Chapter 2. Sequences

¢1. Limits of Sequences

Let A be a nonempty set. A function from IN to A is called a sequence of elements
in A. We often use (a,)n=12,.. to denote a sequence. By this we mean that a function f
from IN to some set A is given and f(n) = a,, € A for n € IN. More generally, a function
from a subset of Z to A is also called a sequence.

It is important to distinguish between a sequence and its set of values. The sequence
(@n)n=1,2,.. given by a, = (—1)" for n € IN has infinitely many terms even though their
values are repeated over and over. On the other hand, the set {(—1)" : n € IN} is exactly
the set {—1, 1} consisting of two numbers.

A sequence (ap)n=1,2,. of real numbers is said to converge to the real number a
provided that for each € > 0 there exists a positive integer N such that |a, — a| < €
whenever n > N. If (a)p=1,2,.. converges to a, we write lim,,_,o, @, = a. The number
a is called the limit of the sequence (a,)n=12,.. A sequence that does not converge to
some real number is said to diverge.

Example 1. Prove that

. 1
lim — =0.
n—o0 N,

Proof. For given ¢ > 0, we wish to find a positive integer N such that n > N implies
1 — 0| < e. The latter is equivalent to n > 1/e. Choose N = [1/¢] + 1. If n > N, then
n > 1/e, and hence |+ — 0| < e. This shows that lim,_,o + = 0.

Example 2. If || < 1, then

lim »™ = 0.
n— oo

Proof. If » = 0, then ™ = 0 for all n € IN. Obviously, lim,,_,, 7™ = 0 in this case.
Suppose r # 0. Since |r| < 1, we have 1/|r| > 1. Let b := 1/|r| — 1. Then b > 0 and
1/|r| = 14 b. It follows that |r| = 1/(1 4+ b) and |r"| = 1/(1 + b)". By the Bernoulli
inequality, (14 b)" > 1+ nb for all n € IN. Consequently,

1 < 1 < 1
(1+b)™ ~ 14+nb nb

i =

For given ¢ > 0, we wish to find a positive integer N such that n > N implies |[r"| < e.
This happens if & < ¢, i.e., n > 1/(be). Choose N := [1/(be)] + 1. If n > N, we have

n > 1/(be), and hence |r"| < e. This shows lim,,_,. 7" = 0.
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Theorem 1.1. A convergent sequence of real numbers has a unique limit.

Proof. Let (a)n=1,2,... be a convergent sequence. Suppose that lim, ,- a, = s and
lim, . a, =t. We wish to prove s = t. For given € > 0, by the definition of limit, there

exists a positive integer Ny such that

n > Ni implies |a, — s| < e/2.
Moreover, there exists a positive integer N5 such that

n > Ny implies |a, —t| <&/2.
For n > max{Ny, Ny}, by the triangle inequality we have

g 13
|s—t|:|(s—an)+(an—t)|§|an—s|+|an_t|<§+§:&

This shows that |s — t| < e for all € > 0. It follows that |s — ¢/ = 0 and hence s =¢. [

A sequence (a,)p=1,2,... of real numbers is said to be bounded if the set {a,, : n € IN}
is bounded in IR.

Theorem 1.2. A convergent sequence of real numbers is bounded.

Proof. Let (ay)n=12,.. be a convergent sequence such that lim,_,- a, = a. For ¢ =1

there exists a positive integer N such that
n > N implies |a, —a| < 1.
For n > N, it follows that
|an| = la+ (an — a)| < la| + |an —af <[a[+1.

Define M := max{|ai|,...,|an]|,|a| + 1}. Then we have |a,| < M for all n € IN. Hence,

(@n)n=1,2,... is a bounded sequence. ]

A sequence (ay)p=1,2,... of real numbers is said to diverge to +oco provided that for
each M > 0 there exists a positive integer N such that a,, > M whenever n > N. In this
case we write lim,,_, o, a, = +00. Similarly, we say that (a,)n=12, . diverges to —oo and
write lim,, o a, = —oo provided for each M < 0 there exists a positive integer N such
that a,, < M whenever n > N.

It is important to note that the symbols +00 and —co do not represent real numbers.
When lim,, ;o a, = 400 (or —00), we shall say that the limit exists, but this does not

mean that the sequence converges; in fact, it diverges.
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Theorem 1.3. For a sequence (a,)n=1,2,.. of positive real numbers, lim,,_, o a, = +00

holds if and only if lim,,_,(1/a,) = 0.

Proof. Suppose lim,,_,o, a, = +00. Given € > 0, let M := 1/e. Since lim,_, o a,, = +00,
there exists a positive integer N such that n > N implies a,, > M = 1/e. Consequently,
n > N implies ‘i — 0‘ < €. This shows that lim, . (1/a,) = 0.

Suppose lim,, ,(1/a,) = 0. For M > 0, let ¢ := 1/M. Since lim,,_,~(1/a,) = 0,
there exists a positive integer N such that n > N implies ai < e. Consequently, n > N
implies a,, > 1/e = M. This shows that lim, . a, = +00. O]

Example 3. If || > 1, then the sequence (r™),=1 2, is unbounded.

Proof. Since |r| > 1, we have 1/|r| < 1, and hence

By Theorem 1.3, it follows that lim,,_, |r|™ = co. Therefore, for |r| > 1, the sequence
(r")p=1,2,... is unbounded.
§2. Limit Theorems for Sequences

In this section we will investigate some of the important properties of sequences of

real numbers. We start with algebraic operations on convergent sequences.
Theorem 2.1. If lim,, .. a, = a and lim,,_,. b, = b, then
lim (a, + b,) =a+b and lim (a, —b,) =a—b.
n— oo n—00
Proof. For given € > 0, there exists a positive integer N; such that
n > N; implies |a, —a| < &/2.
Moreover, there exists a positive integer Ny such that
n > Ny implies |b, —b| < &/2.

Let N := max{Nj, No}. If n > N, then by the triangle inequality we have
5
2
This completes the proof. ]

(@n ) = (@£ b)) < lan —al +Jbn —b] < =+ = =-<.

If (an)n=1,2,. is a convergent sequence, then the above theorem tells us that
iyt = Bn) = I Gt = [0 00 =0

Example 1. Let a, := (—1)" for n € IN. The sequence (ay,)n=1,2,... diverges.

Proof. We have |a,4+1 — a,| = 2 for all n € IN. So the sequence (a,)p=12,.. diverges.
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Theorem 2.2. If lim,, .. a,, = a and lim,,_, b, = b, then

nh_)rr;o(anbn) = ab.

Moreover, if b,, # 0 for alln € IN and b # 0, then

Proof. We have
lanbyn, — ab] = |apby, — apb+ anb—ab| < |anb, — anb| + |apb—ab| = |a,|-|by, — bl +1||an —al.

By Theorem 1.2, there exists a real number M > 0 such that |a,| < M for all n € IN. The
number M can be so chosen that [b] < M. For given ¢ > 0, since lim,,_, a, = a and

lim,, ,~ b, = b, there exists a positive integer N such that n > N implies

€ €
n— — d |b,—b < —.
lan, —al < sif on | | I
Consequently, if n > N, then

|anby, — abl < |ay|-|bn — | + |b]-|an, — a| < M|b, —b| + M|a, —al| < e.

This shows that lim,—, oo (anby,) = ab.
To handle quotients of sequences, we first deal with reciprocals. We begin by consid-
ering the equality
1 1 b—b, |b — by,
by 5‘:: ‘ bab |~ ol 0

For given € > 0, since lim,,_,, b, = b # 0, there exists a positive integer N; such that

n > N; implies |b, — b| < |b|/2.

It follows that |b| = |by, + (b—by)| < |by|+ |b—by| < |by| + |b]/2. Consequently, for n > N;

we have |b,| > |b|/2 and

I 1‘ b= by < |b — by, |
bn b1 fbalfol T [b2/2
There exists a positive integer N > N; such that

n > N implies |b, —b| < g|b|?/2.

Hence, for n > N we have

i_1‘< |b_bn| <€
b, b ’

— o [bP/2
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This shows that lim, ,(1/b,) = 1/b. Since lim, ,. a, = a, by the first part of the

theorem we obtain

. an, . 1 . . 1 a
lim — = lim a,— = lim a, lim — =a- - = —.
n—oo b,  n—oo , n—00  m—oo b, b b
This completes the proof. ]

Example 2. Find lim,, .., a,, where

nd+6n2+7 .
Qp = —F5——7", N .
4n3 +3n—14

Solution. We have

-~

(sS4 D) 14847
T S B R

n3

Since lim,, % = 0, by Theorem 2.2 we have

. 1 . 1N\ /1 ) 1 ) 1 1
lim — = lim (—) (—) =0 and lim — = lim (—) (—) = 0.
n—oo N2 n—oco \ N n n—oo N3 n—oo \ N2 n
By Theorems 2.1 and 2.2, it follows that
1im(1+§+13):1 and  lim (4+ 55— —) =4
n—00 n n
Applying Theorem 2.2 again, we obtain
limy, oo (14 2+ 55) 1
lim a, = Hin— ( o ”3) = -.

R T (45— )

Theorem 2.3. Suppose that lim,, ,~ a,, = a and lim,, ., b,, = b. If there is some ng € IN
such that a,, < b,, for all n > ng, then a < b.

Proof. Suppose that a > b. Let € := (a — b)/2 > 0. Since lim,,_,~ a,, = a, there exists a

positive integer N1 such that
n > N; implies a—¢<a, <a-+e.
Since lim,, ,~ b, = b, there exists a positive integer Ny such that
n > Ny implies b—e<b, <b—+e.
Let N := max{Ny, No,ng}. Then for n > N we have
b, <b+e=a—¢<anp,

which contradicts the assumption that a, < b, for all n > ng. Thus we conclude that
a <b. ]

Example 3. Let a,, := 0 and b, := 1/n for n € IN. Then a,, < b, for all n € IN. But

lim,, s a, =0 = lim, _, b,. So we do not have a strict inequality for the limits.
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Theorem 2.4. Let (an)n=12,.., (bn)n=12,., and (x,)n=1,2,.. be three sequences of real
numbers. Suppose that lim,, . a,, = lim,,_, b, = s. If there exists some ny € IN such
that a, < x, <b, for all n > ng, then

lim z,, = s.
n—oo

Proof. Let £ > 0 be given. Since lim,, ,., a,, = s, there exists a positive integer Ny such
that
n > Ny implies s—e<a, <s-+e.

Since lim,,_,~ b, = s, there exists a positive integer No such that
n > Ny implies s—e<b, <s-+e.
Let N := max{Nj, No,ng}. Then for n > N we have a,, < x,, < b, and hance
s—e<x, <S+eE.
This shows that lim,,_,~ ,, = S. ]

The above theorem is often called the squeeze theorem. The following two examples

illustrate applications of the theorem.

Example 4. If lim,,_, |a,| = 0, then lim,,_, o, a, = 0.

Proof. Note that —|a,| < a, < |ay|. Since lim,_ |a,| = 0, we have lim,, ,, —|a,| = 0.
By Theorem 2.4 we conclude that lim,, . a, = 0. In particular, for a,, = (—1)"/n, we
obtain lim,,_,~(—1)"/n = 0.

Example 5. If a > 0, then lim,,_,o a'/™ = 1.

Proof. First, consider the case a > 1. In this case, we have

a—1

1<a'/" <1+ Vn e IN.

n

The first inequality is valid because 1™ = 1 < a. The second inequality comes from the

Bernoulli inequality. Indeed, since (a — 1)/n > 0, the Bernoulli inequality gives

1\" 1
(1+a ) >14nl " =14 (a-1) =a
n n

Since lim,, ,oo 1 = 1 and limn_mo(l + (a — 1)/n) = 1, by the squeeze theorem we obtain

lim,, 00 a'/™ = 1.



It remains to deal with the case 0 < a < 1. In this case, 1/a > 1. By what has been
proved, limnﬁoo(l/a)l/” — 1. Therefore, lim,,_, a/™ = lim,_,oo 1/(1/@)1/” =1.

More generally, if a > 0 and if (o, )n=12,... is a sequence of rational numbers such that
lim,, ,~ a,, = 0, then lim,,_,,, a® = 1. To prove this result, we first consider the case

1/k

a > 1. Since limg_,~ a =1 and limj_, oo a~ /¥ = 1, for any given € > 0, there exists

some K € IN such that
1—5<a_l/K<a1/K<1+€.

But lim, . o, = 0. Hence, there exists some ng € IN such that —1/K < «,, < 1/K

whenever n > ng. Thus, for n > ng we have

~1/K /K

a < a® < a'/¥,

Consequently, 1 — e < a®" < 1+ ¢ whenever n > ng. This proves lim,,_,,, a®* = 1. The
proof for the case a = 1 is trivial. It remains to consider the case 0 < a < 1. In this case,

we have 1/a > 1 and lim,,_, o a®" = lim, oo (1/a)™*" = 1. This completes the proof.

Theorem 2.5. Let (an)n=1,2,.. and (by)n=12,.. be two sequences of real numbers. If

lim,, 00 @y, = +00 and lim, o b, = b > 0, then lim,, o (apby,) = +o0.

Proof. Select a real number m so that 0 < m < b. Since lim,,_, o b,, = b > m, there exists

a positive integer N7 such that
n > N; implies b, > m.

Let M > 0. Since lim,,_,, a,, = +00, there exists a positive integer Ny such that
n > Ny implies a, > %

Put N := max{Ny, No}. Then n > N implies a,b,, > (M/m)-m = M. This shows that

lim,, o0 (anby) = +00. O

Example 5. Find lim,,_, a, if

n®—3
= , €N
" n+1 "
Solution. We have
n? -3 n*(l-3%) 1-3
an == = 1 =nNn- 1
Since lim, oo n = 400 and lim, (1 — %)/(1 + %) = 1, by Theorem 2.5 we conclude

that lim,,_, o a,, = +00.



§3. Monotone Sequences

A sequence (ap)n=12,. . is called an increasing sequence if a,, < a,,41 for all n € IN.
It is called a decreasing sequence if a,, > a,,41 for all n € IN. A sequence (ay)n=1,2,... is
said to be a monotone sequence if it is either increasing or decreasing.
Example 1. For n € IN, let a,, := n3, b, :==1—1/n, ¢, := 1/n? and d,, := (—1)".
Then the sequences (ap)n=12,.. and (b,)n=12,... are increasing, the sequence (¢,)n=12,...

is decreasing, but the sequence (d,,)n=12,... is not monotone.
Theorem 3.1. Every bounded monotone sequence of real numbers converges.

Proof. Suppose that (a,)n=1,2,... is a bounded increasing sequence. By S we denote the
set {a, : n € IN} and let u := supS. Since S is bounded, u represents a real number.
Given € > 0, u — € is not an upper bound for S; hence there exists some N € IN such that
an > u — . Since (ap)n=1,2,... is an increasing sequence, we have ay < a,, for all n > N.
Thus n > N implies u — ¢ < a, < u. This proves that lim, - a, = u. An analogous

argument shows that every bounded decreasing sequence converges. ]

Example 2. Let (a,)n=12,. be a sequence of positive real numbers. If

. Ap+1
lim -+

n—00 QA

=t<1,

then lim,, o, a, = 0.

Proof. Choose a real number ¢ such that t < ¢ < 1. Let b, := a,11/a, for n € IN. Since
lim,,_,~ b, = t, there exists a positive integer N such that b, < g for all n > N. We
have a,+1 = apb, and hence a,41 < anq < a, for n > N. Thus the sequence (a,)n=12,...
is decreasing starting from the Nth term. By Theorem 3.1, the sequence converges. Let
s :=lim,,_,~ a, = s. It follows from a,+1 = a,b, that

s= lim an,41 = lim (a,b,) = st.
n—oo n—oo

Consequently, s(1 —¢) = 0. But 1 — ¢ > 0. Therefore, s = 0 as desired. O

Example 3. For a real number c,

Proof. The assertion is obviously true for ¢ = 0. Let us consider the case ¢ > 0. For
n € IN, let a,, := ¢"/n! and b,, :== ay41/a,. Then

A tloopl vl c

"T Dl e (n+1)! T n+1
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It follows that lim,,_,~ b, = 0. By Example 2, we have lim,, ,,, a,, = 0. If ¢ < 0, we have
lan| = |c|™/n!. By what has been proved, lim,,_, » |a,| = 0. Consequently, lim,, _,~, a, = 0.

As an application of Theorem 3.1 we prove the following result, usually referred to
as the property of nested intervals. Note that a bounded closed interval is represented by
[a, b], where a < b. Tts length is || := b — a.

Theorem 3.2. If (I,,),=1,2,. is a sequence of closed and bounded intervals such that
I,41 C I, for alln € IN, then N2, I,, is nonempty. If, in addition, lim,,_, |I,| = 0, then

N>, I, = {c} for some real number c.

Proof. Suppose that I,, = [ay,by], an,b, € R, and a,, < b,. Since I,,11 C I,,, we have
an < apt1 and byy1 < b, for all n € IN. Thus, (an)n=1_2,.. is an increasing sequence and
(bn)n=1,2,... is a decreasing sequence. We have a,, < b; and b, > a; for all n € IN. Hence,
the sequences (ap)n=12.. and (b,)pn=12.. are bounded. By Theorem 3.1, (ap)n=12,...
converges to some real number a. Similarly, (by,)n=1,2,.. converges to some real number b.
We have a,, < a <b < b, for all n € IN. It follows that [a,b] C I,, for all n € IN. Moreover,
it z € N9, 1, then a,, <z <b,. Consequently

a—=— lim a, <z < lim b, = b.
n—r0o0 n—r o0

Hence N%° 4 I,, = [a,b]. We have b—a < |I,,| for all n € IN. If, in addition, lim,, ,~ |I,| = 0,

then b — a = 0. In this case N7, I,, consists of only one real number. ]

Example 4. The above theorem does not hold for open intervals. Set I,, := (0,1/n) for
n € IN. Then I,,11 C I, for all n € IN. But N2, 1, = 0.

§4. Subsequences and Cauchy Sequences

Suppose that (ap)n=1,2,.. is a sequence of real numbers. A subsequence of this
sequence is a sequence of the form (by)r=1,2... ., where for each k there is a positive integer
ny such that by = a,, for £ € IN and that

ng <ng < - <N <Ny < -0

If lim,, o0 a,, = ¢, then every subsequence of (ay,)n=1,2,... also converges to c.

Example 1. Let a, := (—=1)", n € IN. We have as;, = 1 and aggy; = —1 for all £ € IN.
Thus, the subsequence (ask)g=1,2,.. converges to 1 and the subsequence (askt1)k=12,...
converges to —1. Consequently, the sequence (ay,)n=1,2,. . diverges.

We are in a position to establish the following Bolzano-Weierstrass Theorem.
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Theorem 4.1. Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let (2,)n=12,.. be abounded sequence of real numbers. We shall use mathemati-
cal induction to construct a nested sequence of closed intervals (I;)x=12,... as follows. Since
(Tn)n=1,2,... is bounded, a; := inf{z,, : n € IN} and b; := sup{x,, : n € IN} are real num-
bers. Let I1 := [a1,b1]. Then a; <z, < by foralln € IN. Let Fy :={n € N:z, € [ }.
Then F; = IN is an infinite set. Choose ¢; := (a1+b1)/2 to be the middle point of I;. Then
I = [a1,c1] U [e1, b1]. If the set {n € IN : z,, € [a1,c1]} is infinite, then let ay := a7 and
by := c1; otherwise, let as := ¢ and by := by. Let Iy := [as,bs]. Then in both cases, the
set By :={n € IN: z,, € I} is infinite, for otherwise £; would be finite. Suppose that the
intervals Iy = [a1,b1], Is = [a2,bs],..., Iy = [ak, bk] have been constructed such that the set
Ey :={n € N : z,, € I} isinfinite. Choose ci41 := (ax+bx)/2 to be the middle point of Ij.
Then Ij, = [ag, cg)U[ck, bg]. If the set {n € IN : x,, € [ag, ck]} is infinite, then let ag+q1 1= ax
and bi41 = ci; otherwise, let agy1 := ¢ and by := by. Let Ixy1 := [ak+1,bk+1]. Then in
both cases, the set Eyy1 := {n € IN: x,, € I41} is infinite. By our construction I 41 C Iy,
for every k € IN and limy,_, o0 (b —az) = limy_, 00 (b1 —a1)/2¥ =1 = 0. By Theorem 3.2, there
exists a real number ¢ such that limy_, ., ar = limy_,oc b = ¢. Let ny be the least element
of the set Ey. Suppose that nq,...,n; have been chosen. Since the set Ej is infinite, the
set {n € Exy1 :mn > ng} is also infinite. Let ni41 be the least element of this set. Thus, we
obtain an increasing sequence of positive integers (ng)r=12..... Let yi := x,, for k € IN. We
have x,,, € I, that is, ay < x,, < by for all k € IN. Since limy_, o ar = limy_, o by, = ¢, by
Theorem 2.4 we conclude that limy_, o yr = limg_ o0 ©, = c¢. This shows that (z,,)p=12....

has a convergent subsequence. ]

A sequence (ay)n=1,2,... of real numbers is called a Cauchy sequence if for each ¢ > 0

there exists a positive integer N such that
m,n > N implies |a,, —a,| <e.

Theorem 4.2. A sequence of real numbers is convergent if and only if it is a Cauchy

sequence.

Proof. Suppose that (z,)n=12,.. is a sequence of real numbers and lim,,_,, x,, = ¢. For

each ¢ > 0, there exists a positive integer NV such that
n > N implies |z, —c| <e/2.
Consequently,
m,n > N implies |t — Tp| < |xm — |+ e — 25| < e.
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This shows that (x,)n=1,2, .. is a Cauchy sequence.

Now suppose that (z,,)n=1,2,... is a Cauchy sequence. We first prove that it is bounded.
There exists a positive integer N such that m,n > N implies |z, — z,| < 1. In
particular, |z, — xn41] < 1 for n > N, and so |z,| < |zny41] + 1 for n > N. Let
M = max{|zy4+1| + 1, |x1],...,|xN]|}. Then |x,| < M for all n € IN.

Since the sequence (x,,)p=12,.. is bounded. By Theorem 4.1, it has a subsequence
(n, )k=1,2... that converges to some real number c. For each € > 0, there exists a positive
integer kg such that

k > ko implies |z, —c| <e/2.

Moreover, since (z,)n=1,2,... is a Cauchy sequence, there exists a positive integer N such
that

m,n > N implies |z, —x,| <e/2.

Choose k such that k& > kg and np > N. For n > N we have
|y, — | < |xp — Tp, | + |20, — ] <e.

This shows that lim,,_,~ z, = c. ]

Example 2. Let a > 0. If (a,)n=1,2,... is a Cauchy sequence of rational numbers, then

the sequence (ao‘”) is convergent in IR.

n=1,2,...
Proof. By Theorem 4.2 it suffices to show that (ao‘")nzl 5
are three possible cases: a > 1, a=1,or 0 <a < 1. If a =1, then a® =1 for all n € IN,

is a Cauchy sequence. There

and the sequence (aa”)n:1 , s convergent in IR. Let us consider the case a > 1. Since
(0t )n=1,2,... is a Cauchy sequence, there exists a positive integer M such that |a,,| < M
for all n € IN. Tt follows that a=™ < a® < aM for all n € IN. Thus we have

|a“m — aa”‘ = ‘ao‘” (ao‘m_a” — 1)| < aM‘ao‘m_o‘” — 1.

Let € > 0 be given. Since limy_, o at’F = limg_,oo a1k = 1, there exists a positive integer
K such that
1—e/a™ <a VK <aV/K <14¢/aM.

But (an)n=1,2.. is a Cauchy sequence. So there exists a positive integer N such that
—1/K < ayy, — v, < 1/K whenever m,n > N. Suppose m,n > N. Then

1—e/aM < a VK < qgom=n < gV E <14 ¢/aM.
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It follows that |a®m~% — 1| < e/a™. Therefore,
m,n>N — ‘ao‘m - ao‘”| < aM‘ao‘m_O‘" - 1‘ < e.

This shows that (aa”)nzl 9

It remains to deal with the case 0 < a < 1. In this case, we have a®» = (1/a)” "

is a Cauchy sequence.

with 1/a > 1. By what has been proved, the sequence ((1/a)_‘"”)n:1 , is convergent in
IR. Moreover, its limit is a positive real number, because (1/a)~% > (1/a)~™ > 0 for all

n € IN. Therefore, the sequence (aa”)nzl , Is convergent in IR. ]

Now we can define the power a® for any a > 0 and « € IR. Given « € IR, there exists

a sequence (o, )p=1,2,.. of rational numbers such that lim,,_, . o, = . We define

a® = lim a%".
n— oo

If (Bn)n=12,.. is also a sequence of rational numbers such that lim,_,o 8, = a. Then
lim,, 00 (Bn — @) = 0. It follows that

lim ¢’ = lim (a/B”_O‘" 'ao‘") = ( lim aﬁn_a”) . ( lim ao‘”) = lim a%".
n—oo n— oo n—oo n—oo n—oo

Thus the power a® is well defined. It is easily seen that the following properties hold for

all a,b >0 and a, 5 € IR:
a® - af = a®*P, (aa)ﬁ =a“?, (a-b)* =a"-b*

Y

A sequence (z,)p=1,2,.. of real numbers is called contractive if there exists a real
number ¢, 0 < ¢ < 1, such that

[Znt1 — ol < qlTn —Tpa| Vn2>2.

Theorem 4.3. Every contractive sequence of real numbers is a Cauchy sequence.

Proof. Suppose that (z,,),=1,2,.. is a contractive sequence such that the above inequality

holds for some ¢ with 0 < ¢ < 1. By mathematical induction we can show that
|Tpt1 — Tp| < q"_1|x2 —x1| VneIN.

For m > 1, by the triangle inequality we have

m—1 m—1
| Tntm — Tn| = Z (Tntk+1 — Tntr)| < Z }$n+k+1 — Tn+tk|-
k=0 k=0
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It follows that

m—1

T — 2] <Y " my — 2.
k=0
Since 0 < ¢ < 1, we have
m—1 m—1 1 qm qn_l
qn—l—k—l _ qn—l qk _ qn—l(l _'_q_|_ L. _|_qm—1) _ qn—l S ]
k=0 k=0 1—q 1—q
Therefore,

n—1

q
|xn+m_xn| S 1 |£L'2—CE1|.

But lim, . ¢" "' = 0 because 0 < ¢ < 1, . This shows that (z,)n=1.2, . is a Cauchy

sequence. []

By Theorem 4.2, (x,,)n=1,2,... converges to a real number, say c¢. Fix n and let m go
to oo in the inequality |Tp1m — zn| < ¢"71/(1 — q)|z2 — 21]. Then we obtain the following

estimate:
n—1

|c—xn|§i] |zo — 21| Vn e IN.

Example 3. Let (z,,)n=1,2,... be the sequence defined recursively as follows. Let z; := 1.
For n > 1, let 41 := 1/(2+ 2,,). Then (z,,)n=12,.. is a contractive sequence.
Proof. First, we use mathematical induction to show that z,, > 0 for alln € IN. If n =1,
then £y = 1 > 0. For the induction step, suppose x,, > 0. Then 2 + x,, > 0; hence
ZTnt+1 = 1/(2+ x,) > 0. This completes the induction procedure.

For n > 2 we have x,,41 = 1/(2+ z,) and =, = 1/(2 + x,,—1). It follows that

1 1 2+ xp_1)— (24 zp) Tpo1 — T

Tpal — Ty = — = )
+ 2+xn 2+xn—1 (2+$n)(2+xn—1) (2+xn)(2+$n—1)
Since x,, > 0 for all n € IN, we have 2 + x,, > 2 for all n € IN. Therefore,

|mn71 - xn|

(24 2,)(2 + 2n-1)

S Ln _-rn—1|~

1
|[Znt1 — @n| = Z|
This shows that (z,,)n=1,2,... is a contractive sequence.

By Theorem 4.3, lim,,_,~ z,, = ¢ for some ¢ € IR. Since z,, > 0 for all n € IR, we
have ¢ > 0. Taking limits on both sides of the equation z,4+; = 1/(2 + z,), we obtain
c=1/(2+c). It follows that ¢ +2c—1=0. Soc=—1++v2o0rc= —1—+/2. But ¢ > 0.
Therefore we must have ¢ = —1 4+ v/2. In other words, lim,, o x,, = V2 - 1. ]

13



§5. Infinite Series

Given a sequence (ay)n=1,2,.. of real numbers, define
n
Sy, 1= E ar=a1+---+a,, néeIN.
k=1

We call s,, the nth partial sum of the infinite series Y -, a,.

. o0
If (8p)n=1,2,... converges to a real number s, we say that the series )~ , a,, converges

00
g ay, = S.
n=1

The real number s is called the sum of the infinite series > > a,. If the sequence

and we write

(8n)n=1,2,... diverges, then we say that the series >~ a,, diverges. If lim,_, s, = 00, we
o0

say that the series Y " | a,, diverges to oo and write Y - | a, = oo. If lim,_, s, = —00,

[e.e]

e an = —00.

we say that the series > 7 | a, diverges to —oo and write
If 1 <m <n, then

n m—1 n
E ap = E ap + E ay.

Thus the series ) -, a, converges if and only if the series ) " a, converges.

As an example, let us consider the series

Its nth partial sum is

" /1 1 1 1 1 1 1 1
=S e) 0D G e G =
5 ;(k: k:+1) ( 5) T e~ 3) T LT n+1

It follows that lim, ., s, = 1. Therefore, the series converges and its sum is 1.

The following results can be easily derived from the above definition.

Theorem 5.1. IfY >°  a, =sand Y -, b, =t, then

Z(an-i-bn) =s+t and ann =cs for ceR.
n=1 n=1

We observe that a,, = s,, — s,,—1 for n > 2. If the series 220:1 a, converges, then

(Sn)n=1,2,... converges to a real number s. It follows that

lim a, = lim (s, — $—1) =s—s=0.
n—oo n— oo

14



Thus, if a sequence (ap)n=1,,.. diverges or lim, ,. a, # 0, then the series ), a,
diverges.

If a,7 € R and a,, = ar™ ! for n € IN, then the series

o0 o0
E an = E ar™ !
n=1 n=1

is called a geometric series. The case a = 0 is trivial. In what follows we assume a # 0.

If || > 1, then the sequence (ar™ 1)

n=1,2,... €ither diverges or converges to a nonzero real
number. Hence, the geometric series Y - ar™~! diverges for |r| > 1. Suppose |r| < 1.

Then

s —iark_l—a(1+r+...+rn—1)_a(l_rn) ncIN
' k=1 L—r '
For |r[ <1 we have lim,, o 7" = 0. Consequently,
: a
Jm = g

Therefore, for |r| < 1, the geometric series > -, ar™ ™! converges and its sum is a/(1—7).

We are in a position to consider infinite series with nonnegative terms.

Theorem 5.2. Let (ay)n=1,2,.. be a sequence of real numbers with a,, > 0 for all n € IN.
Then the series Y| a, converges if and only if the sequence (Sy,)n=1,2,.. of partial sums

is bounded.

Proof. We have s, = a3 + --- 4+ a,. Since a, > 0 for all n € IN, s,41 > s, for all
n € IN. Thus, (s,)n=1,2,.. is an increasing sequence. If this sequence is bounded, then it
converges, by Theorem 3.1. Thus the series Y -, a,, converges if (s,)n=1,2,... is bounded.

If ($p)n=1,2,.. is unbounded, then the sequence diverges. Hence >~ | a,diverges. ]

Let us investigate convergence or divergence of the p-series y | nip, where p is a real
number. For n € N, let a,, := 1/n? and s, := a1 + -+ + a,. Suppose p > 1. The index
set {j € N:1<j<2™—1} is the disjoint union U {j € IN: 2¥71 < j <2F —1}. Tt
follows that

m  2F—1

1
Szm_lzz Z j_p

k=1 jzgk—l
If 28=1 < j < 2% — 1, then 57 > (2F"1)P and 1/57 < 1/(2*~1)P. The number of terms in
k
the sum Z?Z;},l Jl is 28 — 1 —2F=1 + 1 =2F~1 Hence,

p
2F_1

k-1 k—1
Z jip = (22k—1)p - (22p)k:—1 = (2/2p)k_1 = (21_p)k_1,

j:2k—1

15



Consequently,
m  2F—1

1 i 1
e DU DR DI RS

k=1 j=2k—1 k=1
Given n € IN, we can find m € IN such that n < 2™—1. So s, < som_1 < 1/(1—-217P). This
shows that the sequence (s,)n=1,2,... is bounded. By Theorem 5.2 the p-series converges
for p > 1.
For p <1 and m € IN we have

2™m 2™m

1 m 2k
SR DV SO VI
Jj=1 Jj= 17 k=1

il m

Since lim,, o (1 + m/2) = oo, we see that the sequence (sy)n=1,2,.. is unbounded. By

u.| —_
I\/

Theorem 5.2 the p-series diverges for p < 1.

§6. Convergence Tests for Series
In this section we give several tests for convergence of series.

Theorem 6.1 (Comparison Test). Let (a,)n=12,. and (b,)n=12,.. be two sequences
of real numbers such that 0 < a,, < b,, for all n € IN. If the series Zzo:l b, converges, then

. 0o
the series ), a, converges.

Proof. Forn € IN, let s,, :=a1+---+a, and t,, := by +---+0b,. Since 0 < a,, < b,, for all
n € IN, we have s,, <t, for all n € IN. If the series 2?21 b, converges, then the sequence
(tn)n=1,2,... is bounded. Consequently, the sequence (sy,)n=12,.. is bounded. Therefore,

the series Y °~ | a,, converges, by Theorem 5.2. ]

Example 1. Test convergence or divergence for the series > 7 | 2(=1D)"—n

Solution. Tt follows from (—1)" < 1 that 2(-D"~" < 21=7 for all n € IN. Since the geo-
metric series > o, 217" converges, the series >0 | 2(=1D" =" converges, by the comparison
test.

Theorem 6.2 (The Ratio Test). Let > . - a, be a series of positive terms such that

. An+1
lim L —

n—oo  Qa,

exists. If L < 1, then the series Y .-, a, converges. If L > 1, then the series Y - | a,

diverges.

Proof. Suppose L < 1. Then there exists a real number ¢ such that L < ¢ < 1. Since

lim,, o0 apy1/a, = L, there exists a positive integer N such that a,y1/a, < ¢ whenever
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n > N. It follows that a,+1 < qa, for n > N. By using mathematical induction we infer
that a,, < ¢" Nay for all n > N. Since 0 < ¢ < 1, the geometric series > >~ v ang" ™V
converges. By the comparison test, the series Y ~~ \ a, converges. Therefore, the series
> | ay, converges.

Suppose L > 1. Then there exists a real number r such that 1 < » < L. Since
lim,, o0 @py1/a, = L, there exists a positive integer N such that a,11/a, > r whenever
n > N. It follows that a,4+1 > ra, for n > N. By using mathematical induction we
infer that a, > " Nay for all n > N. Since r > 1, the geometric series ZZO:N anr"N

diverges. By the comparison test, the series > 7 | a,, diverges. ]

Example 2. Test convergence or divergence for the series >  n!/3™.
Solution. Let a,, :=n!/3", n € IN. We have
1) 3" Hr 3" 1
lim 97t = g BEDES_ g, (04 D) m 2

= m — — =
n—00 QA n—o00 3”"’1 n! n—o00 n) 3n—|—1 n—o00 3

Q.

By the ratio test, the series Y >~ n!/3"™ diverges.

Example 3. Let 0 < r < 1. Test convergence or divergence for the series Y 7, nk

r",
where k is a positive integer.
Solution. Let u,, := n*r™ for n € IN. We have

lim

n—00 Uy n—o00 nkrn n—o00

1 k,.n+1 1\ %k
Untl _ fim —(n+ )or = lim (n—l— )

1\%
r= lim <1+—) r=r.
n n

n—oo

Since 0 < r < 1, the series >, nkr™ converges, by the ratio test.

A series 220:1 ay is called an alternating series if there exists a sequence (by,)n=1,2,...

of nonnegative numbers such that a,, = (—1)"b, or a, = (—1)""1b, for all n € IN.

Theorem 6.3 (The Alternating Series Test). If (by,)n=1,2,... is a sequence of nonneg-
ative numbers such that b, > b,, 1 for all n € IN and lim,,_,, b, = 0, then the alternating

series Y o (—1)""1b,, converges.

Proof. Let s, := Y, _,(—1)*71by, n € IN. We claim that (s2,)n—12, . is an increasing

sequence. Indeed, we have
_ 2 2n+1 _
Son+t2 — San = (—1)T"bapt1 + (—1)7" " bapto = bapt1 — bany2 > 0.
Moreover, (S25,4+1)n=1,2,... is a decreasing sequence, because

Sonis — Soni1 = (— 1) bgy o 4+ (1) by, 13 = —boy o + banas < 0.

17



Further, Soan+1 — S2n = (—1>2nbgn+1 = b2n+1 Z 0, SO Sop S Son+1 for all n € IN. By
Theorem 3.1, both sequences (S25,)n=1,2,... and (S2,41)n=1,2,... converge. But

lim (s — S = lim b = 0.
n_}QQ( 2n—+1 2n) oo 2n—+1

Thus, there exists a real number s such that lim, . s2,, = limy, o0 S2n+1 = 5. Conse-

quently, lim,, ,~, s, = s. This shows that the series Zzozl(—l)”_lbn converges. ]
Note that sg, < s < s9,41 for all n € IN. It follows that
0<s—59p, < Sopg1 — S2pn = bopy1 and 0 < s9p41 — 5 < Sopt1 — Sopg2 = bopyo.
Thus we get the following error estimate:
|s — sp| <bpi1 VneN.

Example 4. For p > 0, the alternating series > >  (—1)""!/nP converges.

Proof. For n € IN, let b, := 1/n? and a, := (—1)""1'b,. The sequence (b,)n=12, . is
decreasing. Indeed, since p > 0, we have n? < (n+1)?,s0 1/nP > 1/(n+1)? for all n € IN.
Moreover, lim,,_,o 1/n? = 0. By the alternating series test, the series > 2 (—1)""!/n?

converges.

For a real number a, let a™ := max{a,0} and a~ := max{—a,0}. We call at the
positive part of a and a~ the negative part of a, respectively. Evidently, |a| = a* +a~

and a=at —a".

Theorem 6.4. Let (an)n=1,2,.. be a sequence of real numbers. If the series > ., |ay]|

converges, then the series Y .| a, converges.

Proof. We observe that 0 < a}} < |a,] and 0 < a,, < |a,| for all n € IN. If the series
>0 | lay| converges, then both >~ a;f and > 7, a;, converge, by the comparison test.

But a, = a;f — a,, for all n € IN. We conclude that the series Y | a,, converges. [

If > | |an| converges, then we say that the series > 7 | a,, converges absolutely.
If >°° | a, converges, but > > l|a,| diverges, then we say that >  a, converges
conditionally. For example, the alternating harmonic series

) _1)"
Z(n)

n=1

converges conditionally.



