Chapter 2. Sequences

$\S1$. Limits of Sequences

Let A be a nonempty set. A function from \mathbb{N} to A is called a **sequence** of elements in A. We often use $(a_n)_{n=1,2,...}$ to denote a sequence. By this we mean that a function f from \mathbb{N} to some set A is given and $f(n) = a_n \in A$ for $n \in \mathbb{N}$. More generally, a function from a subset of \mathbb{Z} to A is also called a sequence.

It is important to distinguish between a sequence and its set of values. The sequence $(a_n)_{n=1,2,...}$ given by $a_n = (-1)^n$ for $n \in \mathbb{N}$ has infinitely many terms even though their values are repeated over and over. On the other hand, the set $\{(-1)^n : n \in \mathbb{N}\}$ is exactly the set $\{-1,1\}$ consisting of two numbers.

A sequence $(a_n)_{n=1,2,...}$ of real numbers is said to **converge** to the real number a provided that for each $\varepsilon > 0$ there exists a positive integer N such that $|a_n - a| < \varepsilon$ whenever n > N. If $(a_n)_{n=1,2,...}$ converges to a, we write $\lim_{n\to\infty} a_n = a$. The number a is called the **limit** of the sequence $(a_n)_{n=1,2,...}$. A sequence that does not converge to some real number is said to **diverge**.

Example 1. Prove that

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Proof. For given $\varepsilon > 0$, we wish to find a positive integer N such that n > N implies $|\frac{1}{n} - 0| < \varepsilon$. The latter is equivalent to $n > 1/\varepsilon$. Choose $N = \lfloor 1/\varepsilon \rfloor + 1$. If n > N, then $n > 1/\varepsilon$, and hence $|\frac{1}{n} - 0| < \varepsilon$. This shows that $\lim_{n \to \infty} \frac{1}{n} = 0$.

Example 2. If |r| < 1, then

$$\lim_{n \to \infty} r^n = 0.$$

Proof. If r = 0, then $r^n = 0$ for all $n \in \mathbb{N}$. Obviously, $\lim_{n\to\infty} r^n = 0$ in this case. Suppose $r \neq 0$. Since |r| < 1, we have 1/|r| > 1. Let b := 1/|r| - 1. Then b > 0 and 1/|r| = 1 + b. It follows that |r| = 1/(1 + b) and $|r^n| = 1/(1 + b)^n$. By the Bernoulli inequality, $(1 + b)^n \ge 1 + nb$ for all $n \in \mathbb{N}$. Consequently,

$$|r|^n = \frac{1}{(1+b)^n} \le \frac{1}{1+nb} < \frac{1}{nb}.$$

For given $\varepsilon > 0$, we wish to find a positive integer N such that n > N implies $|r^n| < \varepsilon$. This happens if $\frac{1}{nb} < \varepsilon$, *i.e.*, $n > 1/(b\varepsilon)$. Choose $N := \lfloor 1/(b\varepsilon) \rfloor + 1$. If n > N, we have $n > 1/(b\varepsilon)$, and hence $|r^n| < \varepsilon$. This shows $\lim_{n \to \infty} r^n = 0$. **Theorem 1.1.** A convergent sequence of real numbers has a unique limit.

Proof. Let $(a_n)_{n=1,2,\ldots}$ be a convergent sequence. Suppose that $\lim_{n\to\infty} a_n = s$ and $\lim_{n\to\infty} a_n = t$. We wish to prove s = t. For given $\varepsilon > 0$, by the definition of limit, there exists a positive integer N_1 such that

$$n > N_1$$
 implies $|a_n - s| < \varepsilon/2$.

Moreover, there exists a positive integer N_2 such that

$$n > N_2$$
 implies $|a_n - t| < \varepsilon/2$.

For $n > \max\{N_1, N_2\}$, by the triangle inequality we have

$$|s-t| = |(s-a_n) + (a_n-t)| \le |a_n-s| + |a_n-t| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that $|s-t| < \varepsilon$ for all $\varepsilon > 0$. It follows that |s-t| = 0 and hence s = t.

A sequence $(a_n)_{n=1,2,\ldots}$ of real numbers is said to be **bounded** if the set $\{a_n : n \in \mathbb{N}\}$ is bounded in \mathbb{R} .

Theorem 1.2. A convergent sequence of real numbers is bounded.

Proof. Let $(a_n)_{n=1,2,\ldots}$ be a convergent sequence such that $\lim_{n\to\infty} a_n = a$. For $\varepsilon = 1$ there exists a positive integer N such that

$$n > N$$
 implies $|a_n - a| < 1$.

For n > N, it follows that

$$|a_n| = |a + (a_n - a)| \le |a| + |a_n - a| < |a| + 1.$$

Define $M := \max\{|a_1|, \ldots, |a_N|, |a|+1\}$. Then we have $|a_n| \leq M$ for all $n \in \mathbb{N}$. Hence, $(a_n)_{n=1,2,\ldots}$ is a bounded sequence.

A sequence $(a_n)_{n=1,2,...}$ of real numbers is said to **diverge** to $+\infty$ provided that for each M > 0 there exists a positive integer N such that $a_n > M$ whenever n > N. In this case we write $\lim_{n\to\infty} a_n = +\infty$. Similarly, we say that $(a_n)_{n=1,2,...}$ **diverges** to $-\infty$ and write $\lim_{n\to\infty} a_n = -\infty$ provided for each M < 0 there exists a positive integer N such that $a_n < M$ whenever n > N.

It is important to note that the symbols $+\infty$ and $-\infty$ do not represent real numbers. When $\lim_{n\to\infty} a_n = +\infty$ (or $-\infty$), we shall say that the limit exists, but this does not mean that the sequence converges; in fact, it diverges. **Theorem 1.3.** For a sequence $(a_n)_{n=1,2,...}$ of positive real numbers, $\lim_{n\to\infty} a_n = +\infty$ holds if and only if $\lim_{n\to\infty} (1/a_n) = 0$.

Proof. Suppose $\lim_{n\to\infty} a_n = +\infty$. Given $\varepsilon > 0$, let $M := 1/\varepsilon$. Since $\lim_{n\to\infty} a_n = +\infty$, there exists a positive integer N such that n > N implies $a_n > M = 1/\varepsilon$. Consequently, n > N implies $\left|\frac{1}{a_n} - 0\right| < \varepsilon$. This shows that $\lim_{n\to\infty} (1/a_n) = 0$.

Suppose $\lim_{n\to\infty}(1/a_n) = 0$. For M > 0, let $\varepsilon := 1/M$. Since $\lim_{n\to\infty}(1/a_n) = 0$, there exists a positive integer N such that n > N implies $\frac{1}{a_n} < \varepsilon$. Consequently, n > N implies $a_n > 1/\varepsilon = M$. This shows that $\lim_{n\to\infty} a_n = +\infty$.

Example 3. If |r| > 1, then the sequence $(r^n)_{n=1,2,...}$ is unbounded. **Proof.** Since |r| > 1, we have 1/|r| < 1, and hence

$$\lim_{n \to \infty} \frac{1}{|r|^n} = \lim_{n \to \infty} \left(\frac{1}{|r|}\right)^n = 0.$$

By Theorem 1.3, it follows that $\lim_{n\to\infty} |r|^n = \infty$. Therefore, for |r| > 1, the sequence $(r^n)_{n=1,2,\dots}$ is unbounded.

\S **2.** Limit Theorems for Sequences

In this section we will investigate some of the important properties of sequences of real numbers. We start with algebraic operations on convergent sequences.

Theorem 2.1. If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then

$$\lim_{n \to \infty} (a_n + b_n) = a + b \quad and \quad \lim_{n \to \infty} (a_n - b_n) = a - b.$$

Proof. For given $\varepsilon > 0$, there exists a positive integer N_1 such that

 $n > N_1$ implies $|a_n - a| < \varepsilon/2$.

Moreover, there exists a positive integer N_2 such that

 $n > N_2$ implies $|b_n - b| < \varepsilon/2$.

Let $N := \max\{N_1, N_2\}$. If n > N, then by the triangle inequality we have

$$|(a_n \pm b_n) - (a \pm b)| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This completes the proof.

If $(a_n)_{n=1,2,...}$ is a convergent sequence, then the above theorem tells us that

$$\lim_{n \to \infty} (a_{n+1} - a_n) = \lim_{n \to \infty} a_{n+1} - \lim_{n \to \infty} a_n = 0$$

Example 1. Let $a_n := (-1)^n$ for $n \in \mathbb{N}$. The sequence $(a_n)_{n=1,2,\dots}$ diverges. **Proof.** We have $|a_{n+1} - a_n| = 2$ for all $n \in \mathbb{N}$. So the sequence $(a_n)_{n=1,2,\dots}$ diverges.

 \square

Theorem 2.2. If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then

$$\lim_{n \to \infty} (a_n b_n) = a b_n$$

Moreover, if $b_n \neq 0$ for all $n \in \mathbb{N}$ and $b \neq 0$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$$

Proof. We have

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n b_n - a_n b| + |a_n b - ab| = |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a|.$$

By Theorem 1.2, there exists a real number M > 0 such that $|a_n| \leq M$ for all $n \in \mathbb{N}$. The number M can be so chosen that $|b| \leq M$. For given $\varepsilon > 0$, since $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, there exists a positive integer N such that n > N implies

$$|a_n - a| < \frac{\varepsilon}{2M}$$
 and $|b_n - b| < \frac{\varepsilon}{2M}$.

Consequently, if n > N, then

$$|a_n b_n - ab| \le |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a| \le M |b_n - b| + M |a_n - a| < \varepsilon.$$

This shows that $\lim_{n\to\infty} (a_n b_n) = ab$.

To handle quotients of sequences, we first deal with reciprocals. We begin by considering the equality

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b_n b}\right| = \frac{|b - b_n|}{|b_n| \cdot |b|}.$$

For given $\varepsilon > 0$, since $\lim_{n \to \infty} b_n = b \neq 0$, there exists a positive integer N_1 such that

 $n > N_1$ implies $|b_n - b| < |b|/2$.

It follows that $|b| = |b_n + (b - b_n)| \le |b_n| + |b - b_n| < |b_n| + |b|/2$. Consequently, for $n > N_1$ we have $|b_n| > |b|/2$ and

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b - b_n|}{|b_n| \cdot |b|} \le \frac{|b - b_n|}{|b|^2/2}.$$

There exists a positive integer $N > N_1$ such that

$$n > N$$
 implies $|b_n - b| < \varepsilon |b|^2 / 2$.

Hence, for n > N we have

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| \le \frac{|b - b_n|}{|b|^2/2} < \varepsilon.$$

This shows that $\lim_{n\to\infty} (1/b_n) = 1/b$. Since $\lim_{n\to\infty} a_n = a$, by the first part of the theorem we obtain

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n \cdot \frac{1}{b_n} = \lim_{n \to \infty} a_n \lim_{n \to \infty} \frac{1}{b_n} = a \cdot \frac{1}{b} = \frac{a}{b}$$

This completes the proof.

Example 2. Find $\lim_{n\to\infty} a_n$, where

$$a_n := \frac{n^3 + 6n^2 + 7}{4n^3 + 3n - 4}, \quad n \in \mathbb{N}.$$

Solution. We have

$$a_n = \frac{n^3 \left(1 + \frac{6}{n} + \frac{7}{n^3}\right)}{n^3 \left(4 + \frac{3}{n^2} - \frac{4}{n^3}\right)} = \frac{1 + \frac{6}{n} + \frac{7}{n^3}}{4 + \frac{3}{n^2} - \frac{4}{n^3}}$$

Since $\lim_{n\to\infty} \frac{1}{n} = 0$, by Theorem 2.2 we have

$$\lim_{n \to \infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{n}\right) \left(\frac{1}{n}\right) = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n^3} = \lim_{n \to \infty} \left(\frac{1}{n^2}\right) \left(\frac{1}{n}\right) = 0$$

By Theorems 2.1 and 2.2, it follows that

$$\lim_{n \to \infty} \left(1 + \frac{6}{n} + \frac{7}{n^3} \right) = 1 \quad \text{and} \quad \lim_{n \to \infty} \left(4 + \frac{3}{n^2} - \frac{4}{n^3} \right) = 4.$$

Applying Theorem 2.2 again, we obtain

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \left(1 + \frac{6}{n} + \frac{7}{n^3}\right)}{\lim_{n \to \infty} \left(4 + \frac{3}{n^2} - \frac{4}{n^3}\right)} = \frac{1}{4}.$$

Theorem 2.3. Suppose that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. If there is some $n_0 \in \mathbb{N}$ such that $a_n \leq b_n$ for all $n \geq n_0$, then $a \leq b$.

Proof. Suppose that a > b. Let $\varepsilon := (a - b)/2 > 0$. Since $\lim_{n \to \infty} a_n = a$, there exists a positive integer N_1 such that

$$n > N_1$$
 implies $a - \varepsilon < a_n < a + \varepsilon$.

Since $\lim_{n\to\infty} b_n = b$, there exists a positive integer N_2 such that

$$n > N_2$$
 implies $b - \varepsilon < b_n < b + \varepsilon$.

Let $N := \max\{N_1, N_2, n_0\}$. Then for n > N we have

$$b_n < b + \varepsilon = a - \varepsilon < a_n$$

which contradicts the assumption that $a_n \leq b_n$ for all $n \geq n_0$. Thus we conclude that $a \leq b$.

Example 3. Let $a_n := 0$ and $b_n := 1/n$ for $n \in \mathbb{N}$. Then $a_n < b_n$ for all $n \in \mathbb{N}$. But $\lim_{n\to\infty} a_n = 0 = \lim_{n\to\infty} b_n$. So we do not have a strict inequality for the limits.

Theorem 2.4. Let $(a_n)_{n=1,2,...}$, $(b_n)_{n=1,2,...}$, and $(x_n)_{n=1,2,...}$ be three sequences of real numbers. Suppose that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = s$. If there exists some $n_0 \in \mathbb{N}$ such that $a_n \leq x_n \leq b_n$ for all $n \geq n_0$, then

$$\lim_{n \to \infty} x_n = s.$$

Proof. Let $\varepsilon > 0$ be given. Since $\lim_{n\to\infty} a_n = s$, there exists a positive integer N_1 such that

 $n > N_1$ implies $s - \varepsilon < a_n < s + \varepsilon$.

Since $\lim_{n\to\infty} b_n = s$, there exists a positive integer N_2 such that

$$n > N_2$$
 implies $s - \varepsilon < b_n < s + \varepsilon$.

Let $N := \max\{N_1, N_2, n_0\}$. Then for n > N we have $a_n \le x_n \le b_n$ and hance

$$s - \varepsilon < x_n < s + \varepsilon.$$

This shows that $\lim_{n\to\infty} x_n = s$.

The above theorem is often called the *squeeze theorem*. The following two examples illustrate applications of the theorem.

Example 4. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$. **Proof.** Note that $-|a_n| \le a_n \le |a_n|$. Since $\lim_{n\to\infty} |a_n| = 0$, we have $\lim_{n\to\infty} -|a_n| = 0$. By Theorem 2.4 we conclude that $\lim_{n\to\infty} a_n = 0$. In particular, for $a_n = (-1)^n/n$, we obtain $\lim_{n\to\infty} (-1)^n/n = 0$.

Example 5. If a > 0, then $\lim_{n\to\infty} a^{1/n} = 1$. **Proof.** First, consider the case $a \ge 1$. In this case, we have

$$1 \le a^{1/n} \le 1 + \frac{a-1}{n} \quad \forall n \in \mathbb{N}.$$

The first inequality is valid because $1^n = 1 \le a$. The second inequality comes from the Bernoulli inequality. Indeed, since $(a - 1)/n \ge 0$, the Bernoulli inequality gives

$$\left(1 + \frac{a-1}{n}\right)^n \ge 1 + n\frac{a-1}{n} = 1 + (a-1) = a.$$

Since $\lim_{n\to\infty} 1 = 1$ and $\lim_{n\to\infty} (1 + (a-1)/n) = 1$, by the squeeze theorem we obtain $\lim_{n\to\infty} a^{1/n} = 1$.

It remains to deal with the case 0 < a < 1. In this case, 1/a > 1. By what has been proved, $\lim_{n\to\infty} (1/a)^{1/n} = 1$. Therefore, $\lim_{n\to\infty} a^{1/n} = \lim_{n\to\infty} 1/(1/a)^{1/n} = 1$.

More generally, if a > 0 and if $(\alpha_n)_{n=1,2,\ldots}$ is a sequence of rational numbers such that $\lim_{n\to\infty} \alpha_n = 0$, then $\lim_{n\to\infty} a^{\alpha_n} = 1$. To prove this result, we first consider the case a > 1. Since $\lim_{k\to\infty} a^{1/k} = 1$ and $\lim_{k\to\infty} a^{-1/k} = 1$, for any given $\varepsilon > 0$, there exists some $K \in \mathbb{N}$ such that

$$1 - \varepsilon < a^{-1/K} < a^{1/K} < 1 + \varepsilon.$$

But $\lim_{n\to\infty} \alpha_n = 0$. Hence, there exists some $n_0 \in \mathbb{N}$ such that $-1/K < \alpha_n < 1/K$ whenever $n \ge n_0$. Thus, for $n \ge n_0$ we have

$$a^{-1/K} < a^{\alpha_n} < a^{1/K}$$

Consequently, $1 - \varepsilon < a^{\alpha_n} < 1 + \varepsilon$ whenever $n \ge n_0$. This proves $\lim_{n\to\infty} a^{\alpha_n} = 1$. The proof for the case a = 1 is trivial. It remains to consider the case 0 < a < 1. In this case, we have 1/a > 1 and $\lim_{n\to\infty} a^{\alpha_n} = \lim_{n\to\infty} (1/a)^{-\alpha_n} = 1$. This completes the proof.

Theorem 2.5. Let $(a_n)_{n=1,2,\ldots}$ and $(b_n)_{n=1,2,\ldots}$ be two sequences of real numbers. If $\lim_{n\to\infty} a_n = +\infty$ and $\lim_{n\to\infty} b_n = b > 0$, then $\lim_{n\to\infty} (a_n b_n) = +\infty$.

Proof. Select a real number m so that 0 < m < b. Since $\lim_{n\to\infty} b_n = b > m$, there exists a positive integer N_1 such that

$$n > N_1$$
 implies $b_n > m$.

Let M > 0. Since $\lim_{n\to\infty} a_n = +\infty$, there exists a positive integer N_2 such that

$$n > N_2$$
 implies $a_n > \frac{M}{m}$

Put $N := \max\{N_1, N_2\}$. Then n > N implies $a_n b_n > (M/m) \cdot m = M$. This shows that $\lim_{n \to \infty} (a_n b_n) = +\infty$.

Example 5. Find $\lim_{n\to\infty} a_n$ if

$$a_n = \frac{n^2 - 3}{n+1}, \quad n \in \mathbb{N}.$$

Solution. We have

$$a_n = \frac{n^2 - 3}{n+1} = \frac{n^2(1 - \frac{3}{n^2})}{n(1 + \frac{1}{n})} = n \cdot \frac{1 - \frac{3}{n^2}}{1 + \frac{1}{n}}$$

Since $\lim_{n\to\infty} n = +\infty$ and $\lim_{n\to\infty} (1-\frac{3}{n^2})/(1+\frac{1}{n}) = 1$, by Theorem 2.5 we conclude that $\lim_{n\to\infty} a_n = +\infty$.

\S **3.** Monotone Sequences

A sequence $(a_n)_{n=1,2,...}$ is called an **increasing sequence** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$. It is called a **decreasing sequence** if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence $(a_n)_{n=1,2,...}$ is said to be a **monotone sequence** if it is either increasing or decreasing.

Example 1. For $n \in \mathbb{N}$, let $a_n := n^3$, $b_n := 1 - 1/n$, $c_n := 1/n^2$, and $d_n := (-1)^n$. Then the sequences $(a_n)_{n=1,2,\dots}$ and $(b_n)_{n=1,2,\dots}$ are increasing, the sequence $(c_n)_{n=1,2,\dots}$ is decreasing, but the sequence $(d_n)_{n=1,2,\dots}$ is not monotone.

Theorem 3.1. Every bounded monotone sequence of real numbers converges.

Proof. Suppose that $(a_n)_{n=1,2,\ldots}$ is a bounded increasing sequence. By S we denote the set $\{a_n : n \in \mathbb{N}\}$ and let $u := \sup S$. Since S is bounded, u represents a real number. Given $\varepsilon > 0$, $u - \varepsilon$ is not an upper bound for S; hence there exists some $N \in \mathbb{N}$ such that $a_N > u - \varepsilon$. Since $(a_n)_{n=1,2,\ldots}$ is an increasing sequence, we have $a_N \leq a_n$ for all n > N. Thus n > N implies $u - \varepsilon < a_n \leq u$. This proves that $\lim_{n\to\infty} a_n = u$. An analogous argument shows that every bounded decreasing sequence converges.

Example 2. Let $(a_n)_{n=1,2,...}$ be a sequence of positive real numbers. If

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = t < 1,$$

then $\lim_{n\to\infty} a_n = 0$.

Proof. Choose a real number q such that t < q < 1. Let $b_n := a_{n+1}/a_n$ for $n \in \mathbb{N}$. Since $\lim_{n\to\infty} b_n = t$, there exists a positive integer N such that $b_n < q$ for all $n \ge N$. We have $a_{n+1} = a_n b_n$ and hence $a_{n+1} \le a_n q \le a_n$ for $n \ge N$. Thus the sequence $(a_n)_{n=1,2,\ldots}$ is decreasing starting from the Nth term. By Theorem 3.1, the sequence converges. Let $s := \lim_{n\to\infty} a_n = s$. It follows from $a_{n+1} = a_n b_n$ that

$$s = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} (a_n b_n) = st.$$

Consequently, s(1-t) = 0. But 1-t > 0. Therefore, s = 0 as desired.

Example 3. For a real number c,

$$\lim_{n \to \infty} \frac{c^n}{n!} = 0$$

Proof. The assertion is obviously true for c = 0. Let us consider the case c > 0. For $n \in \mathbb{N}$, let $a_n := c^n/n!$ and $b_n := a_{n+1}/a_n$. Then

$$b_n = \frac{c^{n+1}}{(n+1)!} \frac{n!}{c^n} = \frac{c^{n+1}}{c^n} \frac{n!}{(n+1)!} = \frac{c}{n+1}$$

It follows that $\lim_{n\to\infty} b_n = 0$. By Example 2, we have $\lim_{n\to\infty} a_n = 0$. If c < 0, we have $|a_n| = |c|^n / n!$. By what has been proved, $\lim_{n\to\infty} |a_n| = 0$. Consequently, $\lim_{n\to\infty} a_n = 0$.

As an application of Theorem 3.1 we prove the following result, usually referred to as the property of nested intervals. Note that a bounded closed interval is represented by [a, b], where $a \leq b$. Its length is |I| := b - a.

Theorem 3.2. If $(I_n)_{n=1,2,...}$ is a sequence of closed and bounded intervals such that $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty. If, in addition, $\lim_{n\to\infty} |I_n| = 0$, then $\bigcap_{n=1}^{\infty} I_n = \{c\}$ for some real number c.

Proof. Suppose that $I_n = [a_n, b_n]$, $a_n, b_n \in \mathbb{R}$, and $a_n \leq b_n$. Since $I_{n+1} \subseteq I_n$, we have $a_n \leq a_{n+1}$ and $b_{n+1} \leq b_n$ for all $n \in \mathbb{N}$. Thus, $(a_n)_{n=1,2,\ldots}$ is an increasing sequence and $(b_n)_{n=1,2,\ldots}$ is a decreasing sequence. We have $a_n \leq b_1$ and $b_n \geq a_1$ for all $n \in \mathbb{N}$. Hence, the sequences $(a_n)_{n=1,2,\ldots}$ and $(b_n)_{n=1,2,\ldots}$ are bounded. By Theorem 3.1, $(a_n)_{n=1,2,\ldots}$ converges to some real number a. Similarly, $(b_n)_{n=1,2,\ldots}$ converges to some real number a. It follows that $[a,b] \subseteq I_n$ for all $n \in \mathbb{N}$. Moreover, if $x \in \bigcap_{n=1}^{\infty} I_n$, then $a_n \leq x \leq b_n$. Consequently

$$a = \lim_{n \to \infty} a_n \le x \le \lim_{n \to \infty} b_n = b.$$

Hence $\bigcap_{n=1}^{\infty} I_n = [a, b]$. We have $b - a \leq |I_n|$ for all $n \in \mathbb{N}$. If, in addition, $\lim_{n \to \infty} |I_n| = 0$, then b - a = 0. In this case $\bigcap_{n=1}^{\infty} I_n$ consists of only one real number.

Example 4. The above theorem does not hold for open intervals. Set $I_n := (0, 1/n)$ for $n \in \mathbb{N}$. Then $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$. But $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

$\S4$. Subsequences and Cauchy Sequences

Suppose that $(a_n)_{n=1,2,...}$ is a sequence of real numbers. A **subsequence** of this sequence is a sequence of the form $(b_k)_{k=1,2,...}$, where for each k there is a positive integer n_k such that $b_k = a_{n_k}$ for $k \in \mathbb{N}$ and that

$$n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$$

If $\lim_{n\to\infty} a_n = c$, then every subsequence of $(a_n)_{n=1,2,\dots}$ also converges to c.

Example 1. Let $a_n := (-1)^n$, $n \in \mathbb{N}$. We have $a_{2k} = 1$ and $a_{2k+1} = -1$ for all $k \in \mathbb{N}$. Thus, the subsequence $(a_{2k})_{k=1,2,\ldots}$ converges to 1 and the subsequence $(a_{2k+1})_{k=1,2,\ldots}$ converges to -1. Consequently, the sequence $(a_n)_{n=1,2,\ldots}$ diverges.

We are in a position to establish the following Bolzano-Weierstrass Theorem.

Theorem 4.1. Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let $(x_n)_{n=1,2,...}$ be a bounded sequence of real numbers. We shall use mathematical induction to construct a nested sequence of closed intervals $(I_k)_{k=1,2,\ldots}$ as follows. Since $(x_n)_{n=1,2,\ldots}$ is bounded, $a_1 := \inf\{x_n : n \in \mathbb{N}\}$ and $b_1 := \sup\{x_n : n \in \mathbb{N}\}$ are real numbers. Let $I_1 := [a_1, b_1]$. Then $a_1 \le x_n \le b_1$ for all $n \in \mathbb{N}$. Let $E_1 := \{n \in \mathbb{N} : x_n \in I_1\}$. Then $E_1 = \mathbb{N}$ is an infinite set. Choose $c_1 := (a_1 + b_1)/2$ to be the middle point of I_1 . Then $I_1 = [a_1, c_1] \cup [c_1, b_1]$. If the set $\{n \in \mathbb{N} : x_n \in [a_1, c_1]\}$ is infinite, then let $a_2 := a_1$ and $b_2 := c_1$; otherwise, let $a_2 := c_1$ and $b_2 := b_1$. Let $I_2 := [a_2, b_2]$. Then in both cases, the set $E_2 := \{n \in \mathbb{N} : x_n \in I_2\}$ is infinite, for otherwise E_1 would be finite. Suppose that the intervals $I_1 = [a_1, b_1], I_2 = [a_2, b_2], \dots, I_k = [a_k, b_k]$ have been constructed such that the set $E_k := \{n \in \mathbb{N} : x_n \in I_k\}$ is infinite. Choose $c_{k+1} := (a_k + b_k)/2$ to be the middle point of I_k . Then $I_k = [a_k, c_k] \cup [c_k, b_k]$. If the set $\{n \in \mathbb{N} : x_n \in [a_k, c_k]\}$ is infinite, then let $a_{k+1} := a_k$ and $b_{k+1} := c_k$; otherwise, let $a_{k+1} := c_k$ and $b_{k+1} := b_k$. Let $I_{k+1} := [a_{k+1}, b_{k+1}]$. Then in both cases, the set $E_{k+1} := \{n \in \mathbb{N} : x_n \in I_{k+1}\}$ is infinite. By our construction $I_{k+1} \subset I_k$ for every $k \in \mathbb{N}$ and $\lim_{k\to\infty} (b_k - a_k) = \lim_{k\to\infty} (b_1 - a_1)/2^{k-1} = 0$. By Theorem 3.2, there exists a real number c such that $\lim_{k\to\infty} a_k = \lim_{k\to\infty} b_k = c$. Let n_1 be the least element of the set E_1 . Suppose that n_1, \ldots, n_k have been chosen. Since the set E_{k+1} is infinite, the set $\{n \in E_{k+1} : n > n_k\}$ is also infinite. Let n_{k+1} be the least element of this set. Thus, we obtain an increasing sequence of positive integers $(n_k)_{k=1,2,\ldots}$. Let $y_k := x_{n_k}$ for $k \in \mathbb{N}$. We have $x_{n_k} \in I_k$, that is, $a_k \leq x_{n_k} \leq b_k$ for all $k \in \mathbb{N}$. Since $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = c$, by Theorem 2.4 we conclude that $\lim_{k\to\infty} y_k = \lim_{k\to\infty} x_{n_k} = c$. This shows that $(x_n)_{n=1,2,\ldots}$ has a convergent subsequence.

A sequence $(a_n)_{n=1,2,...}$ of real numbers is called a **Cauchy sequence** if for each $\varepsilon > 0$ there exists a positive integer N such that

$$m, n > N$$
 implies $|a_m - a_n| < \varepsilon$.

Theorem 4.2. A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof. Suppose that $(x_n)_{n=1,2,\ldots}$ is a sequence of real numbers and $\lim_{n\to\infty} x_n = c$. For each $\varepsilon > 0$, there exists a positive integer N such that

$$n > N$$
 implies $|x_n - c| < \varepsilon/2$.

Consequently,

$$m, n > N$$
 implies $|x_m - x_n| \le |x_m - c| + |c - x_n| < \varepsilon$.

This shows that $(x_n)_{n=1,2,\ldots}$ is a Cauchy sequence.

Now suppose that $(x_n)_{n=1,2,\ldots}$ is a Cauchy sequence. We first prove that it is bounded. There exists a positive integer N such that m, n > N implies $|x_m - x_n| < 1$. In particular, $|x_n - x_{N+1}| < 1$ for n > N, and so $|x_n| < |x_{N+1}| + 1$ for n > N. Let $M := \max\{|x_{N+1}| + 1, |x_1|, \ldots, |x_N|\}$. Then $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Since the sequence $(x_n)_{n=1,2,...}$ is bounded. By Theorem 4.1, it has a subsequence $(x_{n_k})_{k=1,2...}$ that converges to some real number c. For each $\varepsilon > 0$, there exists a positive integer k_0 such that

$$k > k_0$$
 implies $|x_{n_k} - c| < \varepsilon/2$.

Moreover, since $(x_n)_{n=1,2,...}$ is a Cauchy sequence, there exists a positive integer N such that

$$m, n > N$$
 implies $|x_m - x_n| < \varepsilon/2$.

Choose k such that $k > k_0$ and $n_k > N$. For n > N we have

$$|x_n - c| \le |x_n - x_{n_k}| + |x_{n_k} - c| < \varepsilon.$$

This shows that $\lim_{n\to\infty} x_n = c$.

Example 2. Let a > 0. If $(\alpha_n)_{n=1,2,...}$ is a Cauchy sequence of rational numbers, then the sequence $(a^{\alpha_n})_{n=1,2,...}$ is convergent in \mathbb{R} .

Proof. By Theorem 4.2 it suffices to show that $(a^{\alpha_n})_{n=1,2,\ldots}$ is a Cauchy sequence. There are three possible cases: a > 1, a = 1, or 0 < a < 1. If a = 1, then $a^{\alpha_n} = 1$ for all $n \in \mathbb{N}$, and the sequence $(a^{\alpha_n})_{n=1,2,\ldots}$ is convergent in \mathbb{R} . Let us consider the case a > 1. Since $(\alpha_n)_{n=1,2,\ldots}$ is a Cauchy sequence, there exists a positive integer M such that $|\alpha_n| \leq M$ for all $n \in \mathbb{N}$. It follows that $a^{-M} \leq a^{\alpha_n} \leq a^M$ for all $n \in \mathbb{N}$. Thus we have

$$\left|a^{\alpha_m} - a^{\alpha_n}\right| = \left|a^{\alpha_n} \left(a^{\alpha_m - \alpha_n} - 1\right)\right| \le a^M \left|a^{\alpha_m - \alpha_n} - 1\right|.$$

Let $\varepsilon > 0$ be given. Since $\lim_{k\to\infty} a^{1/k} = \lim_{k\to\infty} a^{-1/k} = 1$, there exists a positive integer K such that

$$1 - \varepsilon/a^M < a^{-1/K} < a^{1/K} < 1 + \varepsilon/a^M$$

But $(\alpha_n)_{n=1,2,...}$ is a Cauchy sequence. So there exists a positive integer N such that $-1/K < \alpha_m - \alpha_n < 1/K$ whenever m, n > N. Suppose m, n > N. Then

$$1 - \varepsilon / a^M < a^{-1/K} < a^{\alpha_m - \alpha_n} < a^{1/K} < 1 + \varepsilon / a^M$$

It follows that $|a^{\alpha_m - \alpha_n} - 1| < \varepsilon/a^M$. Therefore,

$$m, n > N \Longrightarrow |a^{\alpha_m} - a^{\alpha_n}| \le a^M |a^{\alpha_m - \alpha_n} - 1| < \varepsilon.$$

This shows that $(a^{\alpha_n})_{n=1,2,\dots}$ is a Cauchy sequence.

It remains to deal with the case 0 < a < 1. In this case, we have $a^{\alpha_n} = (1/a)^{-\alpha_n}$ with 1/a > 1. By what has been proved, the sequence $((1/a)^{-\alpha_n})_{n=1,2,\ldots}$ is convergent in **R**. Moreover, its limit is a positive real number, because $(1/a)^{-\alpha_n} \ge (1/a)^{-M} > 0$ for all $n \in \mathbb{N}$. Therefore, the sequence $(a^{\alpha_n})_{n=1,2,\ldots}$ is convergent in **R**.

Now we can define the power a^{α} for any a > 0 and $\alpha \in \mathbb{R}$. Given $\alpha \in \mathbb{R}$, there exists a sequence $(\alpha_n)_{n=1,2,\ldots}$ of rational numbers such that $\lim_{n\to\infty} \alpha_n = \alpha$. We define

$$a^{\alpha} := \lim_{n \to \infty} a^{\alpha_n}$$

If $(\beta_n)_{n=1,2,\dots}$ is also a sequence of rational numbers such that $\lim_{n\to\infty} \beta_n = \alpha$. Then $\lim_{n\to\infty} (\beta_n - \alpha_n) = 0$. It follows that

$$\lim_{n \to \infty} a^{\beta_n} = \lim_{n \to \infty} \left(a^{\beta_n - \alpha_n} \cdot a^{\alpha_n} \right) = \left(\lim_{n \to \infty} a^{\beta_n - \alpha_n} \right) \cdot \left(\lim_{n \to \infty} a^{\alpha_n} \right) = \lim_{n \to \infty} a^{\alpha_n}$$

Thus the power a^{α} is well defined. It is easily seen that the following properties hold for all a, b > 0 and $\alpha, \beta \in \mathbb{R}$:

$$a^{\alpha} \cdot a^{\beta} = a^{\alpha+\beta}, \quad (a^{\alpha})^{\beta} = a^{\alpha\cdot\beta}, \quad (a \cdot b)^{\alpha} = a^{\alpha} \cdot b^{\alpha}.$$

A sequence $(x_n)_{n=1,2,...}$ of real numbers is called **contractive** if there exists a real number q, 0 < q < 1, such that

$$|x_{n+1} - x_n| \le q|x_n - x_{n-1}| \quad \forall n \ge 2.$$

Theorem 4.3. Every contractive sequence of real numbers is a Cauchy sequence.

Proof. Suppose that $(x_n)_{n=1,2,...}$ is a contractive sequence such that the above inequality holds for some q with 0 < q < 1. By mathematical induction we can show that

$$|x_{n+1} - x_n| \le q^{n-1} |x_2 - x_1| \quad \forall n \in \mathbb{N}.$$

For $m \geq 1$, by the triangle inequality we have

$$|x_{n+m} - x_n| = \left|\sum_{k=0}^{m-1} (x_{n+k+1} - x_{n+k})\right| \le \sum_{k=0}^{m-1} |x_{n+k+1} - x_{n+k}|.$$

It follows that

$$|x_{n+m} - x_n| \le \sum_{k=0}^{m-1} q^{n+k-1} |x_2 - x_1|.$$

Since 0 < q < 1, we have

$$\sum_{k=0}^{m-1} q^{n+k-1} = q^{n-1} \sum_{k=0}^{m-1} q^k = q^{n-1} (1+q+\dots+q^{m-1}) = q^{n-1} \frac{1-q^m}{1-q} \le \frac{q^{n-1}}{1-q}.$$

Therefore,

$$|x_{n+m} - x_n| \le \frac{q^{n-1}}{1-q} |x_2 - x_1|.$$

But $\lim_{n\to\infty} q^{n-1} = 0$ because 0 < q < 1, This shows that $(x_n)_{n=1,2,\dots}$ is a Cauchy sequence.

By Theorem 4.2, $(x_n)_{n=1,2,...}$ converges to a real number, say c. Fix n and let m go to ∞ in the inequality $|x_{n+m} - x_n| \leq q^{n-1}/(1-q)|x_2 - x_1|$. Then we obtain the following estimate:

$$|c - x_n| \le \frac{q^{n-1}}{1-q} |x_2 - x_1| \quad \forall n \in \mathbb{N}.$$

Example 3. Let $(x_n)_{n=1,2,...}$ be the sequence defined recursively as follows. Let $x_1 := 1$. For $n \ge 1$, let $x_{n+1} := 1/(2 + x_n)$. Then $(x_n)_{n=1,2,...}$ is a contractive sequence.

Proof. First, we use mathematical induction to show that $x_n > 0$ for all $n \in \mathbb{N}$. If n = 1, then $x_1 = 1 > 0$. For the induction step, suppose $x_n > 0$. Then $2 + x_n > 0$; hence $x_{n+1} = 1/(2 + x_n) > 0$. This completes the induction procedure.

For $n \ge 2$ we have $x_{n+1} = 1/(2+x_n)$ and $x_n = 1/(2+x_{n-1})$. It follows that

$$x_{n+1} - x_n = \frac{1}{2+x_n} - \frac{1}{2+x_{n-1}} = \frac{(2+x_{n-1}) - (2+x_n)}{(2+x_n)(2+x_{n-1})} = \frac{x_{n-1} - x_n}{(2+x_n)(2+x_{n-1})}.$$

Since $x_n > 0$ for all $n \in \mathbb{N}$, we have $2 + x_n > 2$ for all $n \in \mathbb{N}$. Therefore,

$$|x_{n+1} - x_n| = \frac{|x_{n-1} - x_n|}{(2 + x_n)(2 + x_{n-1})} \le \frac{1}{4}|x_n - x_{n-1}|.$$

This shows that $(x_n)_{n=1,2,\ldots}$ is a contractive sequence.

By Theorem 4.3, $\lim_{n\to\infty} x_n = c$ for some $c \in \mathbb{R}$. Since $x_n > 0$ for all $n \in \mathbb{R}$, we have $c \ge 0$. Taking limits on both sides of the equation $x_{n+1} = 1/(2+x_n)$, we obtain c = 1/(2+c). It follows that $c^2 + 2c - 1 = 0$. So $c = -1 + \sqrt{2}$ or $c = -1 - \sqrt{2}$. But $c \ge 0$. Therefore we must have $c = -1 + \sqrt{2}$. In other words, $\lim_{n\to\infty} x_n = \sqrt{2} - 1$.

§5. Infinite Series

Given a sequence $(a_n)_{n=1,2,\ldots}$ of real numbers, define

$$s_n := \sum_{k=1}^n a_k = a_1 + \dots + a_n, \quad n \in \mathbb{N}.$$

We call s_n the *n*th **partial sum** of the **infinite series** $\sum_{n=1}^{\infty} a_n$.

If $(s_n)_{n=1,2,...}$ converges to a real number s, we say that the series $\sum_{n=1}^{\infty} a_n$ converges and we write

$$\sum_{n=1}^{\infty} a_n = s$$

The real number s is called the **sum** of the infinite series $\sum_{n=1}^{\infty} a_n$. If the sequence $(s_n)_{n=1,2,\ldots}$ diverges, then we say that the series $\sum_{n=1}^{\infty} a_n$ diverges. If $\lim_{n\to\infty} s_n = \infty$, we say that the series $\sum_{n=1}^{\infty} a_n$ diverges to ∞ and write $\sum_{n=1}^{\infty} a_n = \infty$. If $\lim_{n\to\infty} s_n = -\infty$, we say that the series $\sum_{n=1}^{\infty} a_n$ diverges to $-\infty$ and write $\sum_{n=1}^{\infty} a_n = -\infty$.

If $1 \leq m \leq n$, then

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{m-1} a_k + \sum_{k=m}^{n} a_k.$$

Thus the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{n=m}^{\infty} a_n$ converges.

As an example, let us consider the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right).$$

Its nth partial sum is

$$s_n = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

It follows that $\lim_{n\to\infty} s_n = 1$. Therefore, the series converges and its sum is 1.

The following results can be easily derived from the above definition.

Theorem 5.1. If $\sum_{n=1}^{\infty} a_n = s$ and $\sum_{n=1}^{\infty} b_n = t$, then

$$\sum_{n=1}^{\infty} (a_n + b_n) = s + t \quad and \quad \sum_{n=1}^{\infty} ca_n = cs \quad for \ c \in \mathbb{R}.$$

We observe that $a_n = s_n - s_{n-1}$ for $n \ge 2$. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $(s_n)_{n=1,2,\ldots}$ converges to a real number s. It follows that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = s - s = 0.$$

Thus, if a sequence $(a_n)_{n=1,2,\ldots}$ diverges or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

If $a, r \in \mathbb{R}$ and $a_n = ar^{n-1}$ for $n \in \mathbb{N}$, then the series

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a r^{n-1}$$

is called a **geometric series**. The case a = 0 is trivial. In what follows we assume $a \neq 0$. If $|r| \geq 1$, then the sequence $(ar^{n-1})_{n=1,2,\ldots}$ either diverges or converges to a nonzero real number. Hence, the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ diverges for $|r| \geq 1$. Suppose |r| < 1. Then

$$s_n = \sum_{k=1}^n ar^{k-1} = a(1+r+\dots+r^{n-1}) = \frac{a(1-r^n)}{1-r}, \quad n \in \mathbb{N}.$$

For |r| < 1 we have $\lim_{n \to \infty} r^n = 0$. Consequently,

$$\lim_{n \to \infty} s_n = \frac{a}{1-r}$$

Therefore, for |r| < 1, the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges and its sum is a/(1-r).

We are in a position to consider infinite series with nonnegative terms.

Theorem 5.2. Let $(a_n)_{n=1,2,\ldots}$ be a sequence of real numbers with $a_n \ge 0$ for all $n \in \mathbb{N}$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence $(s_n)_{n=1,2,\ldots}$ of partial sums is bounded.

Proof. We have $s_n = a_1 + \cdots + a_n$. Since $a_n \ge 0$ for all $n \in \mathbb{N}$, $s_{n+1} \ge s_n$ for all $n \in \mathbb{N}$. Thus, $(s_n)_{n=1,2,\ldots}$ is an increasing sequence. If this sequence is bounded, then it converges, by Theorem 3.1. Thus the series $\sum_{n=1}^{\infty} a_n$ converges if $(s_n)_{n=1,2,\ldots}$ is bounded. If $(s_n)_{n=1,2,\ldots}$ is unbounded, then the sequence diverges. Hence $\sum_{n=1}^{\infty} a_n$ diverges.

Let us investigate convergence or divergence of the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, where *p* is a real number. For $n \in \mathbb{N}$, let $a_n := 1/n^p$ and $s_n := a_1 + \cdots + a_n$. Suppose p > 1. The index set $\{j \in \mathbb{N} : 1 \le j \le 2^m - 1\}$ is the disjoint union $\bigcup_{k=1}^m \{j \in \mathbb{N} : 2^{k-1} \le j \le 2^k - 1\}$. It follows that

$$s_{2^m-1} = \sum_{k=1}^m \sum_{j=2^{k-1}}^{2^k-1} \frac{1}{j^p}.$$

If $2^{k-1} \leq j \leq 2^k - 1$, then $j^p \geq (2^{k-1})^p$ and $1/j^p \leq 1/(2^{k-1})^p$. The number of terms in the sum $\sum_{j=2^{k-1}}^{2^k-1} \frac{1}{j^p}$ is $2^k - 1 - 2^{k-1} + 1 = 2^{k-1}$. Hence,

$$\sum_{j=2^{k-1}}^{2^{k-1}} \frac{1}{j^p} \le \frac{2^{k-1}}{(2^{k-1})^p} = \frac{2^{k-1}}{(2^p)^{k-1}} = (2/2^p)^{k-1} = (2^{1-p})^{k-1}.$$

Consequently,

$$s_{2^m-1} = \sum_{k=1}^m \sum_{j=2^{k-1}}^{2^k-1} \frac{1}{j^p} \le \sum_{k=1}^m (2^{1-p})^{k-1} < \frac{1}{1-2^{1-p}}.$$

Given $n \in \mathbb{N}$, we can find $m \in \mathbb{N}$ such that $n \leq 2^m - 1$. So $s_n \leq s_{2^m-1} < 1/(1-2^{1-p})$. This shows that the sequence $(s_n)_{n=1,2,\ldots}$ is bounded. By Theorem 5.2 the *p*-series converges for p > 1.

For $p \leq 1$ and $m \in \mathbb{N}$ we have

$$s_{2^m} = \sum_{j=1}^{2^m} \frac{1}{j^p} \ge \sum_{j=1}^{2^m} \frac{1}{j} = 1 + \sum_{k=1}^m \sum_{j=2^{k-1}+1}^{2^k} \frac{1}{j} \ge 1 + \sum_{k=1}^m \frac{2^{k-1}}{2^k} = 1 + \frac{m}{2}.$$

Since $\lim_{m\to\infty} (1 + m/2) = \infty$, we see that the sequence $(s_n)_{n=1,2,\ldots}$ is unbounded. By Theorem 5.2 the *p*-series diverges for $p \leq 1$.

\S 6. Convergence Tests for Series

In this section we give several tests for convergence of series.

Theorem 6.1 (Comparison Test). Let $(a_n)_{n=1,2,...}$ and $(b_n)_{n=1,2,...}$ be two sequences of real numbers such that $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} b_n$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

Proof. For $n \in \mathbb{N}$, let $s_n := a_1 + \cdots + a_n$ and $t_n := b_1 + \cdots + b_n$. Since $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, we have $s_n \le t_n$ for all $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} b_n$ converges, then the sequence $(t_n)_{n=1,2,\ldots}$ is bounded. Consequently, the sequence $(s_n)_{n=1,2,\ldots}$ is bounded. Therefore, the series $\sum_{n=1}^{\infty} a_n$ converges, by Theorem 5.2.

Example 1. Test convergence or divergence for the series $\sum_{n=1}^{\infty} 2^{(-1)^n - n}$. Solution. It follows from $(-1)^n \leq 1$ that $2^{(-1)^n - n} \leq 2^{1-n}$ for all $n \in \mathbb{N}$. Since the geometric series $\sum_{n=1}^{\infty} 2^{1-n}$ converges, the series $\sum_{n=1}^{\infty} 2^{(-1)^n - n}$ converges, by the comparison test.

Theorem 6.2 (The Ratio Test). Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms such that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

exists. If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges. If L > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. Suppose L < 1. Then there exists a real number q such that L < q < 1. Since $\lim_{n\to\infty} a_{n+1}/a_n = L$, there exists a positive integer N such that $a_{n+1}/a_n < q$ whenever

 $n \geq N$. It follows that $a_{n+1} < qa_n$ for $n \geq N$. By using mathematical induction we infer that $a_n \leq q^{n-N}a_N$ for all $n \geq N$. Since 0 < q < 1, the geometric series $\sum_{n=N}^{\infty} a_N q^{n-N}$ converges. By the comparison test, the series $\sum_{n=N}^{\infty} a_n$ converges. Therefore, the series $\sum_{n=1}^{\infty} a_n$ converges.

Suppose L > 1. Then there exists a real number r such that 1 < r < L. Since $\lim_{n\to\infty} a_{n+1}/a_n = L$, there exists a positive integer N such that $a_{n+1}/a_n > r$ whenever $n \ge N$. It follows that $a_{n+1} > ra_n$ for $n \ge N$. By using mathematical induction we infer that $a_n \ge r^{n-N}a_N$ for all $n \ge N$. Since r > 1, the geometric series $\sum_{n=N}^{\infty} a_N r^{n-N}$ diverges. By the comparison test, the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example 2. Test convergence or divergence for the series $\sum_{n=1}^{\infty} n!/3^n$. Solution. Let $a_n := n!/3^n$, $n \in \mathbb{N}$. We have

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{3^{n+1}} \frac{3^n}{n!} = \lim_{n \to \infty} \frac{(n+1)!}{n!} \frac{3^n}{3^{n+1}} = \lim_{n \to \infty} \frac{n+1}{3} = \infty$$

By the ratio test, the series $\sum_{n=1}^{\infty} n!/3^n$ diverges.

Example 3. Let 0 < r < 1. Test convergence or divergence for the series $\sum_{n=1}^{\infty} n^k r^n$, where k is a positive integer.

Solution. Let $u_n := n^k r^n$ for $n \in \mathbb{N}$. We have

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^k r^{n+1}}{n^k r^n} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^k r = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^k r = r.$$

Since 0 < r < 1, the series $\sum_{n=1}^{\infty} n^k r^n$ converges, by the ratio test.

A series $\sum_{n=1}^{\infty} a_n$ is called an **alternating series** if there exists a sequence $(b_n)_{n=1,2,\ldots}$ of nonnegative numbers such that $a_n = (-1)^n b_n$ or $a_n = (-1)^{n-1} b_n$ for all $n \in \mathbb{N}$.

Theorem 6.3 (The Alternating Series Test). If $(b_n)_{n=1,2,...}$ is a sequence of nonnegative numbers such that $b_n \ge b_{n+1}$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} b_n = 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges.

Proof. Let $s_n := \sum_{k=1}^n (-1)^{k-1} b_k$, $n \in \mathbb{N}$. We claim that $(s_{2n})_{n=1,2,\dots}$ is an increasing sequence. Indeed, we have

$$s_{2n+2} - s_{2n} = (-1)^{2n} b_{2n+1} + (-1)^{2n+1} b_{2n+2} = b_{2n+1} - b_{2n+2} \ge 0.$$

Moreover, $(s_{2n+1})_{n=1,2,...}$ is a decreasing sequence, because

$$s_{2n+3} - s_{2n+1} = (-1)^{2n+1} b_{2n+2} + (-1)^{2n+2} b_{2n+3} = -b_{2n+2} + b_{2n+3} \le 0.$$

Further, $s_{2n+1} - s_{2n} = (-1)^{2n} b_{2n+1} = b_{2n+1} \ge 0$, so $s_{2n} \le s_{2n+1}$ for all $n \in \mathbb{N}$. By Theorem 3.1, both sequences $(s_{2n})_{n=1,2,\dots}$ and $(s_{2n+1})_{n=1,2,\dots}$ converge. But

$$\lim_{n \to \infty} (s_{2n+1} - s_{2n}) = \lim_{n \to \infty} b_{2n+1} = 0.$$

Thus, there exists a real number s such that $\lim_{n\to\infty} s_{2n} = \lim_{n\to\infty} s_{2n+1} = s$. Consequently, $\lim_{n\to\infty} s_n = s$. This shows that the series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges.

Note that $s_{2n} \leq s \leq s_{2n+1}$ for all $n \in \mathbb{N}$. It follows that

$$0 \le s - s_{2n} \le s_{2n+1} - s_{2n} = b_{2n+1}$$
 and $0 \le s_{2n+1} - s \le s_{2n+1} - s_{2n+2} = b_{2n+2}$.

Thus we get the following error estimate:

$$|s - s_n| \le b_{n+1} \quad \forall n \in \mathbb{N}.$$

Example 4. For p > 0, the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} / n^p$ converges.

Proof. For $n \in \mathbb{N}$, let $b_n := 1/n^p$ and $a_n := (-1)^{n-1}b_n$. The sequence $(b_n)_{n=1,2,\dots}$ is decreasing. Indeed, since p > 0, we have $n^p \leq (n+1)^p$, so $1/n^p \geq 1/(n+1)^p$ for all $n \in \mathbb{N}$. Moreover, $\lim_{n\to\infty} 1/n^p = 0$. By the alternating series test, the series $\sum_{n=1}^{\infty} (-1)^{n-1}/n^p$ converges.

For a real number a, let $a^+ := \max\{a, 0\}$ and $a^- := \max\{-a, 0\}$. We call a^+ the **positive part** of a and a^- the **negative part** of a, respectively. Evidently, $|a| = a^+ + a^-$ and $a = a^+ - a^-$.

Theorem 6.4. Let $(a_n)_{n=1,2,\ldots}$ be a sequence of real numbers. If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

Proof. We observe that $0 \le a_n^+ \le |a_n|$ and $0 \le a_n^- \le |a_n|$ for all $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ converge, by the comparison test. But $a_n = a_n^+ - a_n^-$ for all $n \in \mathbb{N}$. We conclude that the series $\sum_{n=1}^{\infty} a_n$ converges.

If $\sum_{n=1}^{\infty} |a_n|$ converges, then we say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. If $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ diverges, then we say that $\sum_{n=1}^{\infty} a_n$ converges conditionally. For example, the alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converges conditionally.