be a function from a subset E of IR to IR and let ¢ be a limit point of E. We

write lim,_,. f(x) = oo, if for each M > 0 there exists some § > 0 such that
re€F and 0 < |r—c|] <d imply f(x)> M.
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We write lim,_,. f(x) = —o0, if for each M < 0 there exists some § > 0 such that
zre€F and 0< |z —c| <0 imply f(x)< M.

Example 1. Show that

Proof. Let f(z) := 1/|z|. Then f is defined on the set £ := IR\ {0} and 0 is a limit point
of E. For given M > 0, we choose 6 = 1/M > 0. Then

1
r€FE and |[r -0/ <d imply — >

= M.
]

S| =

This shows that lim,_,q ﬁ = +o0.

Now we consider limits at infinity. Let f be a function from a subset E of IR to IR
such that £ N (a,00) # B for every a € IR. We say that a real number L is a limit of f
at oo, and we write lim,_,, f(x) = L, if for each € > 0 there exists some real number K
such that

r€F and > K imply |f(z)—L|<e.

Similarly, let f be a function from F to IR such that F N (—oo,b) # () for every b € IR. We
say that a real number L is a limit of f at —oo, and we write lim,_, _, f(z) = L, if for

each € > 0 there exists some real number K such that
re€FE and z < K imply |[f(x)—L|<e.

Analogously, we can define lim,_, o, f(x) = 0o, lim,_, f(z) = —o0, lim,_,_ f(x) = o0,
and lim,_,  f(z) = —oc.
Theorems 1.1, 1.2, and 1.3 can be easily extended to limits at infinity.

Example 2. Find the limit

lim (Va2 + 2z —z).

Tr—r 00

Solution. Let f(x) := Va2 + x — x for x > 0. We have

(Ve +z—z)(Va?+x+x) x
Val+zx+o Ny

But 2 > 0 implies < V22 + 2 < z+1. It follows that 22 < va2 + z+2 < 2+ 1. Hence,

fz) =

x x 1
< < — == > 0.
mrl i@ =g =5 2

Since lim,_, o /(22 + 1) = 1/2, by Theorem 1.3 we conclude that lim,_, ., f(z) = 1/2.
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§2. Continuous Functions

Let f be a function from a subset F of IR to IR and let ¢ € E. We say that f is

continuous at c if for each € > 0 there exists some d > 0 such that
re€FE and |z —c| <40 imply |f(xz)— f(c)] <e.

If f is continuous at every point of a subset S of E, then f is said to be continuous on
S. If f is continuous on its domain F, then f is said to be continuous.

The following theorem can be proved in a way analogous to the proof of Theorem 1.1.

Theorem 2.1. Let f be a function from a subset E of IR to IR and let ¢ € EI. Then f is
continuous at c if and only if for every sequence (x,,)n=12... in E that converges to c, the

sequence (f(xy))n=12,.. converges to f(c).

Combining Theorem 2.1 with Theorems 2.1 and 2.2 in Chapter 2, we obtain the

following result.

Theorem 2.2. Let f and g be two functions from a subset E of IR to IR, and let ¢ € E.
If f and g are continuous at ¢, then f 4+ g and fg are continuous at c. Furthermore, if

g(c) # 0, then f/g is continuous at c.

Example 1. Let f, g, u,v be the functions from IR to IR defined by
3 x

f(z): =22, g(z):=2% ) =22 o) := T

r e R.
The functions f, g, u,v are all continuous on IR. Moreover, f is neither one-to-one nor
onto, g is bijective, u is onto but not one-to-one, and v is one-to-one but not onto.

Let A and B be two subsets of IR. Suppose that f is a function from A to B and g is

a function from B to IR. Then the composition go f is the function from A to IR defined
by
gof(x)=g(f(x)), xze€A

Example 2. Let f and g be the functions from IR to IR given by

f(x) x and g(x) oy © eR
Find go f and fog.
Solution. We have
1—=x xT
gOf(l’):m and fog(l')zl—xQ—H, .'EGIR,

Note that fog # go f.



Theorem 2.3. Suppose that f is a function from A to B and g is a function from B to
IR. If f is continuous at ¢ € A and g is continuous at f(c) € B, then g o f is continuous

at c.

Proof. Let (z,)n=12,.. be asequence in A that converges to c. Since f is continuous at
¢, the sequence f(x,,) converges to f(c), by Theorem 2.1. Since g is continuous at f(c), by
Theorem 2.1 again we obtain

lim go f(zn) = lim g(f(zn)) = g(f(c)) = go f(c).

n—oo n—o0

This is true for every sequence (zy)n=1,2,... in A that converges to c. Therefore, g o f is

continuous at c. O
Suppose that p is a function from IR to IR given by
p(x) =apx™ + - +ar1x +ag, x€IR,

where ag, a1,...,a, € IR. Then p is called a polynomial function. If n is the largest
integer such that a,, # 0, then we say that n is the degree of f. By Theorem 2.2, a
polynomial function is continuous on IR.

Let p be a polynomial of degree n > 1. A real number c is said to be a root of p, if
p(c) = 0. It is known that p(c) = 0 if and only if there exists a polynomial p; of degree
n — 1 such that

p(z) = (z - Ip(x), =€ R,

Consequently, a polynomial of degree n can have at most n roots.

A function r is said to be a rational function if » = p/q, where p and ¢ are two
polynomials and ¢ # 0. Let Z(q) := {z € R : g(x) = 0} be the set of the roots of ¢q. Then
the domain of 7 is the set IR\ Z(q). By Theorem 2.2, a rational function is continuous on

its domain. Thus, if ¢(c) # 0, we have

lim r(x) = lim —= = —.
z—cC ( ) T—cC q(x) q(c)
If g(¢) = 0 but p(c) # 0, then lim,_,.7(z) does not exist. If p and ¢ are polynomials of
positive degree, and if p(¢) = 0 and ¢(c) = 0, then there exist polynomials p; and ¢; such
that p(x) = (x — ¢)p1(x) and ¢(z) = (x — ¢)q1(x) for all x € IR. In this case we have
p(z)

) -om@) L pi)
ignc q(x) i%c (z —c)qi(z) iﬂc @ (z)
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Example 3. Find the limit

Solution. We have

L oxt—x—-2 . (z—-2)(x+1) . x+1 3
lim ———— = lim = lim = —.
r—2 x2 4 2 (x — 2)(:E—|—2) z—=2 1 + 2 4

§3. Properties of Continuous Functions

Let f be a function from a set X to aset Y. If A C X, then f(A), the image of A
under f, is defined by

f(A) == {f(z) -z € A}.

If BCY, the inverse image of B is the set
fYB):={rcX: f(zx) € B}

A function f from a subset E of R to IR is said to be bounded if the set {f(z) : x € E'}
is bounded, that is, if there exists a real number M such that |f(z)| < M for all z € E.

Theorem 3.1. Let f be a continuous function from a closed interval [a,b] to IR. Then
f is a bounded function. Moreover, f attains its maximum and minimum values on [a, b|;
that is, there exist s,t € |a,b| such that f(s) < f(z) < f(t) for all x € [a, b].

Proof. Let M :=sup{f([a,b])}, where f([a,b]) :={f(z) : = € [a,b]}. Note that M could
be oo or a real number. Let ¢ := (a+b)/2, My := sup{f([a,c])} and My := sup{f([c,b])}.
Then we have M = max{My, Ms}. If M; = M, choose [a1,b:1] := [a, c|; otherwise, choose

laz, bs] = [¢,b]. Suppose that [ai,b1], [az,b2], ..., [ak, bx] have been constructed so that
sup{f([ak,bx])} = M. Let ¢ := (ar + bg)/2. If sup{f([ak,bx])} = M, let [aks1,br+1] :=
lak, ck]; otherwise, let [aki1,br+1] := [ck,bk]. By Theorem 3.2 in Chapter 2, there exists

a real number ¢ such that ap, < t < bpVk € IN and limp_,oc ar = limp_,oo b = t. We
claim that f(¢) = M. Suppose to the contrary that f(t) < M. Then there exists some
e > 0 such that f(t) + e < M. Since f is continuous at ¢, there exists § > 0 such that
x € [a,b) N (t — d,t + 6) implies f(x) < f(t) +e. Since limy_ oo ar = limg_yo0 by = ¢,
there exists a positive integer K such that t — 0 < axg < bxg < t+ 6. It follows that
sup{f([ax,bk])} < f(t) + € < M. This is a contradiction. Therefore, f(t) = M. Thus, f
is bounded above and f attains its maximum at ¢.

In a similar way we can prove that f is bounded below and attains its minimum at

some point s € [a, b]. []



The above theorem is not valid if the closed interval [a,b] is replaced by an open

interval.
Example 1. Let f(x) = 1/z, x € (0,1). Then f is continuous but unbounded on (0, 1).
Moreover, we have inf{f(z):x € (0,1)} = 1. But f does not attain the value 1.

We are in a position to establish the following intermediate value theorem for contin-

uous functions.

Theorem 3.2. Let f be a continuous function from a closed interval [a,b] to R. If y lies
between f(a) and f(b), that is, either f(a) <y < f(b) or f(b) <y < f(a), then there
exists some c € [a,b] such that f(c) = y.

Proof. We only deal with the case f(a) <y < f(b); the other case can be treated similarly.

We shall construct a nested sequence of closed intervals ([ak, bg])r=1,2, . recursively as

follows. Let a; := a and by := b. Suppose that the intervals [aq,b1], [a2, b2, ..., [ak, bk]
have been constructed so that f(ax) <y < f(bg). Let ¢x := (ax + bg)/2. U f(ex) > v,
let ax+1 := ar and bg41 := cp; otherwise, let axy1 = ¢ and bgy1 := bg. Clearly,

flak+1) <y < f(bgs1). In light of our construction, [ax+1,bk+1] C [ak, by for all & € IN
and limy_, . (by —ax) = 0. By Theorem 3.2 in Chapter 2, there exists a real number ¢ such
that ax < ¢ < by for all kK € IN and limg_,o ar = limy_, o b = ¢. Since f is continuous on

[a, b], we obtain
fle) = lim fax) <y and f(e) = lim f(b) > y.

Therefore, f(c) = y. [

Example 2. Let p(z) := 3

(0,2).

—x — 1, x € IR. Then the cubic polynomial p has a root in

Proof. We have p(0) = —1 < 0 < p(2) = 5. By the intermediate value theorem, there
exists some ¢ € (0,2) such that p(c) = 0.

Let f be a continuous function from a closed interval [a,b] to IR. From Theorems
3.1 and 3.2 we see that the range of f is a closed interval: f([a,b]) = [m, M], where

m = inf{f([a,b])} and M := sup{f([a,b])}.

Theorem 3.3. Let f be a real-valued continuous function on an interval I C IR. Then
J := f(I) is an interval.

Proof. Let m :=inf J and M := sup J. We claim that (m, M) C J. Indeed, ify € (m, M),
then there exist y;,y2 € J such that y; < y < y2. Suppose y1 = f(x1) and yo = f(x2).
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By Theorem 3.2, there exists some ¢ between x; and z2 such that f(c) = y. Since [ is
an interval, the points between z; and x5 belong to I. Thus ¢ belongs to I, and hence
y= f(c) € f(I) = J. This shows that (m,M) C J. If m € Jand M € J, then J = [m, M];
IfmeJand M ¢ J, then J =[m,M);if m¢ Jand M € J, then J = (m, M];if m & J
and M ¢ J, then J = (m, M). []

§4. Uniform Continuity

Let f be a function from a subset F of IR to IR. We say that f is uniformly

continuous on F if for each € > 0 there exists some ¢ > 0 such that
x1,x2 € F and |z; — x| <6 imply |f(z1) — f(z2)| <e.

A function f from E to IR is said to satisfy a Lipschitz condition on E if there

exists a positive constant M such that
|f(x)— f(y)| < M|x—y| Vz,y€E.

Clearly, if f : E — IR satisfies a Lipschitz condition on E, then f is uniformly continuous
on L.

Example 1. Let f be the function given by f(x) = 1/x for x € [1,00). Then f is
uniformly continuous on [1, c0).

Proof. For z,y € [1,00) we have

_lz—yl
y

L 1] |y—=z
="

<z -yl

Thus f satisfies a Lipschitz condition on E, so f is uniformly continuous on [1,c0).

Theorem 4.1. Let f be a function from a subset E of IR toR. If f is uniformly continuous
on E, then lim,,_, o [f(xn) — f(yn)] = 0 for any sequences (x,)n=12,.. and (Yn)n=1,2,. .. In

E with lim,, (2, — yn) = 0.

Proof. Suppose that f is a uniformly continuous function on E. Given € > 0, there exists
some 0 > 0 such that z,y € F and |z —y| < § imply |f(z) — f(y)| < e. Let (z)n=1,2,.. and
(Yn)n=1,2,... be two sequences in E such that lim,, o (z, — y») = 0. Then there exists a
positive integer N such that |z, —y,| < d for all n > N. Consequently, |f(z,)— f(yn)| < €
for all n > N. This shows that lim, o [f(zn) — f(yn)] = 0. ]

If we wish to prove that a given function is not uniformly continuous, then we may

apply the above theorem in the following way. Suppose that we can find some € > 0 and
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two sequences (Z,)p=12,.. and (Yn)n=1,2,.. in E with lim, o (z, — y,) = 0 such that
|f(zn) — f(yn)| > € for all n € IN, then f is not uniformly continuous on E.

Example 2. Let g be the function given by g(x) = 1/x for « € (0,1]. Then g is not
uniformly continuous on (0, 1].

Proof. For n € IN, let z,, := 1/n and y,, := 1/(n+1). Then (z,,)pn=1,2,.. and (yp)n=12,...
are sequences in (0, 1] such that lim,,_, oo (z,—yn) = 0. But |g(zn)—9g(yn)| = |n—(n+1)| =1

for all n € IN. Hence g is not uniformly continuous on (0, 1].

Theorem 4.2. If f is continuous on a bounded closed interval [a,b], then f is uniformly

continuous on [a, b).

Proof. Assume that f is not uniformly continuous on [a, b]. Then there exists some € > 0
such that for each 6 > 0 the implication “|x — y| < ¢ implies |f(z) — f(y)] < € 7 fails.
Consequently, for every n € IN, there exist x,,y, € [a,b] such that |z, — y,| < 1/n and
vet | f(zn) — f(yn)| > €. By the Bolzano-Weierstrass theorem, a subsequence (z,, )k=1,2,...
converges. Moreover, if xg = limy_, o Zp,,, then zy belongs to [a,b]. Clearly we also have
o = limp_yoc Yp, . Since f is continuous at zp, we have

f(-’lfo) = lim f(xnk) = kli)n;o f(ynk)

k—o0

and so

lim [f(xnk) - f(ynk)} = 0.

k— o0

But |f(zn,) — f(yn,)| > € for all k. So this is a contradiction. Hence f is uniformly

continuous on [a, b]. O

5. Monotone Functions and Inverse Functions

Let f be a real-valued function defined on an interval I. We say that f is strictly

increasing on [ if

21,29 € I and z1 < xo imply f(z1) < f(x2),
strictly decreasing on [ if

1,29 € I and z7 < xo imply f(z1) > f(x2),
increasing on [ if

1,22 € I and 1 < zo imply f(z1) < f(z2),



decreasing on [ if
1,29 € I and z7 < xo imply f(z1) > f(x2).

A real-valued function on [ is said to be monotone on [ if it is either increasing
or decreasing. A real-valued function on [ is said to be strictly monotone on I if it is
either strictly increasing or strictly decreasing. Evidently, a strictly monotone function is

one-to-one.

Example 1. Let f, g, u,v be the functions from IR to IR defined by

flx) =22 g(x):=2° wu(x):=3, ox):= z € R.

x
L+ |zf’
Then f is not monotone, g is strictly increasing, u is monotone but not strictly monotone,

and v is strictly decreasing.

One-sided limits are often useful in the study of monotone functions. Let f be a
function from a subset E of IR to IR. Suppose that ¢ is a limit point of £ N (—o0,c). We
say that a real number L is a left limit of f at ¢, and we write lim,_,.- f(z) = L, if for
each € > 0 there exists some § > 0 such that

r€FE and c—d <z <c imply |f(z)—L|<e.

Suppose that ¢ is a limit point of EN(c,00). We say that a real number L is a right limit
of f at ¢, and we write lim,_,.+ f(x) = L, if for each € > 0 there exists some § > 0 such
that

reF and c<zx<c+d imply |[f(z)—L|<e.

Let f be a function from a subset E of IR to IR, and let ¢ be a limit point of E. Then
lim, . f(x) exists if and only if both lim,_,.- f(x) and lim,_,.+ f(z) exist and they are
equal.

Recall that IR = IR U {—00,00}. We have —co < a < oo for every a € R.

Theorem 5.1. Leta,b,c € R witha < ¢ < b. If f is a monotone function from (a, b) to IR,
thenlim,_, .+ f(x) and lim,_,,~ f(z) exist in IR. Moreover, lim,_,.- f(z) andlim,_, .+ f(z)

exist in IR.

Proof. Assume that f is increasing. Let s := sup{f(z) :a <z < b}. Foreache >0, s—¢
is not an upper bound of f((a,b)); there exists some z. € (a,b) such that s—e < f(x.) < s.

Since f is increasing, s —e < f(x) < s for all x € (z.,b). Therefore,

lim f(z) =s=sup{f(z):a <z <b}.

r—b—
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Similarly,
lim f(z)=inf{f(x):a <z <b}.

x—at
If a < ¢ < b, then there exist ¢;,co € IR such that a < ¢; < ¢ < ¢ < b. Let
u:=sup{f(z):c <z <c}and v:=inf{f(z):c <z < cy}. Then lim,_,.- f(z)=u and
lim, .+ f(x) =v. But f(c1) <u<v < f(e2), sou,v € IR. ]

Theorem 5.2. Let g be a real-valued function on an interval J in IR. If g is monotone

and I := g(J) is an interval, then g is continuous.

Proof. Without loss of generality, we consider the case where ¢ is increasing. If I is a
singleton, then g is constant on J and hence g is continuous in this case. Thus we may
assume that I contains at least two points.

Let 2o € J and yg = g(z) € I. We wish to prove that g is continuous at .

First, suppose that yq is not an endpoint of I. For given € > 0, there exist y,ys € [
such that yo — e < y1 < yo < y2 < yo + €. Let 1 and x2 be the points in J such that
g(x1) = y1 and g(z2) = y2. Since g is increasing, we have x1 < xg < x3. Choose § > 0

such that 1 < xp — 0 < xg < kg + 9 < x2. Consequently,
xo—d<z<zog+0 implies yp—e <y =g(x1) <g(x) <g(r2) =y2 < yo +e.

This shows that g is continuous at zg.
Second, suppose that yq is the left endpoint of I. For given £ > 0, there exists yo € I
such that yg < y2 < yo + €. Let z2 be the point in J such that g(x3) = y2. Since g is

increasing, we have xg < x5. Choose § > 0 such that zg < zg + d < x5. Consequently,
xo—d0<z<zo+0 and z € J = yo < g(x) < g(z2) =y2 < yo + €.

This shows that g is continuous at zg.
Third, suppose that yg is the right endpoint of I. A similar argument shows that g is
continuous at xzg.

Since ¢ is continuous at every point in J, we conclude that g is continuous on J. [

Theorem 5.3. Let f be a function from an interval I to IR. If f is strictly increasing

(decreasing), then so is its inverse function f~1. If, in addition, f is continuous, then so is
o
Proof. Suppose that f is a strictly increasing function from an interval I to IR. Let

g := f~!. Then g(y) = z if and only if f(x) = y. Suppose that 1 = g(y1) and 2 = g(y2),
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where y1,y2 € J := f(I). If y1 < y2, we must have x1 < z9, for otherwise x; > x5 would
imply y1 = f(xz1) > f(x2) = y2. This shows that g is strictly increasing.

If, in addition, f is continuous, then J = f(I) is an interval by Theorem 3.2. Now g is
a monotone function from the interval J onto the interval I. By Theorem 5.2 we conclude

that g is continuous. ]

Let us apply the above theorem to the function f,, given by f,(z) = 2" for z € IR,
where n € IN. Evidently, f,, is a continuous function on IR. If n is an odd integer, then
fn is a strictly increasing function on IR and f,, maps IR onto IR. Hence, for any b € IR,
there exists a unique a € IR such that ™ = b. If n is an even integer, then f, is a strictly
increasing function on [0,00) and f,, maps [0, 00) onto [0,00). Hence, for any b € [0, c0),
there exists a unique a € [0,00) such that a = b. In both cases, we call a the nth root
of b and write a = {/b. If n is an odd integer, then the root function g, :  — ¥/ is a
continuous and strictly increasing function from IR onto IR. If n is an even integer, then
the root function g, : © — {/x is a continuous and strictly increasing function from [0, co)

onto [0, 00).

§6. The Exponential and Logarithmic Functions

For a > 0, let f, be the exponential function on IR given by f,(x) := a*, x € R. If

(0n)n=12,... is a sequence of rational numbers such that lim,_, @, = z, then

lim a®" = a”.
n—roo

Moreover, for z,y € IR we have
a®a? = a*", a”/a¥ = a® Y, and (a®)¥ = a™V.

We claim that, for a > 1, the function f, is strictly increasing on (—oo,00). Indeed,
if —0o < x <y < oo, then there exist rational numbers r and s such that z < r < s < y.
We can find two sequences (au,)n=12,.. and (B )n=1,2,.. of rational numbers such that

lim, oo a0y = x, lim, o B =y, and that o, <7 < s < 3, for all n € IN. It follows that
a® <a" <a®*<a’ VnelN.
Letting n go to oo in the above inequalities, we obtain
a® <a" <a®<av.
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This justifies our claim. If a = 1, f, is the constant function 1. If 0 < a < 1, then
fa(z) = a® = (1/a)™® with 1/a > 1. Hence, for a € (0,1), the function f, is strictly
decreasing on (—o0, 00).

Fix a > 1. We have lim, _,, a™ = oco. Thus, given M > 0, there exists a positive
integer N such that o’ > M. Consequently, z > N implies a® > a” > M. This shows

that lim,_,., a® = co. It follows that

lim @¢* = lim ¢ % = lim — =0.
T——00 Y—r00 y—oo q¥
If0<a<1, then
wli}ngoa = wlingo(l/a) =0 and mgr_nooa = xgglm(l/a) = 00.

Theorem 6.1. For a > 0, the exponential function f, : * — a” is a continuous function
onR. Ifa > 1, f, is a strictly increasing function from (—o0, c0) onto (0,00). If 0 < a < 1,

fa is a strictly decreasing function from (—oo, c0) onto (0, 00).

1/k — q=1k = 1, there exists a

Proof. Fix a > 1. Let € > 0 be given. Since limy_,, a
positive integer K such that 1 —e < a=/% < a'/% < 14 ¢. Choose ¢ := 1/K. Then
—§ < x < ¢ implies a VK < % < a*%_ and hence 1 — ¢ < a* < 1 + . This shows that

lim,_,9a®” = 1. Now let a be an arbitrary real number. Then

lim a® = lim (ao‘am_o‘) =a%lima” ™ *“=a% llm a* *“=a%-1=a".
rT—o T— o T r—a—0

Thus, f, is continuous at every point a € IR. If a = 1, then f, is the constant function 1.
If0<a<1,thena® =1/(1/a)~". So f, is also continuous on IR.

If a > 1, then f, is strictly increasing on (—oo,00). Moreover, lim, , ., a® = 0
and lim,_,,, a® = oco. By the proof of Theorem 3.3 we conclude that the range of f, is
the interval (0,00). If 0 < a < 1, then f, is strictly decreasing on (—oo,00). Moreover,

lim,_, o a® = co and lim,_,, a® = 0. So the range of f, is also the interval (0,00). [

The above theorem tells us that, for a € (0,1) U (1,00), f, is a bijective function
from (—o00,00) to (0,00). Consequently, for given § € (0,00), there exists a unique o € IR
such that a® = . We write a = log, 8 and call a the logarithm of o to base a. Let
go(x) := log, x for z € (0,00). Then g, is the inverse function of f,. We call g, the
logarithmic function to base a. The following identities follow from the definition at
once:

a8y =y Yy e (0,00) and log,(a”) =z V€ (—00,00).

By Theorem 5.3 and Theorem 6.1 we have the following result.
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Theorem 6.2. For a € (0,1) U (1,00), the logarithmic function g, : * + log,z is a
continuous function on (0,00). If a > 1, g, Is a strictly increasing function from (0, o)

onto (—oo0,00). If 0 < a < 1, g, Is a strictly decreasing function from (0, c0) onto (—oo, 00).

Let us study some properties of the logarithmic function. For a > 1 we have

lim log,z = —o00 and lim log,z = oc.
z—0t T—00

Suppose z,y > 0, u = log, z, and v = log, y. Then we have z = a" and y = a". It
follows that

u—l—v)

log, (zy) = log,(a"a”) = log,(a"™") = u+ v =log, x +log, y

and
log,(z/y) = log,(a"/a") = log,(a"™") = u — v = log, x — log, y.

Moreover, for u € IR we have
log, (z") = log,(a")" = log, " = pu = plog, z.
Suppose that a,b € (0,1) U (1,00). For z € (0,00), let p := logy z. Then = = b* and
log, x = log, b" = plog, b = (log, z)(log, b).
This leads to the following formula for change of bases:

log, x = Va e (0,00).

Fix p € R. Let h;, be the power function given by
hu(x) :=z", z € (0,00).
Since x = 2!°%2% for 2 > 0, we have
xt = (2l°g2x)“ —=orloga™ (0, 00).

Recall that the composition of two continuous functions is continuous. So the power
function h,, : x — x* is continuous on its domain (0, c0). Its range is also (0, 00). If u > 0,
the function z — plog, x is strictly increasing on (0, 00); hence h,, :  — z# is a strictly
increasing function on (0, 00). Moreover,

ml_i)I&_ =0 and Ilgr;o xt = oo.

If p <0, hy :x— zt is a strictly decreasing function on (0, 00). Further,

lim 2z =00 and lim z* =0.
r—0+ T—00
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