Chapter 3. Continuous Functions

§1. Limits of Functions

Let E be a subset of \mathbb{R} and c a point of \mathbb{R}. We say that c is a limit point of E if there exists a sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ in E such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=c$. The set of all limit points of E is denoted by E^{\prime}.

For example, if E is the interval $(0,1]$, then $E^{\prime}=[0,1]$. If F is the set $\{1 / n: n \in \mathbb{N}\}$, then $F^{\prime}=\{0\}$.

Let f be a function from a subset E of \mathbb{R} to \mathbb{R} and let c be a limit point of E. We say that a real number L is a limit of f at c, and we write $\lim _{x \rightarrow c} f(x)=L$, if for each $\varepsilon>0$ there exists some $\delta>0$ such that

$$
x \in E \text { and } 0<|x-c|<\delta \quad \text { imply } \quad|f(x)-L|<\varepsilon
$$

For example, let f be the function from \mathbb{R} to \mathbb{R} given by $f(x)=x, x \in \mathbb{R}$ For each $c \in \mathbb{R}$ we have $\lim _{x \rightarrow c} f(x)=c$. Indeed, for given $\varepsilon>0$, choose $\delta=\varepsilon>0$. Then

$$
x \in \mathbb{R} \text { and } 0<|x-c|<\delta \quad \text { imply } \quad|f(x)-c|=|x-c|<\varepsilon .
$$

Similarly, if $b \in \mathbb{R}$ and g is the function from \mathbb{R} to \mathbb{R} given by $g(x)=b$ for all $x \in \mathbb{R}$, then $\lim _{x \rightarrow c} g(x)=b$ for each $c \in \mathbb{R}$.

The following theorem establishes the relationship between limits of functions and limits of sequences.

Theorem 1.1. Let f be a function from a subset E of \mathbb{R} to \mathbb{R} and let c be a limit point of E. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if for every sequence $\left(x_{n}\right)_{n=1,2 \ldots}$ in E that converges to c with $x_{n} \neq c$ for all $n \in \mathbb{N}$, the sequence $\left(f\left(x_{n}\right)\right)_{n=1,2, \ldots}$ converges to L.

Proof. Suppose that $\lim _{x \rightarrow c} f(x)=L$. Let $\left(x_{n}\right)_{n=1,2, \ldots}$ be a sequence in E such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=c$. We wish to show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. For given $\varepsilon>0$, there exists some $\delta>0$ such that

$$
x \in E \text { and } 0<|x-c|<\delta \quad \text { imply } \quad|f(x)-L|<\varepsilon
$$

Furthermore, since $\lim _{n \rightarrow \infty} x_{n}=c$, there exists a positive integer N such that $n>N$ implies $\left|x_{n}-c\right|<\delta$. Thus for $n>N$ we have $0<\left|x_{n}-c\right|<\delta$ and $x_{n} \in E$, so that $\left|f\left(x_{n}\right)-L\right|<\varepsilon$. This shows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Conversely, suppose that L is not a limit of f at c. Then there exists some $\varepsilon>0$ such that for every $\delta>0$ there exists a point $x \in E$ such that $0<|x-c|<\delta$ and $|f(x)-L| \geq \varepsilon$. In particular, for each $n \in \mathbb{N}$, there exists some $x_{n} \in E$ such that $0<\left|x_{n}-c\right|<1 / n$ and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon$. Now the sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ converges to c with $x_{n} \neq c$ for all $n \in \mathbb{N}$, but the sequence $\left(f\left(x_{n}\right)\right)_{n=1,2, \ldots}$ does not converge to L.

As a corollary of the above theorem, we see that a function can have at most one limit at a given point.

Let f and g be two functions from E to \mathbb{R}. We define the $\operatorname{sum} f+g$ and the product $f g$ to be the functions from E to \mathbb{R} given by

$$
(f+g)(x):=f(x)+g(x) \quad \text { and } \quad(f g)(x):=f(x) g(x), \quad x \in E .
$$

Moreover, if $g(x) \neq 0$ for all $x \in E$, then the quotient f / g is the function from E to \mathbb{R} defined by

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad x \in E .
$$

The following theorem can be easily proved by combining Theorem 1.1 and Theorems 2.1 and 2.2 in Chapter 2.

Theorem 1.2. Let f and g be two functions from a subset E of \mathbb{R} to \mathbb{R}, and let c be a limit point of E. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then

$$
\lim _{x \rightarrow c}(f+g)(x)=L+M \quad \text { and } \quad \lim _{x \rightarrow c}(f g)(x)=L M .
$$

Furthermore, if $g(x) \neq 0$ for all $x \in E$ and $M \neq 0$, then

$$
\lim _{x \rightarrow c}\left(\frac{f}{g}\right)(x)=\frac{L}{M} .
$$

The following theorem follows from Theorem 1.1 and the squeeze theorem given in Chapter 2.

Theorem 1.3. Suppose that E is a subset of \mathbb{R}, c is a limit point of E, and f, g, h are real-valued functions on E satisfying

$$
g(x) \leq f(x) \leq h(x) \quad \text { for all } x \in E .
$$

If $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} f(x)=L$.
Let f be a function from a subset E of \mathbb{R} to \mathbb{R} and let c be a limit point of E. We write $\lim _{x \rightarrow c} f(x)=\infty$, if for each $M>0$ there exists some $\delta>0$ such that

$$
x \in E \text { and } 0<|x-c|<\delta \quad \text { imply } \quad f(x)>M .
$$

We write $\lim _{x \rightarrow c} f(x)=-\infty$, if for each $M<0$ there exists some $\delta>0$ such that

$$
x \in E \text { and } 0<|x-c|<\delta \quad \text { imply } \quad f(x)<M
$$

Example 1. Show that

$$
\lim _{x \rightarrow 0} \frac{1}{|x|}=+\infty
$$

Proof. Let $f(x):=1 /|x|$. Then f is defined on the set $E:=\mathbb{R} \backslash\{0\}$ and 0 is a limit point of E. For given $M>0$, we choose $\delta=1 / M>0$. Then

$$
x \in E \text { and }|x-0|<\delta \quad \text { imply } \quad \frac{1}{|x|}>\frac{1}{\delta}=M
$$

This shows that $\lim _{x \rightarrow 0} \frac{1}{|x|}=+\infty$.
Now we consider limits at infinity. Let f be a function from a subset E of \mathbb{R} to \mathbb{R} such that $E \cap(a, \infty) \neq \emptyset$ for every $a \in \mathbb{R}$. We say that a real number L is a limit of f at ∞, and we write $\lim _{x \rightarrow \infty} f(x)=L$, if for each $\varepsilon>0$ there exists some real number K such that

$$
x \in E \text { and } x>K \quad \text { imply } \quad|f(x)-L|<\varepsilon .
$$

Similarly, let f be a function from E to \mathbb{R} such that $E \cap(-\infty, b) \neq \emptyset$ for every $b \in \mathbb{R}$. We say that a real number L is a limit of f at $-\infty$, and we write $\lim _{x \rightarrow-\infty} f(x)=L$, if for each $\varepsilon>0$ there exists some real number K such that

$$
x \in E \text { and } x<K \quad \text { imply } \quad|f(x)-L|<\varepsilon .
$$

Analogously, we can define $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=\infty$, and $\lim _{x \rightarrow-\infty} f(x)=-\infty$.

Theorems 1.1, 1.2, and 1.3 can be easily extended to limits at infinity.
Example 2. Find the limit

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)
$$

Solution. Let $f(x):=\sqrt{x^{2}+x}-x$ for $x>0$. We have

$$
f(x)=\frac{\left(\sqrt{x^{2}+x}-x\right)\left(\sqrt{x^{2}+x}+x\right)}{\sqrt{x^{2}+x}+x}=\frac{x}{\sqrt{x^{2}+x}+x} .
$$

But $x>0$ implies $x \leq \sqrt{x^{2}+x} \leq x+1$. It follows that $2 x \leq \sqrt{x^{2}+x}+x \leq 2 x+1$. Hence,

$$
\frac{x}{2 x+1} \leq f(x) \leq \frac{x}{2 x}=\frac{1}{2}, \quad x>0 .
$$

Since $\lim _{x \rightarrow \infty} x /(2 x+1)=1 / 2$, by Theorem 1.3 we conclude that $\lim _{x \rightarrow \infty} f(x)=1 / 2$.

\S 2. Continuous Functions

Let f be a function from a subset E of \mathbb{R} to \mathbb{R} and let $c \in E$. We say that f is continuous at c if for each $\varepsilon>0$ there exists some $\delta>0$ such that

$$
x \in E \text { and }|x-c|<\delta \quad \text { imply } \quad|f(x)-f(c)|<\varepsilon
$$

If f is continuous at every point of a subset S of E, then f is said to be continuous on S. If f is continuous on its domain E, then f is said to be continuous.

The following theorem can be proved in a way analogous to the proof of Theorem 1.1. Theorem 2.1. Let f be a function from a subset E of \mathbb{R} to \mathbb{R} and let $c \in E$. Then f is continuous at c if and only if for every sequence $\left(x_{n}\right)_{n=1,2 \ldots}$ in E that converges to c, the sequence $\left(f\left(x_{n}\right)\right)_{n=1,2, \ldots}$ converges to $f(c)$.

Combining Theorem 2.1 with Theorems 2.1 and 2.2 in Chapter 2, we obtain the following result.

Theorem 2.2. Let f and g be two functions from a subset E of \mathbb{R} to \mathbb{R}, and let $c \in E$. If f and g are continuous at c, then $f+g$ and $f g$ are continuous at c. Furthermore, if $g(c) \neq 0$, then f / g is continuous at c.

Example 1. Let f, g, u, v be the functions from \mathbb{R} to \mathbb{R} defined by

$$
f(x):=x^{2}, \quad g(x):=x^{3}, \quad u(x):=x^{3}-x, \quad v(x):=\frac{x}{1+|x|}, \quad x \in \mathbb{R} .
$$

The functions f, g, u, v are all continuous on \mathbb{R}. Moreover, f is neither one-to-one nor onto, g is bijective, u is onto but not one-to-one, and v is one-to-one but not onto.

Let A and B be two subsets of \mathbb{R}. Suppose that f is a function from A to B and g is a function from B to \mathbb{R}. Then the composition $g \circ f$ is the function from A to \mathbb{R} defined by

$$
g \circ f(x)=g(f(x)), \quad x \in A .
$$

Example 2. Let f and g be the functions from \mathbb{R} to \mathbb{R} given by

$$
f(x)=1-x \quad \text { and } \quad g(x)=\frac{x}{x^{2}+1}, \quad x \in \mathbb{R}
$$

Find $g \circ f$ and $f \circ g$.
Solution. We have

$$
g \circ f(x)=\frac{1-x}{(1-x)^{2}+1} \quad \text { and } \quad f \circ g(x)=1-\frac{x}{x^{2}+1}, \quad x \in \mathbb{R} .
$$

Note that $f \circ g \neq g \circ f$.

Theorem 2.3. Suppose that f is a function from A to B and g is a function from B to \mathbb{R}. If f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

Proof. Let $\left(x_{n}\right)_{n=1,2, \ldots}$ be a sequence in A that converges to c. Since f is continuous at c, the sequence $f\left(x_{n}\right)$ converges to $f(c)$, by Theorem 2.1. Since g is continuous at $f(c)$, by Theorem 2.1 again we obtain

$$
\lim _{n \rightarrow \infty} g \circ f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=g(f(c))=g \circ f(c) .
$$

This is true for every sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ in A that converges to c. Therefore, $g \circ f$ is continuous at c.

Suppose that p is a function from \mathbb{R} to \mathbb{R} given by

$$
p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}, \quad x \in \mathbb{R},
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then p is called a polynomial function. If n is the largest integer such that $a_{n} \neq 0$, then we say that n is the degree of f. By Theorem 2.2, a polynomial function is continuous on \mathbb{R}.

Let p be a polynomial of degree $n \geq 1$. A real number c is said to be a root of p, if $p(c)=0$. It is known that $p(c)=0$ if and only if there exists a polynomial p_{1} of degree $n-1$ such that

$$
p(x)=(x-c) p_{1}(x), \quad x \in \mathbb{R} .
$$

Consequently, a polynomial of degree n can have at most n roots.
A function r is said to be a rational function if $r=p / q$, where p and q are two polynomials and $q \neq 0$. Let $Z(q):=\{x \in \mathbb{R}: q(x)=0\}$ be the set of the roots of q. Then the domain of r is the set $\mathbb{R} \backslash Z(q)$. By Theorem 2.2, a rational function is continuous on its domain. Thus, if $q(c) \neq 0$, we have

$$
\lim _{x \rightarrow c} r(x)=\lim _{x \rightarrow c} \frac{p(x)}{q(x)}=\frac{p(c)}{q(c)}
$$

If $q(c)=0$ but $p(c) \neq 0$, then $\lim _{x \rightarrow c} r(x)$ does not exist. If p and q are polynomials of positive degree, and if $p(c)=0$ and $q(c)=0$, then there exist polynomials p_{1} and q_{1} such that $p(x)=(x-c) p_{1}(x)$ and $q(x)=(x-c) q_{1}(x)$ for all $x \in \mathbb{R}$. In this case we have

$$
\lim _{x \rightarrow c} \frac{p(x)}{q(x)}=\lim _{x \rightarrow c} \frac{(x-c) p_{1}(x)}{(x-c) q_{1}(x)}=\lim _{x \rightarrow c} \frac{p_{1}(x)}{q_{1}(x)} .
$$

Example 3. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}
$$

Solution. We have

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{x+1}{x+2}=\frac{3}{4} .
$$

\S 3. Properties of Continuous Functions

Let f be a function from a set X to a set Y. If $A \subseteq X$, then $f(A)$, the image of A under f, is defined by

$$
f(A):=\{f(x): x \in A\} .
$$

If $B \subseteq Y$, the inverse image of B is the set

$$
f^{-1}(B):=\{x \in X: f(x) \in B\} .
$$

A function f from a subset E of \mathbb{R} to \mathbb{R} is said to be bounded if the set $\{f(x): x \in E\}$ is bounded, that is, if there exists a real number M such that $|f(x)| \leq M$ for all $x \in E$.

Theorem 3.1. Let f be a continuous function from a closed interval $[a, b]$ to \mathbb{R}. Then f is a bounded function. Moreover, f attains its maximum and minimum values on $[a, b]$; that is, there exist $s, t \in[a, b]$ such that $f(s) \leq f(x) \leq f(t)$ for all $x \in[a, b]$.

Proof. Let $M:=\sup \{f([a, b])\}$, where $f([a, b]):=\{f(x): x \in[a, b]\}$. Note that M could be ∞ or a real number. Let $c:=(a+b) / 2, M_{1}:=\sup \{f([a, c])\}$ and $M_{2}:=\sup \{f([c, b])\}$. Then we have $M=\max \left\{M_{1}, M_{2}\right\}$. If $M_{1}=M$, choose $\left[a_{1}, b_{1}\right]:=[a, c]$; otherwise, choose $\left[a_{2}, b_{2}\right]:=[c, b]$. Suppose that $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{k}, b_{k}\right]$ have been constructed so that $\sup \left\{f\left(\left[a_{k}, b_{k}\right]\right)\right\}=M$. Let $c_{k}:=\left(a_{k}+b_{k}\right) / 2$. If $\sup \left\{f\left(\left[a_{k}, b_{k}\right]\right)\right\}=M$, let $\left[a_{k+1}, b_{k+1}\right]:=$ [$\left.a_{k}, c_{k}\right]$; otherwise, let $\left[a_{k+1}, b_{k+1}\right]:=\left[c_{k}, b_{k}\right]$. By Theorem 3.2 in Chapter 2, there exists a real number t such that $a_{k} \leq t \leq b_{k} \forall k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} b_{k}=t$. We claim that $f(t)=M$. Suppose to the contrary that $f(t)<M$. Then there exists some $\varepsilon>0$ such that $f(t)+\varepsilon<M$. Since f is continuous at t, there exists $\delta>0$ such that $x \in[a, b] \cap(t-\delta, t+\delta)$ implies $f(x)<f(t)+\varepsilon$. Since $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} b_{k}=t$, there exists a positive integer K such that $t-\delta<a_{K}<b_{K}<t+\delta$. It follows that $\sup \left\{f\left(\left[a_{K}, b_{K}\right]\right)\right\} \leq f(t)+\varepsilon<M$. This is a contradiction. Therefore, $f(t)=M$. Thus, f is bounded above and f attains its maximum at t.

In a similar way we can prove that f is bounded below and attains its minimum at some point $s \in[a, b]$.

The above theorem is not valid if the closed interval $[a, b]$ is replaced by an open interval.

Example 1. Let $f(x)=1 / x, x \in(0,1)$. Then f is continuous but unbounded on $(0,1)$. Moreover, we have $\inf \{f(x): x \in(0,1)\}=1$. But f does not attain the value 1 .

We are in a position to establish the following intermediate value theorem for continuous functions.

Theorem 3.2. Let f be a continuous function from a closed interval $[a, b]$ to \mathbb{R}. If y lies between $f(a)$ and $f(b)$, that is, either $f(a) \leq y \leq f(b)$ or $f(b) \leq y \leq f(a)$, then there exists some $c \in[a, b]$ such that $f(c)=y$.

Proof. We only deal with the case $f(a) \leq y \leq f(b)$; the other case can be treated similarly. We shall construct a nested sequence of closed intervals $\left(\left[a_{k}, b_{k}\right]\right)_{k=1,2, \ldots}$ recursively as follows. Let $a_{1}:=a$ and $b_{1}:=b$. Suppose that the intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{k}, b_{k}\right]$ have been constructed so that $f\left(a_{k}\right) \leq y \leq f\left(b_{k}\right)$. Let $c_{k}:=\left(a_{k}+b_{k}\right) / 2$. If $f\left(c_{k}\right) \geq y$, let $a_{k+1}:=a_{k}$ and $b_{k+1}:=c_{k}$; otherwise, let $a_{k+1}:=c_{k}$ and $b_{k+1}:=b_{k}$. Clearly, $f\left(a_{k+1}\right) \leq y \leq f\left(b_{k+1}\right)$. In light of our construction, $\left[a_{k+1}, b_{k+1}\right] \subset\left[a_{k}, b_{k}\right]$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty}\left(b_{k}-a_{k}\right)=0$. By Theorem 3.2 in Chapter 2, there exists a real number c such that $a_{k} \leq c \leq b_{k}$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} b_{k}=c$. Since f is continuous on [a, b], we obtain

$$
f(c)=\lim _{k \rightarrow \infty} f\left(a_{k}\right) \leq y \quad \text { and } \quad f(c)=\lim _{k \rightarrow \infty} f\left(b_{k}\right) \geq y
$$

Therefore, $f(c)=y$.

Example 2. Let $p(x):=x^{3}-x-1, x \in \mathbb{R}$. Then the cubic polynomial p has a root in $(0,2)$.

Proof. We have $p(0)=-1<0<p(2)=5$. By the intermediate value theorem, there exists some $c \in(0,2)$ such that $p(c)=0$.

Let f be a continuous function from a closed interval $[a, b]$ to \mathbb{R}. From Theorems 3.1 and 3.2 we see that the range of f is a closed interval: $f([a, b])=[m, M]$, where $m:=\inf \{f([a, b])\}$ and $M:=\sup \{f([a, b])\}$.

Theorem 3.3. Let f be a real-valued continuous function on an interval $I \subseteq \mathbb{R}$. Then $J:=f(I)$ is an interval.

Proof. Let $m:=\inf J$ and $M:=\sup J$. We claim that $(m, M) \subseteq J$. Indeed, if $y \in(m, M)$, then there exist $y_{1}, y_{2} \in J$ such that $y_{1}<y<y_{2}$. Suppose $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$.

By Theorem 3.2, there exists some c between x_{1} and x_{2} such that $f(c)=y$. Since I is an interval, the points between x_{1} and x_{2} belong to I. Thus c belongs to I, and hence $y=f(c) \in f(I)=J$. This shows that $(m, M) \subseteq J$. If $m \in J$ and $M \in J$, then $J=[m, M] ;$ If $m \in J$ and $M \notin J$, then $J=[m, M)$; if $m \notin J$ and $M \in J$, then $J=(m, M]$; if $m \notin J$ and $M \notin J$, then $J=(m, M)$.

§4. Uniform Continuity

Let f be a function from a subset E of \mathbb{R} to \mathbb{R}. We say that f is uniformly continuous on E if for each $\varepsilon>0$ there exists some $\delta>0$ such that

$$
x_{1}, x_{2} \in E \text { and }\left|x_{1}-x_{2}\right|<\delta \quad \text { imply } \quad\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon
$$

A function f from E to \mathbb{R} is said to satisfy a Lipschitz condition on E if there exists a positive constant M such that

$$
|f(x)-f(y)| \leq M|x-y| \quad \forall x, y \in E
$$

Clearly, if $f: E \rightarrow \mathbb{R}$ satisfies a Lipschitz condition on E, then f is uniformly continuous on E.
Example 1. Let f be the function given by $f(x)=1 / x$ for $x \in[1, \infty)$. Then f is uniformly continuous on $[1, \infty)$.
Proof. For $x, y \in[1, \infty)$ we have

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right|=\frac{|x-y|}{x y} \leq|x-y|
$$

Thus f satisfies a Lipschitz condition on E, so f is uniformly continuous on $[1, \infty)$.
Theorem 4.1. Let f be a function from a subset E of \mathbb{R} to \mathbb{R}. If f is uniformly continuous on E, then $\lim _{n \rightarrow \infty}\left[f\left(x_{n}\right)-f\left(y_{n}\right)\right]=0$ for any sequences $\left(x_{n}\right)_{n=1,2, \ldots}$ and $\left(y_{n}\right)_{n=1,2, \ldots}$ in E with $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$.

Proof. Suppose that f is a uniformly continuous function on E. Given $\varepsilon>0$, there exists some $\delta>0$ such that $x, y \in E$ and $|x-y|<\delta$ imply $|f(x)-f(y)|<\varepsilon$. Let $\left(x_{n}\right)_{n=1,2, \ldots}$ and $\left(y_{n}\right)_{n=1,2, \ldots}$ be two sequences in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. Then there exists a positive integer N such that $\left|x_{n}-y_{n}\right|<\delta$ for all $n>N$. Consequently, $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\varepsilon$ for all $n>N$. This shows that $\lim _{n \rightarrow \infty}\left[f\left(x_{n}\right)-f\left(y_{n}\right)\right]=0$.

If we wish to prove that a given function is not uniformly continuous, then we may apply the above theorem in the following way. Suppose that we can find some $\varepsilon>0$ and
two sequences $\left(x_{n}\right)_{n=1,2, \ldots}$ and $\left(y_{n}\right)_{n=1,2, \ldots}$ in E with $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ such that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$ for all $n \in \mathbb{N}$, then f is not uniformly continuous on E.

Example 2. Let g be the function given by $g(x)=1 / x$ for $x \in(0,1]$. Then g is not uniformly continuous on $(0,1]$.
Proof. For $n \in \mathbb{N}$, let $x_{n}:=1 / n$ and $y_{n}:=1 /(n+1)$. Then $\left(x_{n}\right)_{n=1,2, \ldots}$ and $\left(y_{n}\right)_{n=1,2, \ldots}$ are sequences in $(0,1]$ such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. But $\left|g\left(x_{n}\right)-g\left(y_{n}\right)\right|=|n-(n+1)|=1$ for all $n \in \mathbb{N}$. Hence g is not uniformly continuous on $(0,1]$.

Theorem 4.2. If f is continuous on a bounded closed interval $[a, b]$, then f is uniformly continuous on $[a, b]$.

Proof. Assume that f is not uniformly continuous on $[a, b]$. Then there exists some $\varepsilon>0$ such that for each $\delta>0$ the implication" $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$ " fails. Consequently, for every $n \in \mathbb{N}$, there exist $x_{n}, y_{n} \in[a, b]$ such that $\left|x_{n}-y_{n}\right|<1 / n$ and yet $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$. By the Bolzano-Weierstrass theorem, a subsequence $\left(x_{n_{k}}\right)_{k=1,2, \ldots}$ converges. Moreover, if $x_{0}=\lim _{k \rightarrow \infty} x_{n_{k}}$, then x_{0} belongs to $[a, b]$. Clearly we also have $x_{0}=\lim _{k \rightarrow \infty} y_{n_{k}}$. Since f is continuous at x_{0}, we have

$$
f\left(x_{0}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)
$$

and so

$$
\lim _{k \rightarrow \infty}\left[f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right]=0 .
$$

But $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \varepsilon$ for all k. So this is a contradiction. Hence f is uniformly continuous on $[a, b]$.

§5. Monotone Functions and Inverse Functions

Let f be a real-valued function defined on an interval I. We say that f is strictly increasing on I if

$$
x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} \quad \text { imply } f\left(x_{1}\right)<f\left(x_{2}\right),
$$

strictly decreasing on I if

$$
x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} \quad \text { imply } \quad f\left(x_{1}\right)>f\left(x_{2}\right),
$$

increasing on I if

$$
x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} \quad \text { imply } \quad f\left(x_{1}\right) \leq f\left(x_{2}\right),
$$

decreasing on I if

$$
x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} \quad \text { imply } \quad f\left(x_{1}\right) \geq f\left(x_{2}\right) .
$$

A real-valued function on I is said to be monotone on I if it is either increasing or decreasing. A real-valued function on I is said to be strictly monotone on I if it is either strictly increasing or strictly decreasing. Evidently, a strictly monotone function is one-to-one.

Example 1. Let f, g, u, v be the functions from \mathbb{R} to \mathbb{R} defined by

$$
f(x):=x^{2}, \quad g(x):=x^{3}, \quad u(x):=3, \quad v(x):=-\frac{x}{1+|x|}, \quad x \in \mathbb{R} .
$$

Then f is not monotone, g is strictly increasing, u is monotone but not strictly monotone, and v is strictly decreasing.

One-sided limits are often useful in the study of monotone functions. Let f be a function from a subset E of \mathbb{R} to \mathbb{R}. Suppose that c is a limit point of $E \cap(-\infty, c)$. We say that a real number L is a left limit of f at c, and we write $\lim _{x \rightarrow c^{-}} f(x)=L$, if for each $\varepsilon>0$ there exists some $\delta>0$ such that

$$
x \in E \text { and } c-\delta<x<c \quad \text { imply } \quad|f(x)-L|<\varepsilon
$$

Suppose that c is a limit point of $E \cap(c, \infty)$. We say that a real number L is a right limit of f at c, and we write $\lim _{x \rightarrow c^{+}} f(x)=L$, if for each $\varepsilon>0$ there exists some $\delta>0$ such that

$$
x \in E \text { and } c<x<c+\delta \quad \text { imply } \quad|f(x)-L|<\varepsilon
$$

Let f be a function from a subset E of \mathbb{R} to \mathbb{R}, and let c be a limit point of E. Then $\lim _{x \rightarrow c} f(x)$ exists if and only if both $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist and they are equal.

Recall that $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. We have $-\infty<a<\infty$ for every $a \in \mathbb{R}$.
Theorem 5.1. Let $a, b, c \in \overline{\mathbb{R}}$ with $a<c<b$. If f is a monotone function from (a, b) to \mathbb{R}, then $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exist in $\overline{\mathbb{R}}$. Moreover, $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist in \mathbb{R}.

Proof. Assume that f is increasing. Let $s:=\sup \{f(x): a<x<b\}$. For each $\varepsilon>0, s-\varepsilon$ is not an upper bound of $f((a, b))$; there exists some $x_{\varepsilon} \in(a, b)$ such that $s-\varepsilon<f\left(x_{\varepsilon}\right) \leq s$. Since f is increasing, $s-\varepsilon<f(x) \leq s$ for all $x \in\left(x_{\varepsilon}, b\right)$. Therefore,

$$
\lim _{x \rightarrow b^{-}} f(x)=s=\sup \{f(x): a<x<b\} .
$$

Similarly,

$$
\lim _{x \rightarrow a^{+}} f(x)=\inf \{f(x): a<x<b\}
$$

If $a<c<b$, then there exist $c_{1}, c_{2} \in \mathbb{R}$ such that $a<c_{1}<c<c_{2}<b$. Let $u:=\sup \left\{f(x): c_{1}<x<c\right\}$ and $v:=\inf \left\{f(x): c<x<c_{2}\right\}$. Then $\lim _{x \rightarrow c^{-}} f(x)=u$ and $\lim _{x \rightarrow c^{+}} f(x)=v$. But $f\left(c_{1}\right) \leq u \leq v \leq f\left(c_{2}\right)$, so $u, v \in \mathbb{R}$.

Theorem 5.2. Let g be a real-valued function on an interval J in \mathbb{R}. If g is monotone and $I:=g(J)$ is an interval, then g is continuous.

Proof. Without loss of generality, we consider the case where g is increasing. If I is a singleton, then g is constant on J and hence g is continuous in this case. Thus we may assume that I contains at least two points.

Let $x_{0} \in J$ and $y_{0}=g\left(x_{0}\right) \in I$. We wish to prove that g is continuous at x_{0}.
First, suppose that y_{0} is not an endpoint of I. For given $\varepsilon>0$, there exist $y_{1}, y_{2} \in I$ such that $y_{0}-\varepsilon<y_{1}<y_{0}<y_{2}<y_{0}+\varepsilon$. Let x_{1} and x_{2} be the points in J such that $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$. Since g is increasing, we have $x_{1}<x_{0}<x_{2}$. Choose $\delta>0$ such that $x_{1}<x_{0}-\delta<x_{0}<x_{0}+\delta<x_{2}$. Consequently,

$$
x_{0}-\delta<x<x_{0}+\delta \quad \text { implies } \quad y_{0}-\varepsilon<y_{1}=g\left(x_{1}\right) \leq g(x) \leq g\left(x_{2}\right)=y_{2}<y_{0}+\varepsilon .
$$

This shows that g is continuous at x_{0}.
Second, suppose that y_{0} is the left endpoint of I. For given $\varepsilon>0$, there exists $y_{2} \in I$ such that $y_{0}<y_{2}<y_{0}+\varepsilon$. Let x_{2} be the point in J such that $g\left(x_{2}\right)=y_{2}$. Since g is increasing, we have $x_{0}<x_{2}$. Choose $\delta>0$ such that $x_{0}<x_{0}+\delta<x_{2}$. Consequently,

$$
x_{0}-\delta<x<x_{0}+\delta \text { and } x \in J \Longrightarrow y_{0} \leq g(x) \leq g\left(x_{2}\right)=y_{2}<y_{0}+\varepsilon
$$

This shows that g is continuous at x_{0}.
Third, suppose that y_{0} is the right endpoint of I. A similar argument shows that g is continuous at x_{0}.

Since g is continuous at every point in J, we conclude that g is continuous on J.

Theorem 5.3. Let f be a function from an interval I to \mathbb{R}. If f is strictly increasing (decreasing), then so is its inverse function f^{-1}. If, in addition, f is continuous, then so is f^{-1}.

Proof. Suppose that f is a strictly increasing function from an interval I to \mathbb{R}. Let $g:=f^{-1}$. Then $g(y)=x$ if and only if $f(x)=y$. Suppose that $x_{1}=g\left(y_{1}\right)$ and $x_{2}=g\left(y_{2}\right)$,
where $y_{1}, y_{2} \in J:=f(I)$. If $y_{1}<y_{2}$, we must have $x_{1}<x_{2}$, for otherwise $x_{1} \geq x_{2}$ would imply $y_{1}=f\left(x_{1}\right) \geq f\left(x_{2}\right)=y_{2}$. This shows that g is strictly increasing.

If, in addition, f is continuous, then $J=f(I)$ is an interval by Theorem 3.2. Now g is a monotone function from the interval J onto the interval I. By Theorem 5.2 we conclude that g is continuous.

Let us apply the above theorem to the function f_{n} given by $f_{n}(x)=x^{n}$ for $x \in \mathbb{R}$, where $n \in \mathbb{N}$. Evidently, f_{n} is a continuous function on \mathbb{R}. If n is an odd integer, then f_{n} is a strictly increasing function on \mathbb{R} and f_{n} maps \mathbb{R} onto \mathbb{R}. Hence, for any $b \in \mathbb{R}$, there exists a unique $a \in \mathbb{R}$ such that $a^{n}=b$. If n is an even integer, then f_{n} is a strictly increasing function on $[0, \infty)$ and f_{n} maps $[0, \infty)$ onto $[0, \infty)$. Hence, for any $b \in[0, \infty)$, there exists a unique $a \in[0, \infty)$ such that $a^{n}=b$. In both cases, we call a the nth root of b and write $a=\sqrt[n]{b}$. If n is an odd integer, then the root function $g_{n}: x \mapsto \sqrt[n]{x}$ is a continuous and strictly increasing function from \mathbb{R} onto \mathbb{R}. If n is an even integer, then the root function $g_{n}: x \mapsto \sqrt[n]{x}$ is a continuous and strictly increasing function from $[0, \infty)$ onto $[0, \infty)$.

§6. The Exponential and Logarithmic Functions

For $a>0$, let f_{a} be the exponential function on \mathbb{R} given by $f_{a}(x):=a^{x}, x \in \mathbb{R}$. If $\left(\alpha_{n}\right)_{n=1,2, \ldots}$ is a sequence of rational numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=x$, then

$$
\lim _{n \rightarrow \infty} a^{\alpha_{n}}=a^{x}
$$

Moreover, for $x, y \in \mathbb{R}$ we have

$$
a^{x} a^{y}=a^{x+y}, a^{x} / a^{y}=a^{x-y}, \text { and }\left(a^{x}\right)^{y}=a^{x y} .
$$

We claim that, for $a>1$, the function f_{a} is strictly increasing on $(-\infty, \infty)$. Indeed, if $-\infty<x<y<\infty$, then there exist rational numbers r and s such that $x<r<s<y$. We can find two sequences $\left(\alpha_{n}\right)_{n=1,2, \ldots}$ and $\left(\beta_{n}\right)_{n=1,2, \ldots}$ of rational numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=x, \lim _{n \rightarrow \infty} \beta_{n}=y$, and that $\alpha_{n} \leq r<s \leq \beta_{n}$ for all $n \in \mathbb{N}$. It follows that

$$
a^{\alpha_{n}} \leq a^{r}<a^{s} \leq a^{\beta_{n}} \quad \forall n \in \mathbb{N} .
$$

Letting n go to ∞ in the above inequalities, we obtain

$$
a^{x} \leq a^{r}<a^{s} \leq a^{y} .
$$

This justifies our claim. If $a=1, f_{a}$ is the constant function 1 . If $0<a<1$, then $f_{a}(x)=a^{x}=(1 / a)^{-x}$ with $1 / a>1$. Hence, for $a \in(0,1)$, the function f_{a} is strictly decreasing on $(-\infty, \infty)$.

Fix $a>1$. We have $\lim _{n \rightarrow \infty} a^{n}=\infty$. Thus, given $M>0$, there exists a positive integer N such that $a^{N}>M$. Consequently, $x>N$ implies $a^{x}>a^{N}>M$. This shows that $\lim _{x \rightarrow \infty} a^{x}=\infty$. It follows that

$$
\lim _{x \rightarrow-\infty} a^{x}=\lim _{y \rightarrow \infty} a^{-y}=\lim _{y \rightarrow \infty} \frac{1}{a^{y}}=0
$$

If $0<a<1$, then

$$
\lim _{x \rightarrow \infty} a^{x}=\lim _{x \rightarrow \infty}(1 / a)^{-x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} a^{x}=\lim _{x \rightarrow-\infty}(1 / a)^{-x}=\infty
$$

Theorem 6.1. For $a>0$, the exponential function $f_{a}: x \mapsto a^{x}$ is a continuous function on \mathbb{R}. If $a>1, f_{a}$ is a strictly increasing function from $(-\infty, \infty)$ onto $(0, \infty)$. If $0<a<1$, f_{a} is a strictly decreasing function from $(-\infty, \infty)$ onto $(0, \infty)$.
Proof. Fix $a>1$. Let $\varepsilon>0$ be given. Since $\lim _{k \rightarrow \infty} a^{1 / k}=a^{-1 / k}=1$, there exists a positive integer K such that $1-\varepsilon<a^{-1 / K}<a^{1 / K}<1+\varepsilon$. Choose $\delta:=1 / K$. Then $-\delta<x<\delta$ implies $a^{-1 / K}<a^{x}<a^{1 / K}$, and hence $1-\varepsilon<a^{x}<1+\varepsilon$. This shows that $\lim _{x \rightarrow 0} a^{x}=1$. Now let α be an arbitrary real number. Then

$$
\lim _{x \rightarrow \alpha} a^{x}=\lim _{x \rightarrow \alpha}\left(a^{\alpha} a^{x-\alpha}\right)=a^{\alpha} \lim _{x \rightarrow \alpha} a^{x-\alpha}=a^{\alpha} \lim _{x \rightarrow \alpha \rightarrow 0} a^{x-\alpha}=a^{\alpha} \cdot 1=a^{\alpha}
$$

Thus, f_{a} is continuous at every point $\alpha \in \mathbb{R}$. If $a=1$, then f_{a} is the constant function 1 . If $0<a<1$, then $a^{x}=1 /(1 / a)^{-x}$. So f_{a} is also continuous on \mathbb{R}.

If $a>1$, then f_{a} is strictly increasing on $(-\infty, \infty)$. Moreover, $\lim _{x \rightarrow-\infty} a^{x}=0$ and $\lim _{x \rightarrow \infty} a^{x}=\infty$. By the proof of Theorem 3.3 we conclude that the range of f_{a} is the interval $(0, \infty)$. If $0<a<1$, then f_{a} is strictly decreasing on $(-\infty, \infty)$. Moreover, $\lim _{x \rightarrow-\infty} a^{x}=\infty$ and $\lim _{x \rightarrow \infty} a^{x}=0$. So the range of f_{a} is also the interval $(0, \infty)$.

The above theorem tells us that, for $a \in(0,1) \cup(1, \infty), f_{a}$ is a bijective function from $(-\infty, \infty)$ to $(0, \infty)$. Consequently, for given $\beta \in(0, \infty)$, there exists a unique $\alpha \in \mathbb{R}$ such that $a^{\alpha}=\beta$. We write $\alpha=\log _{a} \beta$ and call α the logarithm of α to base a. Let $g_{a}(x):=\log _{a} x$ for $x \in(0, \infty)$. Then g_{a} is the inverse function of f_{a}. We call g_{a} the logarithmic function to base a. The following identities follow from the definition at once:

$$
a^{\log _{a} y}=y \quad \forall y \in(0, \infty) \quad \text { and } \quad \log _{a}\left(a^{x}\right)=x \quad \forall x \in(-\infty, \infty)
$$

By Theorem 5.3 and Theorem 6.1 we have the following result.

Theorem 6.2. For $a \in(0,1) \cup(1, \infty)$, the logarithmic function $g_{a}: x \mapsto \log _{a} x$ is a continuous function on $(0, \infty)$. If $a>1, g_{a}$ is a strictly increasing function from $(0, \infty)$ onto $(-\infty, \infty)$. If $0<a<1, g_{a}$ is a strictly decreasing function from $(0, \infty)$ onto $(-\infty, \infty)$.

Let us study some properties of the logarithmic function. For $a>1$ we have

$$
\lim _{x \rightarrow 0^{+}} \log _{a} x=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a} x=\infty .
$$

Suppose $x, y>0, u=\log _{a} x$, and $v=\log _{a} y$. Then we have $x=a^{u}$ and $y=a^{v}$. It follows that

$$
\log _{a}(x y)=\log _{a}\left(a^{u} a^{v}\right)=\log _{a}\left(a^{u+v}\right)=u+v=\log _{a} x+\log _{a} y
$$

and

$$
\log _{a}(x / y)=\log _{a}\left(a^{u} / a^{v}\right)=\log _{a}\left(a^{u-v}\right)=u-v=\log _{a} x-\log _{a} y
$$

Moreover, for $\mu \in \mathbb{R}$ we have

$$
\log _{a}\left(x^{\mu}\right)=\log _{a}\left(a^{u}\right)^{\mu}=\log _{a} a^{u \mu}=\mu u=\mu \log _{a} x .
$$

Suppose that $a, b \in(0,1) \cup(1, \infty)$. For $x \in(0, \infty)$, let $\mu:=\log _{b} x$. Then $x=b^{\mu}$ and

$$
\log _{a} x=\log _{a} b^{\mu}=\mu \log _{a} b=\left(\log _{b} x\right)\left(\log _{a} b\right) .
$$

This leads to the following formula for change of bases:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \quad \forall x \in(0, \infty)
$$

Fix $\mu \in \mathbb{R}$. Let h_{μ} be the power function given by

$$
h_{\mu}(x):=x^{\mu}, \quad x \in(0, \infty) .
$$

Since $x=2^{\log _{2} x}$ for $x>0$, we have

$$
x^{\mu}=\left(2^{\log _{2} x}\right)^{\mu}=2^{\mu \log _{2} x}, \quad x \in(0, \infty) .
$$

Recall that the composition of two continuous functions is continuous. So the power function $h_{\mu}: x \mapsto x^{\mu}$ is continuous on its domain $(0, \infty)$. Its range is also $(0, \infty)$. If $\mu>0$, the function $x \mapsto \mu \log _{2} x$ is strictly increasing on $(0, \infty)$; hence $h_{\mu}: x \mapsto x^{\mu}$ is a strictly increasing function on $(0, \infty)$. Moreover,

$$
\lim _{x \rightarrow 0^{+}} x^{\mu}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} x^{\mu}=\infty .
$$

If $\mu<0, h_{\mu}: x \mapsto x^{\mu}$ is a strictly decreasing function on $(0, \infty)$. Further,

$$
\lim _{x \rightarrow 0^{+}} x^{\mu}=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} x^{\mu}=0
$$

