
Chapter 2. Sequences

§1. Limits of Sequences

Let A be a nonempty set. A function from IN to A is called a sequence of elements

in A. We often use (an)n=1,2,... to denote a sequence. By this we mean that a function f

from IN to some set A is given and f(n) = an ∈ A for n ∈ IN. More generally, a function

from a subset of ZZ to A is also called a sequence.

It is important to distinguish between a sequence and its set of values. The sequence

(an)n=1,2,... given by an = (−1)n for n ∈ IN has infinitely many terms even though their

values are repeated over and over. On the other hand, the set {(−1)n : n ∈ IN} is exactly

the set {−1, 1} consisting of two numbers.

A sequence (an)n=1,2,... of real numbers is said to converge to the real number a

provided that for each ε > 0 there exists a positive integer N such that |an − a| < ε

whenever n > N . If (an)n=1,2,... converges to a, we write limn→∞ an = a. The number

a is called the limit of the sequence (an)n=1,2,.... A sequence that does not converge to

some real number is said to diverge.

Example 1. Prove that

lim
n→∞

1

n
= 0.

Proof. For given ε > 0, we wish to find a positive integer N such that n > N implies

| 1n − 0| < ε. The latter is equivalent to n > 1/ε. Choose N = ⌊1/ε⌋ + 1. If n > N , then

n > 1/ε, and hence | 1n − 0| < ε. This shows that limn→∞
1
n = 0.

Example 2. If |r| < 1, then

lim
n→∞

rn = 0.

Proof. If r = 0, then rn = 0 for all n ∈ IN. Obviously, limn→∞ rn = 0 in this case.

Suppose r ̸= 0. Since |r| < 1, we have 1/|r| > 1. Let b := 1/|r| − 1. Then b > 0 and

1/|r| = 1 + b. It follows that |r| = 1/(1 + b) and |rn| = 1/(1 + b)n. By the Bernoulli

inequality, (1 + b)n ≥ 1 + nb for all n ∈ IN. Consequently,

|r|n =
1

(1 + b)n
≤ 1

1 + nb
<

1

nb
.

For given ε > 0, we wish to find a positive integer N such that n > N implies |rn| < ε.

This happens if 1
nb < ε, i.e., n > 1/(bε). Choose N := ⌊1/(bε)⌋ + 1. If n > N , we have

n > 1/(bε), and hence |rn| < ε. This shows limn→∞ rn = 0.
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Theorem 1.1. A convergent sequence of real numbers has a unique limit.

Proof. Let (an)n=1,2,... be a convergent sequence. Suppose that limn→∞ an = s and

limn→∞ an = t. We wish to prove s = t. For given ε > 0, by the definition of limit, there

exists a positive integer N1 such that

n > N1 implies |an − s| < ε/2.

Moreover, there exists a positive integer N2 such that

n > N2 implies |an − t| < ε/2.

For n > max{N1, N2}, by the triangle inequality we have

|s− t| = |(s− an) + (an − t)| ≤ |an − s|+ |an − t| < ε

2
+

ε

2
= ε.

This shows that |s− t| < ε for all ε > 0. It follows that |s− t| = 0 and hence s = t.

A sequence (an)n=1,2,... of real numbers is said to be bounded if the set {an : n ∈ IN}
is bounded in IR.

Theorem 1.2. A convergent sequence of real numbers is bounded.

Proof. Let (an)n=1,2,... be a convergent sequence such that limn→∞ an = a. For ε = 1

there exists a positive integer N such that

n > N implies |an − a| < 1.

For n > N , it follows that

|an| = |a+ (an − a)| ≤ |a|+ |an − a| < |a|+ 1.

Define M := max{|a1|, . . . , |aN |, |a| + 1}. Then we have |an| ≤ M for all n ∈ IN. Hence,

(an)n=1,2,... is a bounded sequence.

A sequence (an)n=1,2,... of real numbers is said to diverge to +∞ provided that for

each M > 0 there exists a positive integer N such that an > M whenever n > N . In this

case we write limn→∞ an = +∞. Similarly, we say that (an)n=1,2,... diverges to −∞ and

write limn→∞ an = −∞ provided for each M < 0 there exists a positive integer N such

that an < M whenever n > N .

It is important to note that the symbols +∞ and −∞ do not represent real numbers.

When limn→∞ an = +∞ (or −∞), we shall say that the limit exists, but this does not

mean that the sequence converges; in fact, it diverges.
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Theorem 1.3. For a sequence (an)n=1,2,... of positive real numbers, limn→∞ an = +∞
holds if and only if limn→∞(1/an) = 0.

Proof. Suppose limn→∞ an = +∞. Given ε > 0, let M := 1/ε. Since limn→∞ an = +∞,

there exists a positive integer N such that n > N implies an > M = 1/ε. Consequently,

n > N implies
∣∣ 1
an

− 0
∣∣ < ε. This shows that limn→∞(1/an) = 0.

Suppose limn→∞(1/an) = 0. For M > 0, let ε := 1/M . Since limn→∞(1/an) = 0,

there exists a positive integer N such that n > N implies 1
an

< ε. Consequently, n > N

implies an > 1/ε = M . This shows that limn→∞ an = +∞.

Example 3. If |r| > 1, then the sequence (rn)n=1,2,... is unbounded.

Proof. Since |r| > 1, we have 1/|r| < 1, and hence

lim
n→∞

1

|r|n
= lim

n→∞

( 1

|r|

)n

= 0.

By Theorem 1.3, it follows that limn→∞ |r|n = ∞. Therefore, for |r| > 1, the sequence

(rn)n=1,2,... is unbounded.

§2. Limit Theorems for Sequences

In this section we will investigate some of the important properties of sequences of

real numbers. We start with algebraic operations on convergent sequences.

Theorem 2.1. If limn→∞ an = a and limn→∞ bn = b, then

lim
n→∞

(an + bn) = a+ b and lim
n→∞

(an − bn) = a− b.

Proof. For given ε > 0, there exists a positive integer N1 such that

n > N1 implies |an − a| < ε/2.

Moreover, there exists a positive integer N2 such that

n > N2 implies |bn − b| < ε/2.

Let N := max{N1, N2}. If n > N , then by the triangle inequality we have

|(an ± bn)− (a± b)| ≤ |an − a|+ |bn − b| < ε

2
+

ε

2
= ε.

This completes the proof.

If (an)n=1,2,... is a convergent sequence, then the above theorem tells us that

lim
n→∞

(an+1 − an) = lim
n→∞

an+1 − lim
n→∞

an = 0.

Example 1. Let an := (−1)n for n ∈ IN. The sequence (an)n=1,2,... diverges.

Proof. We have |an+1 − an| = 2 for all n ∈ IN. So the sequence (an)n=1,2,... diverges.
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Theorem 2.2. If limn→∞ an = a and limn→∞ bn = b, then

lim
n→∞

(anbn) = ab.

Moreover, if bn ̸= 0 for all n ∈ IN and b ̸= 0, then

lim
n→∞

an
bn

=
a

b
.

Proof. We have

|anbn−ab| = |anbn−anb+anb−ab| ≤ |anbn−anb|+ |anb−ab| = |an|·|bn−b|+ |b|·|an−a|.

By Theorem 1.2, there exists a real number M > 0 such that |an| ≤ M for all n ∈ IN. The

number M can be so chosen that |b| ≤ M . For given ε > 0, since limn→∞ an = a and

limn→∞ bn = b, there exists a positive integer N such that n > N implies

|an − a| < ε

2M
and |bn − b| < ε

2M
.

Consequently, if n > N , then

|anbn − ab| ≤ |an|·|bn − b|+ |b|·|an − a| ≤ M |bn − b|+M |an − a| < ε.

This shows that limn→∞(anbn) = ab.

To handle quotients of sequences, we first deal with reciprocals. We begin by consid-

ering the equality ∣∣∣ 1
bn

− 1

b

∣∣∣ = ∣∣∣b− bn
bnb

∣∣∣ = |b− bn|
|bn|·|b|

.

For given ε > 0, since limn→∞ bn = b ̸= 0, there exists a positive integer N1 such that

n > N1 implies |bn − b| < |b|/2.

It follows that |b| = |bn+(b− bn)| ≤ |bn|+ |b− bn| < |bn|+ |b|/2. Consequently, for n > N1

we have |bn| > |b|/2 and ∣∣∣ 1
bn

− 1

b

∣∣∣ = |b− bn|
|bn|·|b|

≤ |b− bn|
|b|2/2

.

There exists a positive integer N > N1 such that

n > N implies |bn − b| < ε|b|2/2.

Hence, for n > N we have ∣∣∣ 1
bn

− 1

b

∣∣∣ ≤ |b− bn|
|b|2/2

< ε.
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This shows that limn→∞(1/bn) = 1/b. Since limn→∞ an = a, by the first part of the

theorem we obtain

lim
n→∞

an
bn

= lim
n→∞

an·
1

bn
= lim

n→∞
an lim

n→∞

1

bn
= a·1

b
=

a

b
.

This completes the proof.

Example 2. Find limn→∞ an, where

an :=
n3 + 6n2 + 7

4n3 + 3n− 4
, n ∈ IN.

Solution. We have

an =
n3

(
1 + 6

n + 7
n3

)
n3

(
4 + 3

n2 − 4
n3

) =
1 + 6

n + 7
n3

4 + 3
n2 − 4

n3

.

Since limn→∞
1
n = 0, by Theorem 2.2 we have

lim
n→∞

1

n2
= lim

n→∞

( 1

n

)( 1

n

)
= 0 and lim

n→∞

1

n3
= lim

n→∞

( 1

n2

)( 1

n

)
= 0.

By Theorems 2.1 and 2.2, it follows that

lim
n→∞

(
1 +

6

n
+

7

n3

)
= 1 and lim

n→∞

(
4 +

3

n2
− 4

n3

)
= 4.

Applying Theorem 2.2 again, we obtain

lim
n→∞

an =
limn→∞

(
1 + 6

n + 7
n3

)
limn→∞

(
4 + 3

n2 − 4
n3

) =
1

4
.

Theorem 2.3. Suppose that limn→∞ an = a and limn→∞ bn = b. If there is some n0 ∈ IN

such that an ≤ bn for all n ≥ n0, then a ≤ b.

Proof. Suppose that a > b. Let ε := (a− b)/2 > 0. Since limn→∞ an = a, there exists a

positive integer N1 such that

n > N1 implies a− ε < an < a+ ε.

Since limn→∞ bn = b, there exists a positive integer N2 such that

n > N2 implies b− ε < bn < b+ ε.

Let N := max{N1, N2, n0}. Then for n > N we have

bn < b+ ε = a− ε < an,

which contradicts the assumption that an ≤ bn for all n ≥ n0. Thus we conclude that

a ≤ b.

Example 3. Let an := 0 and bn := 1/n for n ∈ IN. Then an < bn for all n ∈ IN. But

limn→∞ an = 0 = limn→∞ bn. So we do not have a strict inequality for the limits.
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Theorem 2.4. Let (an)n=1,2,..., (bn)n=1,2,..., and (xn)n=1,2,... be three sequences of real

numbers. Suppose that limn→∞ an = limn→∞ bn = s. If there exists some n0 ∈ IN such

that an ≤ xn ≤ bn for all n ≥ n0, then

lim
n→∞

xn = s.

Proof. Let ε > 0 be given. Since limn→∞ an = s, there exists a positive integer N1 such

that

n > N1 implies s− ε < an < s+ ε.

Since limn→∞ bn = s, there exists a positive integer N2 such that

n > N2 implies s− ε < bn < s+ ε.

Let N := max{N1, N2, n0}. Then for n > N we have an ≤ xn ≤ bn and hance

s− ε < xn < s+ ε.

This shows that limn→∞ xn = s.

The above theorem is often called the squeeze theorem. The following two examples

illustrate applications of the theorem.

Example 4. If limn→∞ |an| = 0, then limn→∞ an = 0.

Proof. Note that −|an| ≤ an ≤ |an|. Since limn→∞ |an| = 0, we have limn→∞ −|an| = 0.

By Theorem 2.4 we conclude that limn→∞ an = 0. In particular, for an = (−1)n/n, we

obtain limn→∞(−1)n/n = 0.

Example 5. If a > 0, then limn→∞ a1/n = 1.

Proof. First, consider the case a ≥ 1. In this case, we have

1 ≤ a1/n ≤ 1 +
a− 1

n
∀n ∈ IN.

The first inequality is valid because 1n = 1 ≤ a. The second inequality comes from the

Bernoulli inequality. Indeed, since (a− 1)/n ≥ 0, the Bernoulli inequality gives(
1 +

a− 1

n

)n

≥ 1 + n
a− 1

n
= 1 + (a− 1) = a.

Since limn→∞ 1 = 1 and limn→∞
(
1 + (a − 1)/n

)
= 1, by the squeeze theorem we obtain

limn→∞ a1/n = 1.
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It remains to deal with the case 0 < a < 1. In this case, 1/a > 1. By what has been

proved, limn→∞(1/a)1/n = 1. Therefore, limn→∞ a1/n = limn→∞ 1/(1/a)1/n = 1.

More generally, if a > 0 and if (αn)n=1,2,... is a sequence of rational numbers such that

limn→∞ αn = 0, then limn→∞ aαn = 1. To prove this result, we first consider the case

a > 1. Since limk→∞ a1/k = 1 and limk→∞ a−1/k = 1, for any given ε > 0, there exists

some K ∈ IN such that

1− ε < a−1/K < a1/K < 1 + ε.

But limn→∞ αn = 0. Hence, there exists some n0 ∈ IN such that −1/K < αn < 1/K

whenever n ≥ n0. Thus, for n ≥ n0 we have

a−1/K < aαn < a1/K .

Consequently, 1 − ε < aαn < 1 + ε whenever n ≥ n0. This proves limn→∞ aαn = 1. The

proof for the case a = 1 is trivial. It remains to consider the case 0 < a < 1. In this case,

we have 1/a > 1 and limn→∞ aαn = limn→∞(1/a)−αn = 1. This completes the proof.

Theorem 2.5. Let (an)n=1,2,... and (bn)n=1,2,... be two sequences of real numbers. If

limn→∞ an = +∞ and limn→∞ bn = b > 0, then limn→∞(anbn) = +∞.

Proof. Select a real number m so that 0 < m < b. Since limn→∞ bn = b > m, there exists

a positive integer N1 such that

n > N1 implies bn > m.

Let M > 0. Since limn→∞ an = +∞, there exists a positive integer N2 such that

n > N2 implies an >
M

m
.

Put N := max{N1, N2}. Then n > N implies anbn > (M/m)·m = M . This shows that

limn→∞(anbn) = +∞.

Example 5. Find limn→∞ an if

an =
n2 − 3

n+ 1
, n ∈ IN.

Solution. We have

an =
n2 − 3

n+ 1
=

n2(1− 3
n2 )

n(1 + 1
n )

= n·
1− 3

n2

1 + 1
n

.

Since limn→∞ n = +∞ and limn→∞(1 − 3
n2 )/(1 + 1

n ) = 1, by Theorem 2.5 we conclude

that limn→∞ an = +∞.
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§3. Monotone Sequences

A sequence (an)n=1,2,... is called an increasing sequence if an ≤ an+1 for all n ∈ IN.

It is called a decreasing sequence if an ≥ an+1 for all n ∈ IN. A sequence (an)n=1,2,... is

said to be a monotone sequence if it is either increasing or decreasing.

Example 1. For n ∈ IN, let an := n3, bn := 1 − 1/n, cn := 1/n2, and dn := (−1)n.

Then the sequences (an)n=1,2,... and (bn)n=1,2,... are increasing, the sequence (cn)n=1,2,...

is decreasing, but the sequence (dn)n=1,2,... is not monotone.

Theorem 3.1. Every bounded monotone sequence of real numbers converges.

Proof. Suppose that (an)n=1,2,... is a bounded increasing sequence. By S we denote the

set {an : n ∈ IN} and let u := supS. Since S is bounded, u represents a real number.

Given ε > 0, u− ε is not an upper bound for S; hence there exists some N ∈ IN such that

aN > u− ε. Since (an)n=1,2,... is an increasing sequence, we have aN ≤ an for all n > N .

Thus n > N implies u − ε < an ≤ u. This proves that limn→∞ an = u. An analogous

argument shows that every bounded decreasing sequence converges.

Example 2. Let (an)n=1,2,... be a sequence of positive real numbers. If

lim
n→∞

an+1

an
= t < 1,

then limn→∞ an = 0.

Proof. Choose a real number q such that t < q < 1. Let bn := an+1/an for n ∈ IN. Since

limn→∞ bn = t, there exists a positive integer N such that bn < q for all n ≥ N . We

have an+1 = anbn and hence an+1 ≤ anq ≤ an for n ≥ N . Thus the sequence (an)n=1,2,...

is decreasing starting from the Nth term. By Theorem 3.1, the sequence converges. Let

s := limn→∞ an = s. It follows from an+1 = anbn that

s = lim
n→∞

an+1 = lim
n→∞

(anbn) = st.

Consequently, s(1− t) = 0. But 1− t > 0. Therefore, s = 0 as desired.

Example 3. For a real number c,

lim
n→∞

cn

n!
= 0.

Proof. The assertion is obviously true for c = 0. Let us consider the case c > 0. For

n ∈ IN, let an := cn/n! and bn := an+1/an. Then

bn =
cn+1

(n+ 1)!

n!

cn
=

cn+1

cn
n!

(n+ 1)!
=

c

n+ 1
.
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It follows that limn→∞ bn = 0. By Example 2, we have limn→∞ an = 0. If c < 0, we have

|an| = |c|n/n!. By what has been proved, limn→∞ |an| = 0. Consequently, limn→∞ an = 0.

As an application of Theorem 3.1 we prove the following result, usually referred to

as the property of nested intervals. Note that a bounded closed interval is represented by

[a, b], where a ≤ b. Its length is |I| := b− a.

Theorem 3.2. If (In)n=1,2,... is a sequence of closed and bounded intervals such that

In+1 ⊆ In for all n ∈ IN, then ∩∞
n=1In is nonempty. If, in addition, limn→∞ |In| = 0, then

∩∞
n=1In = {c} for some real number c.

Proof. Suppose that In = [an, bn], an, bn ∈ IR, and an ≤ bn. Since In+1 ⊆ In, we have

an ≤ an+1 and bn+1 ≤ bn for all n ∈ IN. Thus, (an)n=1,2,... is an increasing sequence and

(bn)n=1,2,... is a decreasing sequence. We have an ≤ b1 and bn ≥ a1 for all n ∈ IN. Hence,

the sequences (an)n=1,2,... and (bn)n=1,2,... are bounded. By Theorem 3.1, (an)n=1,2,...

converges to some real number a. Similarly, (bn)n=1,2,... converges to some real number b.

We have an ≤ a ≤ b ≤ bn for all n ∈ IN. It follows that [a, b] ⊆ In for all n ∈ IN. Moreover,

if x ∈ ∩∞
n=1In, then an ≤ x ≤ bn. Consequently

a = lim
n→∞

an ≤ x ≤ lim
n→∞

bn = b.

Hence ∩∞
n=1In = [a, b]. We have b−a ≤ |In| for all n ∈ IN. If, in addition, limn→∞ |In| = 0,

then b− a = 0. In this case ∩∞
n=1In consists of only one real number.

Example 4. The above theorem does not hold for open intervals. Set In := (0, 1/n) for

n ∈ IN. Then In+1 ⊂ In for all n ∈ IN. But ∩∞
n=1In = ∅.

§4. Subsequences and Cauchy Sequences

Suppose that (an)n=1,2,... is a sequence of real numbers. A subsequence of this

sequence is a sequence of the form (bk)k=1,2,..., where for each k there is a positive integer

nk such that bk = ank
for k ∈ IN and that

n1 < n2 < · · · < nk < nk+1 < · · · .

If limn→∞ an = c, then every subsequence of (an)n=1,2,... also converges to c.

Example 1. Let an := (−1)n, n ∈ IN. We have a2k = 1 and a2k+1 = −1 for all k ∈ IN.

Thus, the subsequence (a2k)k=1,2,... converges to 1 and the subsequence (a2k+1)k=1,2,...

converges to −1. Consequently, the sequence (an)n=1,2,... diverges.

We are in a position to establish the following Bolzano-Weierstrass Theorem.
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Theorem 4.1. Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let (xn)n=1,2,... be a bounded sequence of real numbers. We shall use mathemati-

cal induction to construct a nested sequence of closed intervals (Ik)k=1,2,... as follows. Since

(xn)n=1,2,... is bounded, a1 := inf{xn : n ∈ IN} and b1 := sup{xn : n ∈ IN} are real num-

bers. Let I1 := [a1, b1]. Then a1 ≤ xn ≤ b1 for all n ∈ IN. Let E1 := {n ∈ IN : xn ∈ I1}.
Then E1 = IN is an infinite set. Choose c1 := (a1+b1)/2 to be the middle point of I1. Then

I1 = [a1, c1] ∪ [c1, b1]. If the set {n ∈ IN : xn ∈ [a1, c1]} is infinite, then let a2 := a1 and

b2 := c1; otherwise, let a2 := c1 and b2 := b1. Let I2 := [a2, b2]. Then in both cases, the

set E2 := {n ∈ IN : xn ∈ I2} is infinite, for otherwise E1 would be finite. Suppose that the

intervals I1 = [a1, b1], I2 = [a2, b2], . . . , Ik = [ak, bk] have been constructed such that the set

Ek := {n ∈ IN : xn ∈ Ik} is infinite. Choose ck+1 := (ak+bk)/2 to be the middle point of Ik.

Then Ik = [ak, ck]∪[ck, bk]. If the set {n ∈ IN : xn ∈ [ak, ck]} is infinite, then let ak+1 := ak

and bk+1 := ck; otherwise, let ak+1 := ck and bk+1 := bk. Let Ik+1 := [ak+1, bk+1]. Then in

both cases, the set Ek+1 := {n ∈ IN : xn ∈ Ik+1} is infinite. By our construction Ik+1 ⊂ Ik

for every k ∈ IN and limk→∞(bk−ak) = limk→∞(b1−a1)/2
k−1 = 0. By Theorem 3.2, there

exists a real number c such that limk→∞ ak = limk→∞ bk = c. Let n1 be the least element

of the set E1. Suppose that n1, . . . , nk have been chosen. Since the set Ek+1 is infinite, the

set {n ∈ Ek+1 : n > nk} is also infinite. Let nk+1 be the least element of this set. Thus, we

obtain an increasing sequence of positive integers (nk)k=1,2,.... Let yk := xnk
for k ∈ IN. We

have xnk
∈ Ik, that is, ak ≤ xnk

≤ bk for all k ∈ IN. Since limk→∞ ak = limk→∞ bk = c, by

Theorem 2.4 we conclude that limk→∞ yk = limk→∞ xnk
= c. This shows that (xn)n=1,2,...

has a convergent subsequence.

A sequence (an)n=1,2,... of real numbers is called a Cauchy sequence if for each ε > 0

there exists a positive integer N such that

m,n > N implies |am − an| < ε.

Theorem 4.2. A sequence of real numbers is convergent if and only if it is a Cauchy

sequence.

Proof. Suppose that (xn)n=1,2,... is a sequence of real numbers and limn→∞ xn = c. For

each ε > 0, there exists a positive integer N such that

n > N implies |xn − c| < ε/2.

Consequently,

m,n > N implies |xm − xn| ≤ |xm − c|+ |c− xn| < ε.
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This shows that (xn)n=1,2,... is a Cauchy sequence.

Now suppose that (xn)n=1,2,... is a Cauchy sequence. We first prove that it is bounded.

There exists a positive integer N such that m,n > N implies |xm − xn| < 1. In

particular, |xn − xN+1| < 1 for n > N , and so |xn| < |xN+1| + 1 for n > N . Let

M := max{|xN+1|+ 1, |x1|, . . . , |xN |}. Then |xn| ≤ M for all n ∈ IN.

Since the sequence (xn)n=1,2,... is bounded. By Theorem 4.1, it has a subsequence

(xnk
)k=1,2... that converges to some real number c. For each ε > 0, there exists a positive

integer k0 such that

k > k0 implies |xnk
− c| < ε/2.

Moreover, since (xn)n=1,2,... is a Cauchy sequence, there exists a positive integer N such

that

m,n > N implies |xm − xn| < ε/2.

Choose k such that k > k0 and nk > N . For n > N we have

|xn − c| ≤ |xn − xnk
|+ |xnk

− c| < ε.

This shows that limn→∞ xn = c.

Example 2. Let a > 0. If (αn)n=1,2,... is a Cauchy sequence of rational numbers, then

the sequence
(
aαn

)
n=1,2,...

is convergent in IR.

Proof. By Theorem 4.2 it suffices to show that
(
aαn

)
n=1,2,...

is a Cauchy sequence. There

are three possible cases: a > 1, a = 1, or 0 < a < 1. If a = 1, then aαn = 1 for all n ∈ IN,

and the sequence
(
aαn

)
n=1,2,...

is convergent in IR. Let us consider the case a > 1. Since

(αn)n=1,2,... is a Cauchy sequence, there exists a positive integer M such that |αn| ≤ M

for all n ∈ IN. It follows that a−M ≤ aαn ≤ aM for all n ∈ IN. Thus we have

∣∣aαm − aαn
∣∣ = ∣∣aαn

(
aαm−αn − 1

)∣∣ ≤ aM
∣∣aαm−αn − 1

∣∣.
Let ε > 0 be given. Since limk→∞ a1/k = limk→∞ a−1/k = 1, there exists a positive integer

K such that

1− ε/aM < a−1/K < a1/K < 1 + ε/aM .

But (αn)n=1,2,... is a Cauchy sequence. So there exists a positive integer N such that

−1/K < αm − αn < 1/K whenever m,n > N . Suppose m,n > N . Then

1− ε/aM < a−1/K < aαm−αn < a1/K < 1 + ε/aM .

11



It follows that
∣∣aαm−αn − 1

∣∣ < ε/aM . Therefore,

m,n > N =⇒
∣∣aαm − aαn

∣∣ ≤ aM
∣∣aαm−αn − 1

∣∣ < ε.

This shows that
(
aαn

)
n=1,2,...

is a Cauchy sequence.

It remains to deal with the case 0 < a < 1. In this case, we have aαn = (1/a)−αn

with 1/a > 1. By what has been proved, the sequence
(
(1/a)−αn

)
n=1,2,...

is convergent in

IR. Moreover, its limit is a positive real number, because (1/a)−αn ≥ (1/a)−M > 0 for all

n ∈ IN. Therefore, the sequence
(
aαn

)
n=1,2,...

is convergent in IR.

Now we can define the power aα for any a > 0 and α ∈ IR. Given α ∈ IR, there exists

a sequence (αn)n=1,2,... of rational numbers such that limn→∞ αn = α. We define

aα := lim
n→∞

aαn .

If (βn)n=1,2,... is also a sequence of rational numbers such that limn→∞ βn = α. Then

limn→∞(βn − αn) = 0. It follows that

lim
n→∞

aβn = lim
n→∞

(
aβn−αn · aαn

)
=

(
lim

n→∞
aβn−αn

)
·
(
lim
n→∞

aαn
)
= lim

n→∞
aαn .

Thus the power aα is well defined. It is easily seen that the following properties hold for

all a, b > 0 and α, β ∈ IR:

aα · aβ = aα+β ,
(
aα

)β
= aα·β , (a · b)α = aα · bα.

A sequence (xn)n=1,2,... of real numbers is called contractive if there exists a real

number q, 0 < q < 1, such that

|xn+1 − xn| ≤ q|xn − xn−1| ∀n ≥ 2.

Theorem 4.3. Every contractive sequence of real numbers is a Cauchy sequence.

Proof. Suppose that (xn)n=1,2,... is a contractive sequence such that the above inequality

holds for some q with 0 < q < 1. By mathematical induction we can show that

|xn+1 − xn| ≤ qn−1|x2 − x1| ∀n ∈ IN.

For m ≥ 1, by the triangle inequality we have

|xn+m − xn| =
∣∣∣∣m−1∑
k=0

(xn+k+1 − xn+k)

∣∣∣∣ ≤ m−1∑
k=0

∣∣xn+k+1 − xn+k

∣∣.
12



It follows that

|xn+m − xn| ≤
m−1∑
k=0

qn+k−1|x2 − x1|.

Since 0 < q < 1, we have

m−1∑
k=0

qn+k−1 = qn−1
m−1∑
k=0

qk = qn−1(1 + q + · · ·+ qm−1) = qn−1 1− qm

1− q
≤ qn−1

1− q
.

Therefore,

|xn+m − xn| ≤
qn−1

1− q
|x2 − x1|.

But limn→∞ qn−1 = 0 because 0 < q < 1, . This shows that (xn)n=1,2,... is a Cauchy

sequence.

By Theorem 4.2, (xn)n=1,2,... converges to a real number, say c. Fix n and let m go

to ∞ in the inequality |xn+m −xn| ≤ qn−1/(1− q)|x2 −x1|. Then we obtain the following

estimate:

|c− xn| ≤
qn−1

1− q
|x2 − x1| ∀n ∈ IN.

Example 3. Let (xn)n=1,2,... be the sequence defined recursively as follows. Let x1 := 1.

For n ≥ 1, let xn+1 := 1/(2 + xn). Then (xn)n=1,2,... is a contractive sequence.

Proof. First, we use mathematical induction to show that xn > 0 for all n ∈ IN. If n = 1,

then x1 = 1 > 0. For the induction step, suppose xn > 0. Then 2 + xn > 0; hence

xn+1 = 1/(2 + xn) > 0. This completes the induction procedure.

For n ≥ 2 we have xn+1 = 1/(2 + xn) and xn = 1/(2 + xn−1). It follows that

xn+1 − xn =
1

2 + xn
− 1

2 + xn−1
=

(2 + xn−1)− (2 + xn)

(2 + xn)(2 + xn−1)
=

xn−1 − xn

(2 + xn)(2 + xn−1)
.

Since xn > 0 for all n ∈ IN, we have 2 + xn > 2 for all n ∈ IN. Therefore,

|xn+1 − xn| =
|xn−1 − xn|

(2 + xn)(2 + xn−1)
≤ 1

4
|xn − xn−1|.

This shows that (xn)n=1,2,... is a contractive sequence.

By Theorem 4.3, limn→∞ xn = c for some c ∈ IR. Since xn > 0 for all n ∈ IR, we

have c ≥ 0. Taking limits on both sides of the equation xn+1 = 1/(2 + xn), we obtain

c = 1/(2 + c). It follows that c2 +2c− 1 = 0. So c = −1+
√
2 or c = −1−

√
2. But c ≥ 0.

Therefore we must have c = −1 +
√
2. In other words, limn→∞ xn =

√
2− 1.

13



§5. Infinite Series

Given a sequence (an)n=1,2,... of real numbers, define

sn :=

n∑
k=1

ak = a1 + · · ·+ an, n ∈ IN.

We call sn the nth partial sum of the infinite series
∑∞

n=1 an.

If (sn)n=1,2,... converges to a real number s, we say that the series
∑∞

n=1 an converges

and we write
∞∑

n=1

an = s.

The real number s is called the sum of the infinite series
∑∞

n=1 an. If the sequence

(sn)n=1,2,... diverges, then we say that the series
∑∞

n=1 an diverges. If limn→∞ sn = ∞, we

say that the series
∑∞

n=1 an diverges to ∞ and write
∑∞

n=1 an = ∞. If limn→∞ sn = −∞,

we say that the series
∑∞

n=1 an diverges to −∞ and write
∑∞

n=1 an = −∞.

If 1 ≤ m ≤ n, then
n∑

k=1

ak =

m−1∑
k=1

ak +

n∑
k=m

ak.

Thus the series
∑∞

n=1 an converges if and only if the series
∑∞

n=m an converges.

As an example, let us consider the series

∞∑
n=1

( 1

n
− 1

n+ 1

)
.

Its nth partial sum is

sn =

n∑
k=1

(1
k
− 1

k + 1

)
=

(
1− 1

2

)
+
(1
2
− 1

3

)
+ · · ·+

( 1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

It follows that limn→∞ sn = 1. Therefore, the series converges and its sum is 1.

The following results can be easily derived from the above definition.

Theorem 5.1. If
∑∞

n=1 an = s and
∑∞

n=1 bn = t, then

∞∑
n=1

(an + bn) = s+ t and

∞∑
n=1

can = cs for c ∈ IR.

We observe that an = sn − sn−1 for n ≥ 2. If the series
∑∞

n=1 an converges, then

(sn)n=1,2,... converges to a real number s. It follows that

lim
n→∞

an = lim
n→∞

(sn − sn−1) = s− s = 0.

14



Thus, if a sequence (an)n=1,2,... diverges or limn→∞ an ̸= 0, then the series
∑∞

n=1 an

diverges.

If a, r ∈ IR and an = arn−1 for n ∈ IN, then the series

∞∑
n=1

an =
∞∑

n=1

arn−1

is called a geometric series. The case a = 0 is trivial. In what follows we assume a ̸= 0.

If |r| ≥ 1, then the sequence (arn−1)n=1,2,... either diverges or converges to a nonzero real

number. Hence, the geometric series
∑∞

n=1 ar
n−1 diverges for |r| ≥ 1. Suppose |r| < 1.

Then

sn =
n∑

k=1

ark−1 = a(1 + r + · · ·+ rn−1) =
a(1− rn)

1− r
, n ∈ IN.

For |r| < 1 we have limn→∞ rn = 0. Consequently,

lim
n→∞

sn =
a

1− r
.

Therefore, for |r| < 1, the geometric series
∑∞

n=1 ar
n−1 converges and its sum is a/(1−r).

We are in a position to consider infinite series with nonnegative terms.

Theorem 5.2. Let (an)n=1,2,... be a sequence of real numbers with an ≥ 0 for all n ∈ IN.

Then the series
∑∞

n=1 an converges if and only if the sequence (sn)n=1,2,... of partial sums

is bounded.

Proof. We have sn = a1 + · · · + an. Since an ≥ 0 for all n ∈ IN, sn+1 ≥ sn for all

n ∈ IN. Thus, (sn)n=1,2,... is an increasing sequence. If this sequence is bounded, then it

converges, by Theorem 3.1. Thus the series
∑∞

n=1 an converges if (sn)n=1,2,... is bounded.

If (sn)n=1,2,... is unbounded, then the sequence diverges. Hence
∑∞

n=1 andiverges.

Let us investigate convergence or divergence of the p-series
∑∞

n=1
1
np , where p is a real

number. For n ∈ IN, let an := 1/np and sn := a1 + · · · + an. Suppose p > 1. The index

set {j ∈ IN : 1 ≤ j ≤ 2m − 1} is the disjoint union ∪m
k=1{j ∈ IN : 2k−1 ≤ j ≤ 2k − 1}. It

follows that

s2m−1 =
m∑

k=1

2k−1∑
j=2k−1

1

jp
.

If 2k−1 ≤ j ≤ 2k − 1, then jp ≥ (2k−1)p and 1/jp ≤ 1/(2k−1)p. The number of terms in

the sum
∑2k−1

j=2k−1
1
jp is 2k − 1− 2k−1 + 1 = 2k−1. Hence,

2k−1∑
j=2k−1

1

jp
≤ 2k−1

(2k−1)p
=

2k−1

(2p)k−1
= (2/2p)k−1 = (21−p)k−1.
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Consequently,

s2m−1 =
m∑

k=1

2k−1∑
j=2k−1

1

jp
≤

m∑
k=1

(21−p)k−1 <
1

1− 21−p
.

Given n ∈ IN, we can findm ∈ IN such that n ≤ 2m−1. So sn ≤ s2m−1 < 1/(1−21−p). This

shows that the sequence (sn)n=1,2,... is bounded. By Theorem 5.2 the p-series converges

for p > 1.

For p ≤ 1 and m ∈ IN we have

s2m =
2m∑
j=1

1

jp
≥

2m∑
j=1

1

j
= 1 +

m∑
k=1

2k∑
j=2k−1+1

1

j
≥ 1 +

m∑
k=1

2k−1

2k
= 1 +

m

2
.

Since limm→∞(1 + m/2) = ∞, we see that the sequence (sn)n=1,2,... is unbounded. By

Theorem 5.2 the p-series diverges for p ≤ 1.

§6. Convergence Tests for Series

In this section we give several tests for convergence of series.

Theorem 6.1 (Comparison Test). Let (an)n=1,2,... and (bn)n=1,2,... be two sequences

of real numbers such that 0 ≤ an ≤ bn for all n ∈ IN. If the series
∑∞

n=1 bn converges, then

the series
∑∞

n=1 an converges.

Proof. For n ∈ IN, let sn := a1+ · · ·+an and tn := b1+ · · ·+ bn. Since 0 ≤ an ≤ bn for all

n ∈ IN, we have sn ≤ tn for all n ∈ IN. If the series
∑∞

n=1 bn converges, then the sequence

(tn)n=1,2,... is bounded. Consequently, the sequence (sn)n=1,2,... is bounded. Therefore,

the series
∑∞

n=1 an converges, by Theorem 5.2.

Example 1. Test convergence or divergence for the series
∑∞

n=1 2
(−1)n−n.

Solution. It follows from (−1)n ≤ 1 that 2(−1)n−n ≤ 21−n for all n ∈ IN. Since the geo-

metric series
∑∞

n=1 2
1−n converges, the series

∑∞
n=1 2

(−1)n−n converges, by the comparison

test.

Theorem 6.2 (The Ratio Test). Let
∑∞

n=1 an be a series of positive terms such that

lim
n→∞

an+1

an
= L

exists. If L < 1, then the series
∑∞

n=1 an converges. If L > 1, then the series
∑∞

n=1 an

diverges.

Proof. Suppose L < 1. Then there exists a real number q such that L < q < 1. Since

limn→∞ an+1/an = L, there exists a positive integer N such that an+1/an < q whenever
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n ≥ N . It follows that an+1 < qan for n ≥ N . By using mathematical induction we infer

that an ≤ qn−NaN for all n ≥ N . Since 0 < q < 1, the geometric series
∑∞

n=N aNqn−N

converges. By the comparison test, the series
∑∞

n=N an converges. Therefore, the series∑∞
n=1 an converges.

Suppose L > 1. Then there exists a real number r such that 1 < r < L. Since

limn→∞ an+1/an = L, there exists a positive integer N such that an+1/an > r whenever

n ≥ N . It follows that an+1 > ran for n ≥ N . By using mathematical induction we

infer that an ≥ rn−NaN for all n ≥ N . Since r > 1, the geometric series
∑∞

n=N aNrn−N

diverges. By the comparison test, the series
∑∞

n=1 an diverges.

Example 2. Test convergence or divergence for the series
∑∞

n=1 n!/3
n.

Solution. Let an := n!/3n, n ∈ IN. We have

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!

3n+1

3n

n!
= lim

n→∞

(n+ 1)!

n!

3n

3n+1
= lim

n→∞

n+ 1

3
= ∞.

By the ratio test, the series
∑∞

n=1 n!/3
n diverges.

Example 3. Let 0 < r < 1. Test convergence or divergence for the series
∑∞

n=1 n
krn,

where k is a positive integer.

Solution. Let un := nkrn for n ∈ IN. We have

lim
n→∞

un+1

un
= lim

n→∞

(n+ 1)krn+1

nkrn
= lim

n→∞

(n+ 1

n

)k

r = lim
n→∞

(
1 +

1

n

)k

r = r.

Since 0 < r < 1, the series
∑∞

n=1 n
krn converges, by the ratio test.

A series
∑∞

n=1 an is called an alternating series if there exists a sequence (bn)n=1,2,...

of nonnegative numbers such that an = (−1)nbn or an = (−1)n−1bn for all n ∈ IN.

Theorem 6.3 (The Alternating Series Test). If (bn)n=1,2,... is a sequence of nonneg-

ative numbers such that bn ≥ bn+1 for all n ∈ IN and limn→∞ bn = 0, then the alternating

series
∑∞

n=1(−1)n−1bn converges.

Proof. Let sn :=
∑n

k=1(−1)k−1bk, n ∈ IN. We claim that (s2n)n=1,2,... is an increasing

sequence. Indeed, we have

s2n+2 − s2n = (−1)2nb2n+1 + (−1)2n+1b2n+2 = b2n+1 − b2n+2 ≥ 0.

Moreover, (s2n+1)n=1,2,... is a decreasing sequence, because

s2n+3 − s2n+1 = (−1)2n+1b2n+2 + (−1)2n+2b2n+3 = −b2n+2 + b2n+3 ≤ 0.
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Further, s2n+1 − s2n = (−1)2nb2n+1 = b2n+1 ≥ 0, so s2n ≤ s2n+1 for all n ∈ IN. By

Theorem 3.1, both sequences (s2n)n=1,2,... and (s2n+1)n=1,2,... converge. But

lim
n→∞

(s2n+1 − s2n) = lim
n→∞

b2n+1 = 0.

Thus, there exists a real number s such that limn→∞ s2n = limn→∞ s2n+1 = s. Conse-

quently, limn→∞ sn = s. This shows that the series
∑∞

n=1(−1)n−1bn converges.

Note that s2n ≤ s ≤ s2n+1 for all n ∈ IN. It follows that

0 ≤ s− s2n ≤ s2n+1 − s2n = b2n+1 and 0 ≤ s2n+1 − s ≤ s2n+1 − s2n+2 = b2n+2.

Thus we get the following error estimate:

|s− sn| ≤ bn+1 ∀n ∈ IN.

Example 4. For p > 0, the alternating series
∑∞

n=1(−1)n−1/np converges.

Proof. For n ∈ IN, let bn := 1/np and an := (−1)n−1bn. The sequence (bn)n=1,2,... is

decreasing. Indeed, since p > 0, we have np ≤ (n+1)p, so 1/np ≥ 1/(n+1)p for all n ∈ IN.

Moreover, limn→∞ 1/np = 0. By the alternating series test, the series
∑∞

n=1(−1)n−1/np

converges.

For a real number a, let a+ := max{a, 0} and a− := max{−a, 0}. We call a+ the

positive part of a and a− the negative part of a, respectively. Evidently, |a| = a++a−

and a = a+ − a−.

Theorem 6.4. Let (an)n=1,2,... be a sequence of real numbers. If the series
∑∞

n=1 |an|
converges, then the series

∑∞
n=1 an converges.

Proof. We observe that 0 ≤ a+n ≤ |an| and 0 ≤ a−n ≤ |an| for all n ∈ IN. If the series∑∞
n=1 |an| converges, then both

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n converge, by the comparison test.

But an = a+n − a−n for all n ∈ IN. We conclude that the series
∑∞

n=1 an converges.

If
∑∞

n=1 |an| converges, then we say that the series
∑∞

n=1 an converges absolutely.

If
∑∞

n=1 an converges, but
∑∞

n=1 |an| diverges, then we say that
∑∞

n=1 an converges

conditionally. For example, the alternating harmonic series

∞∑
n=1

(−1)n

n

converges conditionally.
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