Chapter 1. Sets and Numbers

$\S 1$. Sets

A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write $x \in A$. If x does not belong to A, we write $x \notin A$. A set is thus determined by its elements.

Let A and B be sets. We say that A and B are equal, if they consist of the same elements; that is,

$$
x \in A \quad \Longleftrightarrow \quad x \in B
$$

The set with no elements is called the empty set and is denoted by \emptyset. For any object x, there is a set whose only member is x. This set is denoted by $\{x\}$ and called a singleton. For any two objects x, y, there is a set whose only members are x and y. This set is denoted by $\{x, y\}$.

Let A and B be sets. The set A is called a subset of B if every element of A is also an element of B. If A is a subset of B, we write $A \subseteq B$. Further, if A is a subset of B, we also say that B is a superset of A and write $B \supseteq A$.

It follows immediately from the definition that A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$. Thus, every set is a subset of itself. Moreover, the empty set is a subset of every set.

If $A \subseteq B$ and $A \neq B$, then A is a proper subset of B and written as $A \subset B$.
Let A be a set. A condition P on the elements of A is definite if for each element x of A, it is unambiguously determined whether $P(x)$ is true or false. For each set A and each definite condition P on the elements of A, there exists a set B whose elements are those elements x of A for which $P(x)$ is true. We write

$$
B=\{x \in A: P(x)\} .
$$

Let A and B be sets. The intersection of A and B is the set

$$
A \cap B:=\{x \in A: x \in B\} .
$$

The sets A and B are said to be disjoint if $A \cap B=\emptyset$. The set difference of B from A is the set

$$
A \backslash B:=\{x \in A: x \notin B\} .
$$

The set $A \backslash B$ is also called the complement of B relative to A.
Let A and B be sets. There exists a set C such that

$$
x \in C \Longleftrightarrow x \in A \text { or } x \in B .
$$

We call C the union of A and B, and write $C=A \cup B$.

Theorem 1.1. Let A, B, and C be sets. Then
(1) $A \cup B=B \cup A ; A \cap B=B \cap A$.
(2) $(A \cup B) \cup C=A \cup(B \cup C) ;(A \cap B) \cap C=A \cap(B \cap C)$.
(3) If $A \subseteq B$, then $A \cap B=A$ and $A \cup B=B$.
(4) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C) ; A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof. We shall prove $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ only. Suppose $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Since $x \in B \cup C$, either $x \in B$ or $x \in C$. Consequently, either $x \in A \cap B$ or $x \in A \cap C$, that is, $x \in(A \cap B) \cup(A \cap C)$.

Conversely, suppose $x \in(A \cap B) \cup(A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$. In both cases, $x \in A$ and $x \in B \cup C$. Hence, $x \in A \cap(B \cup C)$.

Theorem 1.2. (DeMorgan's Rules) Let A, B, and X be sets. Then
(1) $X \backslash(X \backslash A)=X \cap A$.
(2) $X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)$.
(3) $X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$.

Proof. (1) If $x \in X \backslash(X \backslash A)$, then $x \in X$ and $x \notin X \backslash A$. It follows that $x \in A$. Hence, $x \in X \cap A$. Conversely, if $x \in X \cap A$, then $x \in X$ and $x \notin X \backslash A$. Hence, $x \in X \backslash(X \backslash A)$.
(2) Suppose $x \in X \backslash(A \cup B)$. Then $x \in X$ and $x \notin A \cup B$. It follows that $x \notin A$ and $x \notin B$. Hence, $x \in X \backslash A$ and $x \in X \backslash B$, that is, $x \in(X \backslash A) \cap(X \backslash B)$. Conversely, suppose $x \in(X \backslash A) \cap(X \backslash B)$. Then $x \in X \backslash A$ and $x \in X \backslash B$. It follows that $x \in X$, $x \notin A$ and $x \notin B$. Hence, $x \notin A \cup B$, and thereby $x \in X \backslash(A \cup B)$.
(3) Its proof is similar to the proof of (2).

In describing a set, the order in which the elements appear does not matter. Thus the set $\{a, b\}$ is the same as the set $\{b, a\}$. When we wish to indicate that a pair of elements a and b is ordered, we enclose the elements in parentheses: (a, b). Then a is called the first element and b is called the second. The important property of ordered pairs is that

$$
(a, b)=(c, d) \quad \text { if and only if } a=c \text { and } b=d
$$

If A and B are sets, then the Cartesian product of A and B, written $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.
Example 1. Let A be the set of three colors: red, blue, and yellow, and let B be the set of four fruits: apple, banana, orange, and peach. Then $A \times B$ is the set of the following twelve elements:

(red, apple)	(red, banana)	(red, orange)	(red, peach)
(blue, apple)	(blue, banana)	(blue, orange)	(blue, peach)
(yellow, apple)	(yellow, banana)	(yellow, orange)	(yellow, peach)

Let X be a set. The collection of all subsets of X is called the power set of X, written as $\mathcal{P}(X)$. The empty set has no elements. But it has exactly one subset. So the power set of \emptyset is the singleton $\{\emptyset\}$.
Example 2. Let X be the set of three letters a, b, and c. List all the elements of $\mathcal{P}(X)$. Solution. The elements of $\mathcal{P}(X)$ are $\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}=A$. It has eight elements.

§2. The Natural Numbers

We denote the set $\{1,2,3, \ldots\}$ of all natural numbers by \mathbb{N}. Each natural number n has a successor, namely $n+1$. The set \mathbb{N} of natural numbers has the following properties:

1. 1 belongs to \mathbb{N};
2. If n belongs to \mathbb{N}, then its successor $n+1$ belongs to \mathbb{N};
3. 1 is not the successor of any element in \mathbb{N};
4. If m and n in \mathbb{N} have the same successor, then $m=n$;
5. A subset of \mathbb{N} which contains 1 , and which contains $n+1$ whenever it contains n, must equal \mathbb{N}.
The above five properties are known as the Peano Axioms.
Addition and multiplication are defined in \mathbb{N}. For $m, n \in \mathbb{N}$, the sum $m+n$ is a natural number. The addition is commutative and associative:

$$
\begin{aligned}
m+n & =n+m \quad \forall m, n \in \mathbb{N}, \\
(m+n)+k & =m+(n+k) \quad \forall m, n, k \in \mathbb{N} .
\end{aligned}
$$

The product $m n$ of two natural numbers m and n is a natural number. The multiplication is also commutative and associative:

$$
\begin{aligned}
m n & =n m \quad \forall m, n \in \mathbb{N}, \\
(m n) k & =m(n k) \quad \forall m, n, k \in \mathbb{N} .
\end{aligned}
$$

Moreover, the multiplication is distributive with respect to the addition:

$$
m(n+k)=m n+m k \quad \forall m, n, k \in \mathbb{N} .
$$

The last property in the Peano Axioms is the basis of mathematical induction. Let P_{1}, P_{2}, \ldots be a list of statements or propositions that may or may not be true. The principle of mathematical induction asserts that all the statements P_{1}, P_{2}, \ldots are true if (I_{1}) P_{1} is true, and
(I_{2}) P_{n+1} is true whenever P_{n} is true.

We will refer to $\left(I_{1}\right)$ as the basis for induction and will refer to $\left(I_{2}\right)$ as the induction step. For a sound proof based on mathematical induction, properties $\left(I_{1}\right)$ and (I_{2}) must both be verified.
Example 1. Prove $1+2+\cdots+n=n(n+1) / 2$ for natural numbers n.
Proof. Our nth proposition is P_{n} : " $1+2+\cdots+n=n(n+1) / 2$ ". Thus P_{1} asserts that $1=1(1+1) / 2$. This is obviously true.

For the induction step, suppose that P_{n} is true, i.e., $1+2+\cdots+n=n(n+1) / 2$. Since we wish to prove P_{n+1} from this, we add $n+1$ to both sides to obtain

$$
\begin{aligned}
& 1+2+\cdots+n+(n+1)=\frac{1}{2} n(n+1)+(n+1) \\
& =\frac{1}{2}(n+1)(n+2)=\frac{1}{2}(n+1)((n+1)+1)
\end{aligned}
$$

Thus, P_{n+1} is true if P_{n} holds. By the principle of mathematical induction, we conclude that P_{n} is true for all n.

Example 2. If a set X has n elements, then the power set $\mathcal{P}(X)$ has 2^{n} elements. Proof. We proceed by mathematical induction on n. If $n=1$ and X has one element, then X has exactly two subsets: \emptyset and X itself. So $\mathcal{P}(X)$ has exactly two elements. This establishes the basis for induction.

For the induction step, suppose that the power set of any set with n elements has 2^{n} elements. Let X be a set having $n+1$ elements. Fix an element x in X. Then $A:=X \backslash\{x\}$ has n elements. By the induction hypothesis, the power set $\mathcal{P}(A)$ has 2^{n} elements. Let B be a subset of X. Either $x \in B$ or $x \notin B$. If $x \notin B$, then B is a subset of A. If $x \in B$, then $B=(B \cap A) \cup\{x\}$. Thus any subset B of X is either a subset of A or is the union of a subset of A with $\{x\}$. The number of subsets of A is 2^{n}, and the number of subsets of the form $C \cup\{x\}$ with $C \subseteq A$ is also 2^{n}. Therefore the total number of subsets of X is $2^{n}+2^{n}=2^{n+1}$. This completes the induction procedure.

§3. Relations

Let A and B be sets. A relation from A to B is any subset R of $A \times B$. We say that $a \in A$ and $b \in B$ are related by R if $(a, b) \in R$, and we often denote this by writing " $a R b$ ". If $B=A$, then we speak a relation $R \subseteq A \times A$ being a relation on A.

A relation R on a set S is called an equivalence relation if it has the following properties for all $x, y, z \in S$:
E1. (reflexivity) $x R x$;

E2. (symmetry) if $x R y$, then $y R x$;
E3. (transitivity) if $x R y$ and $y R z$, then $x R z$.
Example 1. Let X be a set and let S be the power set $\mathcal{P}(X)$. An element of $S \times S$ has the form (A, B), where A and B are subsets of X. Let

$$
R=\{(A, B) \in S \times S: A \text { and } B \text { have the same number of elements }\}
$$

Then R is an equivalence relation on S.
Given an equivalence relation R on a set S, we define the equivalence class (with respect to R) of $x \in S$ to be the set

$$
E_{x}=\{y \in S: y R x\} .
$$

Since R is reflexive, each element of S is in some equivalent class. Furthermore, two different equivalent classes must be disjoint.

In the above example, if $X=\{a, b, c\}$ is the set of three letters a, b, and c, then its power set $S=\mathcal{P}(X)$ has four equivalence classes with respect to R : $\{\emptyset\},\{\{a\},\{b\},\{c\}\}$, $\{\{a, b\},\{a, c\},\{b, c\}\},\{\{a, b, c\}\}$. They form a partition of S.

A relation R on a set S is called a partial ordering if it has the following properties for all $x, y, z \in S$:
O1. (reflexivity) $x R x$;
O2. (antisymmetry) if $x R y$ and $y R x$, then $x=y$;
O3. (transitivity) if $x R y$ and $y R z$, then $x R z$.
Example 2. Let X be a set and let S be the power set $\mathcal{P}(X)$. An element of $S \times S$ has the form (A, B), where A and B are subsets of X. Let

$$
R=\{(A, B) \in S \times S: A \subseteq B\}
$$

Then R is a partial ordering on S.
Let $m, n \in \mathbb{N}$. If there exists some $k \in \mathbb{N}$ such that $n=m+k$, then we write $m<n$ or $n>m$. If $m<n$ or $m=n$, we write $m \leq n$ or $n \geq m$. It is clear that \leq is a partial ordering on \mathbb{N}.

A partial ordering \leq on a set S is called a linear or total ordering if it has the additional property
O4. (comparability) For $x, y \in S$, either $x \leq y$ or $y \leq x$.
The partial ordering \leq on \mathbb{N} is a total ordering. On the other hand, if a set X has more than one element, then the relation \subseteq on $\mathcal{P}(X)$ is not a total ordering. Indeed, for any two distinct elements x and y in X, neither $\{x\} \subseteq\{y\}$ nor $\{y\} \subseteq\{x\}$.

Let \leq be a partial ordering on a nonempty set X. For $x, y \in X, y \geq x$ has the same meaning as $x \leq y$. If $x \leq y$ and $x \neq y$, then we write $x<y$ or $y>x$. Let A be a nonempty subset of X. An element $a \in A$ is called the smallest (least) element of A if $a \leq x$ for all $x \in A$. Note that such an element is unique. Indeed, if a_{1} and a_{2} are two such elements of A, then $a_{1} \leq a_{2}$ and $a_{2} \leq a_{1}$. Since the relation \leq is antisymmetric, it follows that $a_{1}=a_{2}$. An element $b \in A$ is called the largest (greatest) element of A, if $b \geq x$ for all $x \in A$. An element $r \in A$ is said to be a minimum of A if there is no element $x \in A$ such that $x<r$. An element $s \in A$ is said to be a maximum of A if there is no element $y \in A$ such that $y>s$.

Theorem 3.1. Let \leq be a partial ordering on a nonempty set X, and let A be a nonempty subset of X.
(1) Suppose that a is the smallest element of A. Then a is also a minimal element of A, and a is the only minimal element of A.
(2) If \leq is a total ordering on X and a is a minimal element of A, then a is the smallest element of A.

Proof. (1) Let a be the smallest element of A. Then $a \leq x$ for all $x \in A$; hence there is no $x \in A$ such that $x<a$. This shows that a is a minimal element of A. Further, if $b \in A$ and $b \neq a$, then we have $b \geq a$ and $b \neq a$. Hence $b>a$. So b is not a minimal element of A. This shows that a is the only minimal element of A.
(2) Suppose that \leq is a total ordering on X and a is a minimal element of A. Let x be an arbitrary element of A. Since \leq is a total ordering, either $x \geq a$ or $x<a$. But a is a minimal element of A. So $x<a$ is false. Hence we must have $x \geq a$. This shows that a is the smallest element of A.

Theorem 3.2. Every nonempty subset of \mathbb{N} contains a least element.
Proof. Let S_{n} be the set of all natural numbers less than or equal to n. Let P_{n} be the statement that every nonempty subset of S_{n} contains a least element. For $n=1$, if A is a nonempty subset of $\{1\}$, then $A=\{1\}$ and 1 is the least element of A. For the induction step, suppose P_{n} is true. Let A be a nonempty subset of S_{n+1}. If $A \cap S_{n}$ is empty, then $A=\{n+1\}$ and $n+1$ is the least element of A. If $A \cap S_{n}$ is nonempty, then it has a least element a, by the induction hypothesis P_{n}. It is easily seen that a is the least element of A. This completes the induction step.

Now let A be an arbitrary nonempty subset of \mathbb{N}. Then A contains a natural number, say n. The intersection $A \cap S_{n}$ is a nonempty subset of S_{n}. By what has been proved, $A \cap S_{n}$ has a least element a. Clearly, a is the least element of A.

§4. Functions

Let A and B be sets. Suppose that F is a relation from A to B. Then F is called a function from A to B if for every $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in F$. Functions are also called maps or mappings.
Example 1. For each of the following relations from $A=\{a, b, c, d\}$ to $B=\{1,2,3,4,5\}$, determine whether or not it is a function from A to B.
(1) $\{(a, 1),(b, 2),(c, 3)\}$
(2) $\{(a, 1),(b, 2),(c, 3),(d, 4),(d, 5)\}$
(3) $\{(a, 1),(b, 2),(c, 3),(d, 5)\}$
(4) $\{(a, 5),(b, 5),(c, 5),(d, 5)\}$

Solution. (1) No, since $d \in A$, but there is no pair (d, x) in the relation. (2) No, since both $(d, 4)$ and $(d, 5)$ are in the relation. (3) Yes, since each element of A is related to exactly one element of B. (4) Yes, since each element of A is related to exactly one element of B, even though every element of A is related to the same element of B.

Suppose that f is a function from A to B. Then A is called the domain of the function f. If $a \in A$, then there is exactly one element b in B such that $(a, b) \in f$. This unique b is called the value of f at a or the image of a under f, and it is written $f(a)$. The set $\{f(a): a \in A\}$ is called the range of f. It is a subset of B. Let f_{1} be a function from A_{1} to B_{1}, and let f_{2} be a function from A_{2} to B_{2}. Then $f_{1}=f_{2}$ if and only if $A_{1}=A_{2}$, $B_{1}=B_{2}$, and $f_{1}(a)=f_{2}(a)$ for all $a \in A_{1}$.

Let A and B be sets and let f be a function from A to B. Then f is called injective or one-to-one if for all $x, y \in A, f(x)=f(y)$ implies that $x=y$. Moreover, f is called surjective or onto if for all $b \in B$ there is an $a \in A$ with $f(a)=b$. Finally, f is called bijective if f is both injective and surjective.
Example 2. (1) Let f be the function from \mathbb{N} to \mathbb{N} given by $f(n)=2 n$ for $n \in \mathbb{N}$. Then f is injective but not surjective. (2) Let g be the function from \mathbb{N} to \mathbb{N} that sends each $n \in \mathbb{N}$ to the least natural number m such that $2 m \geq n$. Then g is surjective but not injective. (3) Let $A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4,5\}$. Let h be the relation $\{(a, 1),(b, 2),(c, 3),(d, 4),(e, 5)\}$. Then h is a bijective function.

Let A be a set, and let i_{A} be the relation $\{(a, a): a \in A\}$. We call i_{A} the identity function on A. In other words, $i_{A}(a)=a$ for all $a \in A$. Clearly, i_{A} is bijective.

Let A, B, C be sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Let h the function given by $h(a)=g(f(a)), a \in A$. Then h is called the composition of f and g and denoted by $g \circ f$.

Theorem 4.1. Let A and B be sets and let f be a function from A to B. Then f is
bijective if and only if there exists a function g from B to A such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof. If there exists a function g from B to A such that $g \circ f=i_{A}$, then f is injective. Indeed, if $x, y \in A$ and $f(x)=f(y)$, then

$$
x=i_{A}(x)=g(f(x))=g(f(y))=i_{A}(y)=y .
$$

Moreover, suppose $f \circ g=i_{B}$. Then for $b \in B$ we have $f(g(b))=(f \circ g)(b)=i_{B}(b)=b$. So f is surjective.

Conversely, suppose that f is bijective. Recall that f is considered as a relation from A to B. Let g be the relation from B to A given by $\{(b, a) \in B \times A: f(a)=b\}$. Since f is bijective, g is a function. Thus $g(b)=a$ if and only if $f(a)=b$. Hence, $g(f(a))=a$ for all $a \in A$ and $f(g(b))=b$ for all $b \in B$. This shows that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Let f be a bijective function from A to B. From the above proof we see that there is a unique function g from B to A such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$. The function g is called the inverse of f.

§5. Integers

Let \mathbb{Z} denote the set of integers. We have

$$
\mathbb{Z}:=\mathbb{N} \cup\{0\} \cup\{-n: n \in \mathbb{N}\}
$$

In other words, the set \mathbb{Z} consists of positive integers, 0 , and negative integers. Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Addition and multiplication are defined in \mathbb{Z}. In particular, $m+0=m$ and $m \cdot 1=m$ for all $m \in \mathbb{Z}$. We define $-0:=0$ and $-(-n):=n$ for $n \in \mathbb{N}$. Consequently, $n+(-n)=$ 0 for all $n \in \mathbb{Z}$. Both addition and multiplication are associative and commutative. Moreover, multiplication is distributive with respect to addition:

$$
m(n+k)=m n+m k \quad \forall m, n, k \in \mathbb{Z}
$$

A system $(R,+, \cdot)$ is called a commutative ring, if R is a nonempty set and the addition and multiplication satisfy the following properties:
A1. The addition is associative: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$.
A2. The addition is commutative: $a+b=b+a$ for all $a, b \in R$.
A3. R has a zero element 0 such that $a+0=a$ for all $a \in R$.

A4. Each element $a \in R$ has a negative element $-a$ such that $a+(-a)=0$.
M1. The multiplication is associative: $(a b) c=a(b c)$ for all $a, b, c \in R$.
M2. The multiplication is commutative: $a b=b a$ for all $a, b \in R$.
DL . The multiplication is distributive with respect to addition: $a(b+c)=a b+a c$ for all $a, b, c \in R$.
If R has an element $1 \neq 0$ such that $a \cdot 1=a$ for all $a \in R$, then R is called the identity of R. Thus $(\mathbb{Z},+, \cdot)$ is a commutative ring with identity.

Theorem 5.1. Let $(R,+, \cdot)$ be a commutative ring. The following statements are true for $a, b, c \in R$.
(1) $a+c=b+c$ implies $a=b$;
(2) $-(-a)=a$;
(3) $a \cdot 0=0$;
(4) $(-a) b=-a b$;
(5) $(-a)(-b)=a b$.

Proof. (1) $a+c=b+c$ implies $(a+c)+(-c)=(b+c)+(-c)$ and so by A1 we have $a+[c+(-c)]=b+[c+(-c)]$. By A4 this reduces to $a+0=b+0$ and so $a=b$ by A3.
(2) By A4 and A2 we have $[-(-a)]+(-a)=0=a+(-a)$ and so $-(-a)=a$ by (1).
(3) We use A3 and DL to obtain $a \cdot 0=a(0+0)=a \cdot 0+a \cdot 0$. Hence, $0+a \cdot 0=a \cdot 0+a \cdot 0$. By (1) we conclude that $a \cdot 0=0$.
(4) Since $a+(-a)=0$, we have $a b+(-a) b=[a+(-a)] b=0 \cdot b=0=a b+(-a b)$. From (1) we obtain $(-a) b=-a b$.
(5) By (4) and (2) we have $(-a)(-b)=-a(-b)=-(-a b)=a b$.

For $a, b \in R$, we have $(a+(-b))+b=a+((-b)+b)=a+0=a$. Moreover, if $c+b=a$, then it follows from (1) in the above theorem that $c=a+(-b)$. We define the difference $a-b$ as $a+(-b)$. We have

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}, \quad(a-b)^{2}=a^{2}-2 a b+b^{2}, \quad \text { and } \quad(a+b)(a-b)=a^{2}-b^{2} .
$$

There is a natural order relation on \mathbb{Z}. For $m, n \in \mathbb{Z}$, if $n-m \in \mathbb{N}_{0}$, then we write $m \leq n$ or $n \geq m$. Evidently, \leq is a total ordering on \mathbb{Z}. If $m, n \in \mathbb{Z}$ and $m \leq n$, then $m+k \leq n+k$ for all $k \in \mathbb{Z}$. Moreover, $m k \leq n k$ for all $k \geq 0$.

A commutative ring R is called an ordered commutative ring if it has a total ordering \leq satisfying the following properties for all $a, b, c \in R$:
OA. If $a \leq b$, then $a+c \leq b+c$.
OM. If $a \leq b$ and $0 \leq c$, then $a c \leq b c$.
Thus, $(\mathbb{Z},+, \cdot, \leq)$ is an ordered commutative ring with identity.

Theorem 5.2. Let $(R,+, \cdot, \leq)$ be an ordered commutative ring with identity. The following statements are true for $a, b, c \in R$.
(1) if $a \leq b$, then $-b \leq-a$;
(2) if $a \leq b$ and $c \leq 0$, then $b c \leq a c$;
(3) $0<a^{2}$ for all $a \neq 0$;
(4) $0<1$.

Proof. (1) Suppose that $a \leq b$. By OA we have $a+[(-a)+(-b)] \leq b+[(-a)+(-b)]$. It follows that $-b \leq-a$.
(2) If $a \leq b$ and $c \leq 0$, then $0 \leq-c$ by (1). Now by OM we have $a(-c) \leq b(-c)$, i.e., $-a c \leq-b c$. From (1) again, we see that $b c \leq a c$.
(3) Since \leq is a total ordering, either $0<a$ or $a<0$. If $0<a$, then $0 \cdot a<a \cdot a$. If $a<0$, then $0<-a$ and so $0(-a)<(-a)(-a)$. In both cases we obtain $0<a^{2}$.
(4) Since $1 \neq 0$, by (3) we have $0<1^{2}=1$.

Let $(R,+, \cdot, \leq)$ be an ordered commutative ring. The absolute value $|a|$ of an element a in R is defined as follows:

$$
|a|:= \begin{cases}a & \text { if } a>0 \\ 0 & \text { if } a=0 \\ -a & \text { if } a<0\end{cases}
$$

Theorem 5.3. Let $(R,+, \cdot, \leq)$ be an ordered commutative ring. The following statements are true for $a, b \in R$.
(1) $|a| \geq 0$;
(2) $-|a| \leq a \leq|a|$;
(3) $|a| \leq b$ if and only if $-b \leq a \leq b$;
(4) $|a| \geq b$ if and only if $a \geq b$ or $a \leq-b$;
(5) $|a+b| \leq|a|+|b|$;
(6) $|a b|=|a| \cdot|b|$.

Proof. (1) It follows from the definition at once.
(2) If $a \geq 0$, then $a=|a| \geq-|a|$. If $a<0$, then $|a|=-a$, and hence $a=-|a| \leq|a|$.
(3) Suppose $|a| \leq b$. It follows that $-b \leq-|a|$. By (2) we have $-|a| \leq a \leq|a|$. Consequently, $-b \leq a \leq b$. Conversely, suppose $-b \leq a \leq b$. It follows that $-a \leq b$. We have $|a|=a$ or $|a|=-a$. In either case, $|a| \leq b$.
(4) Suppose $|a| \geq b$. It follows that $-|a| \leq-b$. If $a \geq 0$, then $a=|a| \geq b$; if $a<0$, then $a=-|a| \leq-b$. Conversely, suppose $a \geq b$ or $a \leq-b$. Note that $a \leq-b$ implies $-a \geq b$. We have $|a|=a$ or $|a|=-a$. In either case, $|a| \geq b$.
(5) We use (2) to deduce that $-|a| \leq a \leq|a|$ and $-|b| \leq b \leq|b|$. It follows that $-(|a|+|b|) \leq a+b \leq|a|+|b|$. Then by (3) we have $|a+b| \leq|a|+|b|$.
(6) There are four cases. If $a \geq 0$ and $b \geq 0$, then $a b \geq 0$; hence $|a b|=a b=|a| \cdot|b|$. If $a \leq 0$ and $b \leq 0$, then $a b \geq 0$; hence, $|a b|=a b=(-a)(-b)=|a| \cdot|b|$. If $a \leq 0$ and $b \geq 0$, then $a b \leq 0$; hence, $|a b|=-a b=(-a) b=|a| \cdot|b|$. Finally, if $a \geq 0$ and $b \leq 0$, then $a b \leq 0$; hence, $|a b|=-a b=a(-b)=|a| \cdot|b|$.

An integer m is a factor or divisor of an integer n (or n is a multiple of m) if there exists an integer k such that $n=k m$. We say that m divides n and write $m \mid n$.

Theorem 5.4 (division algorithm). Let $m \in \mathbb{Z}$ and $k \in \mathbb{N}$. Then there exist unique integers q and r such that

$$
m=k q+r, \quad 0 \leq r<k
$$

Proof. Let us prove existence of the desired q and r. If $k=1$, then $q=m$ and $r=0$ satisfy $m=k q+r$ and $0 \leq r<k$. So we may assume $k>1$. Let m be a positive integer. We prove our assertion by induction on m. For the base case $m=1, q=0$ and $r=m$ satisfy $m=k q+r$ and $0 \leq r<k$. For the induction step, suppose that our assertion is true for m. We wish to prove it for $m+1$. Thus, $m=k q+r$ with $0 \leq r<k$. If $r<k-1$, then $m+1=k q+(r+1)$ with $0 \leq r+1<k$. If $r=k-1$, then $m+1=k q+r+1=k q+k=k(q+1)+0$. This completes the induction procedure.

If $m=0$, then $q=0$ and $r=0$ satisfy $m=k q+r$. Now suppose that m is a negative integer. Then $-m$ is a positive integer. By what has been proved, $-m=k q+r$ for some $q \in \mathbb{Z}$ and $0 \leq r<k$. It follows that $m=-k q-r$. If $r=0$, we are done. If $0<r<k$, then $m=k(-q-1)+(k-r)$ with $0<k-r<k$.

For uniqueness of q and r, suppose that $m=k q+r=k q^{\prime}+r^{\prime}$ with $0 \leq r, r^{\prime}<k$. It follows that $k\left(q-q^{\prime}\right)=r^{\prime}-r$. If $q>q^{\prime}$, then $q-q^{\prime} \geq 1$ and $k\left(q-q^{\prime}\right) \geq k$. But $r^{\prime}-r \leq r^{\prime}<k$. So this is a contradiction. For the same reason, $q^{\prime}>q$ will also lead to a contradiction. Thus we must have $q=q^{\prime}$. Consequently, $r=r^{\prime}$.

In the above division algorithm, q is called the quotient, and r the remainder of m modulo k.

An even number can be represented as $2 k$ for some $k \in \mathbb{Z}$. An odd number can be represented as $2 k+1$ for some $k \in \mathbb{Z}$. Note that $(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. So the square of an odd number is an odd number.

\S 6. Sums and Products

A binary operation on a set S is a function from $S \times S$ to S. For example, addition and multiplication of natural numbers are binary operations on \mathbb{N}. Let $f: S \times S \rightarrow S$ be a binary operation, and let $x, y \in S$. In the additive notation, $f(x, y)$ is denoted by $x+y$. In the multiplicative notation, $f(x, y)$ is denoted by $x \cdot y$ or $x y$.

Let S be a set with a binary operation, written multiplicatively. The operation is said to be associative, if $(x y) z=x(y z)$ for all $x, y, z \in S$. The operation is said to be commutative, if $x y=y x$ for all $x, y \in S$. An element $e \in S$ is called an identity element if $e x=x e=x$ for all $x \in S$. An identity element, if it exists, is unique. In the multiplicative notation, the identity element is often denoted by 1 . In the additive notation, the identity element is often denoted by 0 .

A semigroup is a nonempty set together with one associative binary operation. A monoid is a semigroup with an identity element. A semigroup or monoid is commutative when its operation is commutative.
Example 1. (1) $(\mathbb{N},+)$ is a semigroup, but not a monoid, since $m+n \neq n$ for all $m, n \in \mathbb{N}$. (2) $\left(\mathbb{N}_{0},+\right)$ is a monoid. We have $0+n=n+0=n$ for all $n \in \mathbb{N}_{0}$. (3) ($\left.\mathbb{N}, \cdot\right)$ is a monoid. We have $1 \cdot n=n \cdot 1=n$ for all $n \in \mathbb{N}$.

Let $(S,+)$ be a semigroup. For $a \in S$ and $n \in \mathbb{N}$, we define $n a$ recursively as follows: $1 a:=a$ and $(n+1) a:=n a+a$. If $(S,+)$ is a monoid, then we define $0 a:=0$.

Theorem 6.1. Let $(S,+)$ be a semigroup. The following properties hold for all $a \in S$ and all $m, n \in \mathbb{N}$:
(1) $m a+n a=(m+n) a$;
(2) $m(n a)=(m n) a$;
(3) if $a, b \in S$ and $a+b=b+a$, then $n(a+b)=n a+n b$.

Proof. (1) We use induction on n. For $n=1$, by definition we have $m a+a=(m+1) a$. Let $n \in \mathbb{N}$ and assume that $m a+n a=(m+n) a$. It follows that

$$
m a+(n+1) a=m a+(n a+a)=(m a+n a)+a=(m+n) a+a=(m+n+1) a .
$$

(2) We proceed by induction on n. For $n=1$ we have $m(1 a)=m a=(m \cdot 1) a$. Let $n \in \mathbb{N}$ and assume that $m(n a)=(m n) a$. It follows that

$$
m((n+1) a)=m(n a+a)=m(n a)+m a=(m n) a+m a .
$$

Then we use (1) to deduce that $(m n) a+m a=(m n+m) a=(m(n+1)) a$. This completes the induction procedure.
(3) We proceed by induction on n. For $n=1$ we have $1(a+b)=a+b=1 a+1 b$. Let $n \in \mathbb{N}$ and assume that $n(a+b)=n a+n b$. It follows that

$$
(n+1)(a+b)=n(a+b)+(a+b)=(n a+n b)+(a+b)=n a+(n b+a)+b
$$

Since $a+b=b+a$, we may use induction to prove that $n b+a=a+n b$. Hence

$$
n a+(n b+a)+b=n a+(a+n b)+b=(n a+a)+(n b+b)=(n+1) a+(n+1) b .
$$

This completes the proof.
Let (S, \cdot) be a semigroup. For $a \in S$ and $n \in \mathbb{N}$, we define a^{n} recursively as follows: $a^{1}:=a$ and $a^{n+1}:=a^{n} \cdot a$. If (S, \cdot) is a monoid, then we define $a^{0}:=1$. In this situation, Theorem 6.1 has the following form.

Theorem 6.1'. Let (S, \cdot) be a semigroup. The following properties hold for all $a \in S$ and all $m, n \in \mathbb{N}$:
(1) $a^{m} \cdot a^{n}=a^{m+n}$;
(2) $\left(a^{m}\right)^{n}=a^{m n}$;
(3) if $a, b \in S$ and $a b=b a$, then $(a b)^{n}=a^{n} b^{n}$.

Let $(S,+)$ be a semigroup and for each $j \in \mathbb{N}$ let $a_{j} \in S$. Define the sum

$$
\sum_{j=1}^{1} a_{j}=a_{1}
$$

and for $n \in \mathbb{N}$ define the sum

$$
\sum_{j=1}^{n+1} a_{j}:=\sum_{j=1}^{n} a_{j}+a_{n+1} .
$$

The parameter j is called the summation index.
Now let $(S,+)$ be a monoid. For each $j \in \mathbb{Z}$ let $a_{j} \in S$. Let m and n be arbitrary integers. The sum $\sum_{j=m}^{n} a_{j}$ is defined as follows. If $n<m$, then

$$
\sum_{j=m}^{n} a_{j}:=0
$$

In other words, the empty sum is defined to be 0 . If $n=m$, then

$$
\sum_{j=m}^{n} a_{j}:=a_{m} .
$$

For $n \geq m$, define

$$
\sum_{j=m}^{n+1} a_{j}:=\sum_{j=m}^{n} a_{j}+a_{n+1}
$$

Theorem 6.2. Let $(S,+)$ be a monoid. For each $j \in \mathbb{Z}$ let $a_{j}, b_{j} \in S$. Then the following hold.
(1) For $m, n, k \in \mathbb{Z}$ with $m \leq k \leq n$,

$$
\sum_{j=m}^{k} a_{j}+\sum_{j=k+1}^{n} a_{j}=\sum_{j=m}^{n} a_{j} .
$$

(2) For $m, n, k \in \mathbb{Z}$,

$$
\sum_{j=m+k}^{n+k} a_{j}=\sum_{i=m}^{n} a_{i+k}
$$

(3) If $(S,+)$ is commutative, then for $m, n \in \mathbb{Z}$,

$$
\sum_{j=m}^{n}\left(a_{j}+b_{j}\right)=\sum_{j=m}^{n} a_{j}+\sum_{j=m}^{n} b_{j} .
$$

Proof. (1) If $k=n$, then $\sum_{j=k+1}^{n} a_{j}=0$. So our assertion is true for this case. For the general case we use induction on n. For the base case $n=m$, we must have $k=n$. Hence our assertion is valid. Now assume that our assertion is true for n and let $n+1 \geq k \geq m$. The case $k=n+1$ has been settled. So we may assume $m \leq k<n+1$. Thus

$$
\begin{aligned}
\sum_{j=m}^{n+1} a_{j} & =\sum_{j=m}^{n} a_{j}+a_{n+1}=\left(\sum_{j=m}^{k} a_{j}+\sum_{j=k+1}^{n} a_{j}\right)+a_{n+1} \\
& =\sum_{j=m}^{k} a_{j}+\left(\sum_{j=k+1}^{n} a_{j}+a_{n+1}\right)=\sum_{j=m}^{k} a_{j}+\sum_{j=k+1}^{n+1} a_{j} .
\end{aligned}
$$

This completes the induction procedure.
(2) We proceed by induction on n. If $n=m$, then $\sum_{j=m+k}^{m+k} a_{j}=a_{m+k}=\sum_{i=m}^{m} a_{i+k}$. This establishes the base case. For the induction step, assume that our assertion is true for n. Then

$$
\sum_{j=m+k}^{n+1+k} a_{j}=\sum_{j=m+k}^{n+k} a_{j}+a_{n+1+k}=\sum_{i=m}^{n} a_{i+k}+a_{n+1+k}=\sum_{i=m}^{n+1} a_{i+k}
$$

(3) We proceed by induction on n. If $n=m$, then

$$
\sum_{j=m}^{m}\left(a_{j}+b_{j}\right)=a_{m}+b_{m}=\sum_{i=m}^{m} a_{j}+\sum_{i=m}^{m} a_{j} .
$$

This establishes the base case. For the induction step, assume that our assertion is true for n. Then

$$
\sum_{j=m}^{n+1}\left(a_{j}+b_{j}\right)=\sum_{j=m}^{n}\left(a_{j}+b_{j}\right)+\left(a_{n+1}+b_{n+1}\right)=\left(\sum_{j=m}^{n} a_{j}+\sum_{j=m}^{n} b_{j}\right)+\left(a_{n+1}+b_{n+1}\right) .
$$

Since $(S,+)$ is commutative, we have

$$
\left(\sum_{j=m}^{n} a_{j}+\sum_{j=m}^{n} b_{j}\right)+\left(a_{n+1}+b_{n+1}\right)=\left(\sum_{j=m}^{n} a_{j}+a_{n+1}\right)+\left(\sum_{j=m}^{n} b_{j}+b_{n+1}\right)=\sum_{j=m}^{n+1} a_{j}+\sum_{j=m}^{n+1} b_{j} .
$$

This completes the induction procedure.
Now let (S, \cdot) be a monoid. For each $j \in \mathbb{Z}$ let $a_{j} \in S$. Let m and n be arbitrary integers. The product $\prod_{j=m}^{n} a_{j}$ is defined as follows. If $n<m$, then

$$
\prod_{j=m}^{n} a_{j}:=1
$$

In other words, the empty product is defined to be 1 . If $n=m$, then

$$
\prod_{j=m}^{n} a_{j}:=a_{m}
$$

For $n \geq m$, define

$$
\prod_{j=m}^{n+1} a_{j}:=\prod_{j=m}^{n} a_{j} \cdot a_{n+1} .
$$

The following theorem is a restatement of Theorem 6.2 in the multiplicative notation.
Theorem 6.2'. Let (S, \cdot) be a monoid. For each $j \in \mathbb{Z}$ let $a_{j}, b_{j} \in S$. Then the following hold.
(1) For $m, n, k \in \mathbb{Z}$ with $m \leq k \leq n$,

$$
\prod_{j=m}^{k} a_{j} \cdot \prod_{j=k+1}^{n} a_{j}=\prod_{j=m}^{n} a_{j} .
$$

(2) For $m, n, k \in \mathbb{Z}$,

$$
\prod_{j=m+k}^{n+k} a_{j}=\prod_{i=m}^{n} a_{i+k}
$$

(3) If (S, \cdot) is commutative, then for $m, n \in \mathbb{Z}$,

$$
\prod_{j=m}^{n}\left(a_{j} \cdot b_{j}\right)=\prod_{j=m}^{n} a_{j} \cdot \prod_{j=m}^{n} b_{j} .
$$

The following theorem generalizes the distributive law.

Theorem 6.3. Let $(R,+, \cdot)$ be a commutative ring with identity. For each $j \in \mathbb{Z}$ let $a_{j} \in R$. Then the following distributive property is valid for all $m, n \in \mathbb{Z}$ and all $c \in R$:

$$
c \cdot\left(\sum_{j=m}^{n} a_{j}\right)=\sum_{j=m}^{n}\left(c \cdot a_{j}\right) .
$$

Proof. If $n<m$, then both sides of the above equation are equal to 0 . For $n \geq m$ we proceed by induction on n. For the base case $n=m$, both sides of the above equation are equal to $c \cdot a_{m}$. For the induction step, let $n \geq m$ and assume that our assertion is valid for n. Since $\sum_{j=m}^{n+1} a_{j}=\sum_{j=m}^{n} a_{j}+a_{n+1}$. By the distributive law we have

$$
c \cdot \sum_{j=m}^{n+1} a_{j}=c \cdot\left(\sum_{j=m}^{n} a_{j}+a_{n+1}\right)=c \cdot \sum_{j=m}^{n} a_{j}+c \cdot a_{n+1} .
$$

By the induction hypothesis, $c \cdot \sum_{j=m}^{n} a_{j}=\sum_{j=m}^{n}\left(c \cdot a_{j}\right)$. Therefore,

$$
c \cdot \sum_{j=m}^{n+1} a_{j}=\sum_{j=m}^{n}\left(c \cdot a_{j}\right)+\left(c \cdot a_{n+1}\right)=\sum_{j=m}^{n+1}\left(c \cdot a_{j}\right) .
$$

This completes the induction procedure.
Theorem 6.4. Let $(R,+, \cdot)$ be a commutative ring with identity. The following property holds for all $a, b \in R$ and all $n \in \mathbb{N}$:

$$
a^{n}-b^{n}=(a-b)\left(\sum_{j=0}^{n-1} a^{n-1-j} b^{j}\right)=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+b^{n-1}\right)
$$

Proof. By the distributive law and Theorem 6.3 we have
$(a-b)\left(\sum_{j=0}^{n-1} a^{n-1-j} b^{j}\right)=a \cdot \sum_{j=0}^{n-1} a^{n-1-j} b^{j}-b \cdot \sum_{j=0}^{n-1} a^{n-1-j} b^{j}=\sum_{j=0}^{n-1} a^{n-j} b^{j}-\sum_{j=0}^{n-1} a^{n-1-j} b^{j+1}$.
By Theorem 6.2 we deduce that

$$
\sum_{j=0}^{n-1} a^{n-j} b^{j}=a^{n}+\sum_{j=1}^{n-1} a^{n-j} b^{j} \quad \text { and } \quad \sum_{j=0}^{n-1} a^{n-1-j} b^{j+1}=\sum_{j=0}^{n-2} a^{n-1-j} b^{j+1}+b^{n}
$$

Applying Theorem 6.2 again we obtain

$$
\sum_{j=0}^{n-2} a^{n-1-j} b^{j+1}=\sum_{j=1}^{n-1} a^{n-j} b^{j} .
$$

Therefore,

$$
(a-b)\left(\sum_{j=0}^{n-1} a^{n-1-j} b^{j}\right)=\left(a^{n}+\sum_{j=1}^{n-1} a^{n-j} b^{j}\right)-\left(\sum_{j=1}^{n-1} a^{n-j} b^{j}+b^{n}\right)=a^{n}-b^{n}
$$

This completes the proof of the theorem.

§7. Rational Numbers

We use \mathbb{Q} to denote the set of rational numbers:

$$
\mathbb{Q}:=\left\{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

The addition in \mathbb{Q} is defined by the rule

$$
\frac{m}{n}+\frac{p}{q}:=\frac{m q+n p}{n q} .
$$

The multiplication in \mathbb{Q} is defined by the rule

$$
\frac{m}{n} \cdot \frac{p}{q}:=\frac{m p}{n q} .
$$

A system $(F,+, \cdot)$ is called a field, if it is a commutative ring with identity, and, in addition, each nonzero element a in F has an inverse a^{-1} such that $a a^{-1}=1$. Clearly, each element a has only one inverse. It is easily seen that $(\mathbb{Q},+, \cdot)$ is a field.

Let $(F,+, \cdot)$ be a field. If $a, b \in F$ and $b \neq 0$, we define a / b as $a b^{-1}$. In particular, $1 / b=b^{-1}$. Note that a / b is the unique element such that $(a / b) b=a$. Thus, division is well defined in a field.

Theorem 7.1. Let $(F,+, \cdot)$ be a field. The following properties hold for $a, b, c, d \in F$:
(1) $a \neq 0$ and $b \neq 0$ imply $a b \neq 0$;
(2) $a c=b c$ and $c \neq 0$ imply $a=b$;
(3) if $b \neq 0$ and $d \neq 0$, then $a / b=c / d$ if and only if $a d=b c$.
(4) if $b \neq 0$ and $c \neq 0$, then $(a c) /(b c)=a / b$.
(5) if b, c, d are nonzero, then

$$
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \frac{d}{c}=\frac{a d}{b c}
$$

Proof. (1) If $a b=0$ and $a \neq 0$, then $b=\left(a^{-1} a\right) b=a^{-1}(a b)=0$. (2) $a c=b c$ and $c \neq 0$ imply $a=a\left(c c^{-1}\right)=(a c) c^{-1}=(b c) c^{-1}=b\left(c c^{-1}\right)=b$. (3) By (1) we have $b d \neq 0$. Moreover, by (2) we see that $a / b=c / d$ if and only if $(b d)(a / b)=(b d)(c / d)$, that is, $a d=b c$. (4) Since $b(a c)=a(b c)$, by (3) we obtain $(a c) /(b c)=a / b$. (5) In light of (3), this follows from $(a / b)(b c)=a c=(c / d)(a d)$.

A field F is called an ordered field if it has a total ordering \leq satisfying the following properties:
OA. If $a \leq b$, then $a+c \leq b+c$.
OM. If $a \leq b$ and $0 \leq c$, then $a c \leq b c$.

Suppose that $m, p \in \mathbb{Z}$ and $n, q \in \mathbb{N}$. If $m q \leq n p$, we write $m / n \leq p / q$. Then \leq is a total ordering in \mathbb{Q}. With this ordering, \mathbb{Q} becomes an ordered field.

If $a \leq b$ and $a \neq b$, we write $a<b$ or $b>a$. If $a<b$, then $a+c<b+c$ for $c \in F$ and $a c<b c$ for $c>0$.

Theorem 7.2. Let $(F,+, \cdot, \leq)$ be an ordered field. The following statements are true for $a, b, c, d \in F$.
(1) if $a>0$, then $a^{-1}>0$;
(2) if $b>0$ and $d>0$, then $(a / b) \leq(c / d) \Leftrightarrow a d \leq b c$.
(3) if $0<a<b$, then $0<a^{n}<b^{n}$ for all $n \in \mathbb{N}$.

Proof. (1) If $a>0$, then $a^{-1} \neq 0$ and so $\left(a^{-1}\right)^{2}>0$. Hence $a\left(a^{-1}\right)^{2}>0$. It follows that $a^{-1}>0$. (2) If $b>0$ and $d>0$, then $b d>0$ and $(b d)^{-1}>0$. Hence, $(a / b) \leq(c / d)$ implies $(a / b)(b d) \leq(c / d)(b d)$. It follows that $a d \leq b c$. Conversely, if $a d \leq b c$, then $(b d)^{-1}(a d) \leq(b d)^{-1}(b c)$. Consequently, $a / b \leq c / d$. (3) We proceed by induction on n. The proof for the base case $n=1$ is trivial. Suppose that $0<a^{n}<b^{n}$. Since $a>0$, we have $0<a \cdot a^{n}<a \cdot b^{n}$. Since $0<a<b$, we have $a \cdot b^{n}<b \cdot b^{n}$. Consequently, $0<a \cdot a^{n}<b \cdot b^{n}$. In other words, $0<a^{n+1}<b^{n+1}$. This completes the induction procedure.

For $n \in \mathbb{N}_{0}$ we define

$$
n!:=\prod_{j=1}^{n} j
$$

In particular, $0!=1,1!=1,2!=2,3!=6,4!=24$, and $5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120$. We have $(n+1)!=n!(n+1)$ for all $n \in \mathbb{N}_{0}$. Further, for $n, k \in \mathbb{N}_{0}$ with $k \leq n$, we define

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!} .
$$

Theorem 7.3. For all $n, k \in \mathbb{N}$ with $k \leq n$,

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k} .
$$

Consequently, for all $n, k \in \mathbb{N}_{0},\binom{n}{k}$ is a natural number.
Proof. We have

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(k-1)!(n-(k-1))!}+\frac{n!}{k!(n-k)!}=\frac{n!k}{k!(n-k+1)!}+\frac{n!(n-k+1)}{k!(n-k+1)!},
$$

where we have used the fact that $k / k!=1 /(k-1)$! and $(n-k+1) /(n-k+1)!=1 /(n-k)!$. It follows that

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{n!(k+n-k+1)}{k!(n-k+1)!}=\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k} .
$$

To prove the second statement, we proceed by induction on n. For $n=0$ we have $k=0$, and so $\binom{n}{k}=1 \in \mathbb{N}$. This establishes the base case. For the induction step, suppose that our assertion is valid for n. Consider $\binom{n+1}{k}$. If $k=0$ or $k=n+1$, then $\binom{n+1}{k}=1 \in \mathbb{N}$. If $0<k<n+1$, then $\binom{n}{k-1}$ and $\binom{n}{k}$ are natural numbers, by the induction hypothesis. Therefore, $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} \in \mathbb{N}$. This completes the induction procedure.

We are in a position to establish the following binomial theorem.
Theorem 7.4. Let $(R,+, \cdot)$ be a commutative ring. Then for all $n \in \mathbb{N}$ and all $a, b \in R$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} .
$$

Proof. The proof proceeds by induction on n. For $n=1$ we have

$$
(a+b)^{1}=a+b=\sum_{k=0}^{1}\binom{1}{k} a^{k} b^{1-k}
$$

For the induction step, suppose that our assertion is valid for n. We wish to prove it for $n+1$. By the induction hypothesis we have

$$
(a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Then we use the distributive law to obtain
$(a+b)^{n+1}=a \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}+b \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}=\sum_{k=0}^{n}\binom{n}{k} a^{k+1} b^{n-k}+\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k+1}$.
For the first sum we make the change of indices: $k=j-1$. The range of k is from 0 to n, so the range of j is from 1 to $n+1$. Thus

$$
\sum_{k=0}^{n}\binom{n}{k} a^{k+1} b^{n-k}=\sum_{j=1}^{n+1}\binom{n}{j-1} a^{j} b^{n-j+1}=\sum_{j=1}^{n}\binom{n}{j-1} a^{j} b^{n-j+1}+a^{n+1} .
$$

For the second sum we have

$$
\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k+1}=\sum_{j=1}^{n}\binom{n}{j} a^{j} b^{n-j+1}+b^{n+1}
$$

Consequently,

$$
(a+b)^{n+1}=a^{n+1}+\sum_{j=1}^{n}\left[\binom{n}{j-1}+\binom{n}{j}\right] a^{j} b^{n-j+1}+b^{n+1} .
$$

Since $\binom{n}{j-1}+\binom{n}{j}=\binom{n+1}{j}$, we get

$$
(a+b)^{n+1}=a^{n+1}+\sum_{j=1}^{n}\binom{n+1}{j} a^{j} b^{n+1-j}+b^{n+1}=\sum_{j=0}^{n+1}\binom{n+1}{j} a^{j} b^{n+1-j} .
$$

This completes the induction procedure.
Although the rational numbers form a rich algebraic system, they are inadequate for the purpose of analysis because they are, in a sense, incomplete.

For example, there is no rational number r such that $r^{2}=2$. In order to prove this statement, consider the set S of all positive integers n such that $2 n^{2}=m^{2}$ for some $m \in \mathbb{N}$. If the set S is not empty, then we let n_{0} be its least element. For this n_{0}, there exists some $m_{0} \in \mathbb{N}$ such that $m_{0}^{2}=2 n_{0}^{2}$. Since m_{0}^{2} is an even number, m_{0} must be an even number: $m_{0}=2 m_{1}$ for some $m_{1} \in \mathbb{N}$. Consequently, $\left(2 m_{1}\right)^{2}=2 n_{0}^{2}$, and so $2 m_{1}^{2}=n_{0}^{2}$. Thus n_{0}^{2} is an even number, and hence n_{0} is an even number: $n_{0}=2 n_{1}$ for some $n_{1} \in \mathbb{N}$. Now we have $m_{1}^{2}=2 n_{1}^{2}$. Thus $n_{1} \in S$ and $n_{1}<n_{0}$. This contradicts the fact that n_{0} is the least element of S. Therefore, there is no pair (m, n) of positive integers such that $m^{2}=2 n^{2}$.

Suppose that \leq is a partial ordering on a nonempty set X. Let A be a nonempty subset of X. An element $u \in X$ is called an upper bound of A if $u \geq a$ for all $a \in A$. If A has an upper bound, it is called bounded above. An element $v \in X$ is called a lower bound of A if $v \leq a$ for all $a \in A$. If A has a lower bound, it is called bounded below. A subset A of X is called bounded if it is bounded above and bounded below.

If s is an upper bound of A and $s \leq u$ for every upper bound u of A, then s is unique. We say that s is the least upper bound or the supermum of A and write $s=\sup A$. Thus, s is the supremum of A if and only if s satisfies the following two properties: (1) $s \geq a$ for all $a \in A$ and (2) for any $s^{\prime}<s$, there exists some $b \in A$ such that $s^{\prime}<b$. If t is a lower bound of A and $t \geq v$ for every lower bound v of A, then we say that t is the greatest lower bound or the infimum of A and write $t=\inf A$.

Let $A:=\left\{r \in \mathbb{Q}: r^{2} \leq 2\right\}$. We shall prove that the set A has no least upper bound in \mathbb{Q}. For this purpose we let $s \in \mathbb{Q}$ be an upper bound of A. Let us show $s^{2} \geq 2$. Otherwise, $s^{2}<2$. We claim that there exists some $t>0$ such that $(s+t)^{2}<2$. Indeed, we have $(s+t)^{2}=s^{2}+2 s t+t^{2}=s^{2}+t(2 s+t)$. Thus, if $t(2 s+t)<2-s^{2}$, then $(s+t)^{2}<2$. Choose $t:=\left(2-s^{2}\right) /(2 s+1)$. Since $1 \in A$, we have $s \geq 1$, and so $t=\left(2-s^{2}\right) /(2 s+1)<1$. Hence $t(2 s+t)<t(2 s+1)=2-s^{2}$. This justifies our claim and shows that s would not be an upper bound of A. Since $s^{2} \neq 2$, we must have $s^{2}>2$. Choose $r:=\left(s^{2}-2\right) /(2 s)$. Then $r>0$ and

$$
(s-r)^{2}=s^{2}-2 s r+r^{2}>s^{2}-2 s r=s^{2}-2 s \frac{s^{2}-2}{2 s}=2 .
$$

This shows that $s-r$ is also an upper bound of A. Therefore s is not the least upper bound of A.

An ordered set (X, \leq) is said to be complete if every bounded subset of X has a supremum and an infimum. The above example demonstrates that (\mathbb{Q}, \leq) is incomplete.

§8. Real Numbers

A real number has a representation of the form

$$
k+0 . d_{1} d_{2} d_{3} \cdots,
$$

where k is an integer and each digit d_{j} belongs to $\{0,1,2,3,4,5,6,7,8,9\}$. We use \mathbb{R} to denote the set of all real numbers.

Let Q be the set $\left\{m / 10^{r}: m \in \mathbb{Z}, r \in \mathbb{N}_{0}\right\}$. By using the division algorithm we can easily prove that each $q \in Q$ has a decimal expansion:

$$
q=k+\sum_{j=1}^{r} \frac{d_{j}}{10^{j}}=k+0 . d_{1} \cdots d_{r}
$$

where $k \in \mathbb{Z}$ and $d_{1}, \ldots, d_{r} \in\{0,1,2,3,4,5,6,7,8,9\}$. Thus, q can be identified with the real number

$$
k+0 . d_{1} \cdots d_{r} 000 \cdots,
$$

which ends in a sequence of all 0 's. If $d_{r} \neq 0$, then q has another representation

$$
k+0 . d_{1} \cdots\left(d_{r}-1\right) 999 \cdots,
$$

which ends in a sequence of all 9 's.
Suppose that $x=k+0 . d_{1} d_{2} d_{3} \cdots$ and $x^{\prime}=k^{\prime}+0 . d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} \cdots$ are two real numbers and neither decimal representation ends in a sequence of all 9 's. We write $x<x^{\prime}$ if $k<k^{\prime}$, or if $k=k^{\prime}$ and there exists some $r \in \mathbb{N}$ such that $d_{j}=d_{j}^{\prime}$ for $1 \leq j<r$ and $d_{r}<d_{r}^{\prime}$. Given two real numbers x and y, we write $x \leq y$ if $x=y$ or $x<y$. It can be easily proved that \leq is a total ordering on \mathbb{R}. Moreover, (\mathbb{R}, \leq) is complete as stated in the following theorem.

Theorem 8.1. Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound.

The following theorem establishes the denseness of Q in \mathbb{R}.
Theorem 8.2. If $x, x^{\prime} \in \mathbb{R}$ and $x<x^{\prime}$, then there exists some $q \in Q$ such that $x<q<x^{\prime}$.
Proof. Suppose that $x=k+0 . d_{1} d_{2} d_{3} \cdots$ and $x^{\prime}=k^{\prime}+0 . d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} \cdots$ and neither decimal representation ends in a sequence of all 9's. Consider the case $k<k^{\prime}$ first. There exists some $s \in \mathbb{N}$ such that $d_{s}<9$. Let $q:=k+0 . d_{1} \cdots d_{s-1} 9$. Then $x<q<x^{\prime}$. It remains to deal with the case $k=k^{\prime}$. Since $x<x^{\prime}$, there exists some $r \in \mathbb{N}$ such that $d_{j}=d_{j}^{\prime}$ for $1 \leq j<r$ and $d_{r}<d_{r}^{\prime}$. There exists some $s>r$ such that $d_{s}<9$. With $q:=k+0 . d_{1} \cdots d_{s-1} 9$, we have $x<q<x^{\prime}$.

The addition of two real numbers x and y is defined as

$$
x+y:=\sup \{p+q: p, q \in Q, p \leq x, q \leq y\} .
$$

For each $x \in \mathbb{R}$, there exists a unique real number $-x$ such that $x+(-x)=0$.
The multiplication of two real numbers x and y is defined as follows. If $x=0$ or $y=0$, we define $x \cdot y=0$. If $x>0$ and $y>0$, we define

$$
x \cdot y:=\sup \{p q: p, q \in Q, 0<p \leq x, 0<q \leq y\} .
$$

If $x>0$ and $y<0$, define $x \cdot y:=-(x(-y))$; if $x<0$ and $y>0$, define $x \cdot y:=-((-x) y)$; if $x<0$ and $y<0$, define $x \cdot y:=(-x)(-y)$.

It can be proved that $(\mathbb{R},+, \cdot, \leq)$ is an ordered field. Moreover, \mathbb{Q} is a subfield of \mathbb{R}. A number in $\mathbb{R} \backslash \mathbb{Q}$ is called an irrational number.

Although Theorem 8.1 only guarantees that nonempty subsets of \mathbb{R} that are bounded above have suprema, existence of infima is a consequence.

Theorem 8.3. Every nonempty subset of \mathbb{R} that is bounded below has a greatest lower bound.

Proof. Let S be a nonempty subset of \mathbb{R} that is bounded below. We denote the set $\{-s: s \in S\}$ by $-S$. Then $-S$ is bounded above. By Theorem 8.1, $\sup (-S)$ exists as a real number. Let $s_{0}:=\sup (-S)$. We have $s_{0} \geq-s$ for all $s \in S$. It follows that $-s_{0} \leq s$ for all $s \in S$. Hence, $-s_{0}$ is a lower bound of S. Furthermore, if t is a lower bound of S, then $t \leq s$ for all $s \in S$. It follows that $-t \geq-s$ for all $s \in S$. Hence, $-t$ is an upper bound of $-S$. We have $-t \geq s_{0}$, since s_{0} is the least upper bound of $-S$. Consequently, $t \leq-s_{0}$. This shows that $-s_{0}$ is the greatest lower bound of S and $\inf S=-s_{0}=-\sup (-S)$.

An ordered field F is said to have the Archimedean property if for every pair of positive elements a and b, there is a positive integer n such that $n a>b$.

Theorem 8.4. A complete ordered field F has the Archimedean property.
Proof. We argue by contraposition. Suppose that the Archimedean property fails. Then there exist $a>0$ and $b>0$ such that $n a \leq b$ for all $n \in \mathbb{N}$. Let $S:=\{n a: n \in \mathbb{N}\}$. Then S is nonempty and b is an upper bound for S. Since the field F is complete, S has a supremum. Let $s_{0}:=\sup S$. Now $s_{0}-a<s_{0}$, so it is not an upper bound for S. Hence, there exists some $n_{0} \in \mathbb{N}$ such that $s_{0}-a<n_{0} a$. It follows that $s_{0}<\left(n_{0}+1\right) a$. But $s_{0} \geq n a$ for all $n \in \mathbb{N}$. This contradiction shows that F has the Archimedean property.

We have shown that $(\mathbb{R},+, \cdot, \leq)$ is a complete ordered field. If $(F,+, \cdot, \leq)$ is also a complete ordered field. Then there is a bijective function φ from F to \mathbb{R} such that φ preserves addition, multiplication, and order. Such a function is called an isomorphism. Thus \mathbb{R} is the unique complete ordered field (up to isomorphism).

For any real number x, there is a unique integer n such that $n \leq x<n+1$. This integer n is called the integer part of x, and is denoted by $\lfloor x\rfloor$. For example, $\lfloor 5\rfloor=5$, $\lfloor 3.2\rfloor=3$, and $\lfloor-3.2\rfloor=-4$.

For a pair of real numbers a and b, we define

$$
\begin{aligned}
(a, b):=\{x \in \mathbb{R}: a<x<b\}, & {[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\}, } \\
{[a, b):=\{x \in \mathbb{R}: a \leq x<b\}, } & (a, b]:=\{x \in \mathbb{R}: a<x \leq b\} .
\end{aligned}
$$

The set (a, b) is called an open interval, the set $[a, b]$ is called a closed interval, and the sets $[a, b)$ and ($a, b]$ are called half-open (or half-closed) intervals.

We introduce two symbols ∞ and $-\infty$. The ordering \leq in \mathbb{R} can be extended to $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty, \infty\}$ by defining

$$
-\infty<a<\infty \quad \text { for all } a \in \mathbb{R}
$$

Then we have $(-\infty, \infty)=\mathbb{R}$ and

$$
\begin{aligned}
(a, \infty) & =\{x \in \mathbb{R}: x>a\},
\end{aligned} \quad[a, \infty)=\{x \in \mathbb{R}: x \geq a\}, ~ 子, ~(-\infty, b]=\{x \in \mathbb{R}: x \leq b\} .
$$

Let S be any nonempty subset of \mathbb{R}. The symbols $\sup S$ and $\inf S$ always make sense. If S is bounded above, then $\sup S$ is a real number; otherwise $\sup S=+\infty$. If S is bounded below, then $\inf S$ is a real number; otherwise $\inf S=-\infty$. Moreover, we have $\inf S \leq \sup S$.

Example 2. Write the following sets in interval notation:
(a) $A:=\{x \in \mathbb{R}:|x-3| \leq 5\}$.
(b) $B:=\{x \in \mathbb{R}:|x-3|>5\}$.

Solution. (a) We see that $|x-3| \leq 5$ if and only if $-5 \leq x-3 \leq 5$, that is, $3-5 \leq x \leq 3+5$. Hence, $A=[-2,8]$.
(b) $|x-3|>5$ if and only if $x-3<-5$ or $x-3>5$. Hence, $B=(-\infty,-2) \cup(8, \infty)$.

§9. Powers and Roots

Given a real number a and a positive integer m, we want to solve the equation $x^{m}=a$ for x. For this purpose, we first establish the following Bernoulli inequality:

Theorem 9.1. If $x \geq-1$, then for every positive integer n,

$$
(1+x)^{n} \geq 1+n x .
$$

Proof. The proof proceeds by induction on n. For $n=1$, we have $(1+x)^{1}=1+1 \cdot x$. For the induction step, suppose that $(1+x)^{n} \geq 1+n x$ for $x \geq-1$. Since $x \geq-1$, we have $1+x \geq 0$. Hence,

$$
(1+x)^{n+1}=(1+x)(1+x)^{n} \geq(1+x)(1+n x)=1+x+n x+n x^{2} \geq 1+(n+1) x .
$$

In the last step we have used the fact $x^{2} \geq 0$. This completes the induction procedure.
Theorem 9.2. Let m be a positive integer. For every positive real number a, there exists a unique positive real number r such that $r^{m}=a$.

Proof. We first prove the existence of r. Let $A:=\left\{x \in \mathbb{R}: x \geq 0\right.$ and $\left.x^{m} \leq a\right\}$. Then $0 \in A$ and A is bounded above by $\max \{1, a\}$. Since \mathbb{R} is a complete ordered field, A has a supremum. Let $r:=\sup A$. If $a \geq 1$, then $1 \in A$; if $0<a<1$, then $a \in A$. Hence $r \geq \min \{1, a\}>0$. We claim that $r^{m}=a$. To justify our claim, it suffices to show that $r^{m} \nless a$ and $r^{m} \ngtr a$. First, suppose that $r^{m}>a$. We wish to find some δ with $0<\delta<r$ such that $(r-\delta)^{m}>a$. We have $(r-\delta)^{m}=r^{m}(1-\delta / r)^{m}$. So $(r-\delta)^{m}>a$ is true if $(1-\delta / r)^{m}>a / r^{m}$. By the Bernoulli inequality, $(1-\delta / r)^{m} \geq 1-m \delta / r$. So $1-m \delta / r>a / r^{m}$ implies $(r-\delta)^{m}>a$. But $1-m \delta / r>a / r^{m}$ holds if and only if $\delta<r\left(1-a / r^{m}\right) / m$. Note that $1-a / r^{m}>0$. Thus, if δ is so chosen that $0<\delta<r\left(1-a / r^{m}\right) / m$, then $\delta<r$ and $(r-\delta)^{m}>a$. This shows that r is not the least upper bound of A, a contradiction. Therefore $r^{m} \ngtr a$. Next. suppose that $r^{m}<a$. It follows that $(1 / r)^{m}>1 / a$. By what has been proved, there exists some δ with $0<\delta<1 / r$ such that $(1 / r-\delta)^{m}>1 / a$. Note
that $1 / r-\delta=1 / r-(r \delta) / \delta=(1-r \delta) / \delta$. Consequently, $(r /(1-\delta r))^{m}<a$. Hence, $r /(1-\delta r) \in A$. But $r<r /(1-\delta r)$. Thus, r is not an upper bound of A, a contradiction. Therefore $r^{m} \nless a$. Since $r^{m} \ngtr a$ and $r^{m} \nless a$, we must have $r^{m}=a$.

For uniqueness, suppose that s is also a positive real number such that $s^{m}=a$. If $s<r$, then $s^{m}<r^{m}=a$; if $s>r$, then $s^{m}>r^{m}=a$. Hence we must have $s=r$.

Let a be a positive real number and let m be a positive integer. Then the unique positive number r such that $r^{m}=a$ is called the m th root of a, denoted $\sqrt[m]{a}$. The second root of a is also called the square root of a, denoted \sqrt{a}. Note that $\sqrt{a^{2}}=|a|$.

If $a=0$, then the equation $x^{m}=0$ has a unique solution $\sqrt[m]{0}=0$. If $a<0$ and m is an even positive integer, then the equation $x^{m}=a$ is not solvable in \mathbb{R}. In particular, there is no real number r such that $r^{2}=-1$. If $a<0$ and m is an odd positive integer, then the equation $x^{m}=a$ has a unique solution in $\mathbb{R}: x=-\sqrt[m]{|a|}$.

If $a \in \mathbb{R} \backslash\{0\}$ and n is a negative integer, then we define $a^{n}:=\left(a^{-1}\right)^{-n}$. For $a, b \in \mathbb{R} \backslash\{0\}$ and $m, n \in \mathbb{Z}$, the following properties hold:

$$
a^{m} \cdot a^{n}=a^{m+n}, \quad\left(a^{m}\right)^{n}=a^{m n}, \quad(a \cdot b)^{m}=a^{m} \cdot b^{m} .
$$

Now let a be a positive real number, and let $s \in \mathbb{Q}$. The rational number s has a representation $s=m / n$, where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. We define

$$
a^{s}:=(\sqrt[n]{a})^{m}
$$

Suppose that $s=p / q$ is another representation with $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Then $q m=p n$. We have

$$
\left.\left((\sqrt[q]{a})^{p}\right)^{n}=(\sqrt[q]{a})^{p n}=(\sqrt[q]{a})^{q m}=\left((\sqrt[q]{a})^{q}\right)^{m}=a^{m}=(\sqrt[n]{a})^{m}\right)^{n}
$$

It follows that $(\sqrt[a]{a})^{p}=(\sqrt[n]{a})^{m}$. Thus the fractional power a^{s} is well defined.
Theorem 9.3. Let a and b be positive real numbers, and let $s, t \in \mathbb{Q}$, then the following hold.
(1) $a^{s} \cdot a^{t}=a^{s+t}$.
(2) $\left(a^{s}\right)^{t}=a^{s t}$.
(3) $(a \cdot b)^{s}=a^{s} \cdot b^{s}$.

Proof. We may assume that $s=p / n$ and $t=q / n$, where $p, q \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then we have $\left(a^{s}\right)^{n}=a^{p}$ and $\left(a^{t}\right)^{n}=a^{q}$. Moreover, $s+t=(p+q) / n$, so $\left(a^{s+t}\right)^{n}=a^{p+q}$. We have

$$
\left(a^{s} \cdot a^{t}\right)^{n}=\left(a^{s}\right)^{n} \cdot\left(a^{t}\right)^{n}=a^{p} \cdot a^{q}=a^{p+q}=\left(a^{s+t}\right)^{n} .
$$

It follows that $a^{s} \cdot a^{t}=a^{s+t}$. This proves (1). For (2) we observe that $s t=p q / n^{2}$ and

$$
\left(\left(a^{s}\right)^{t}\right)^{n^{2}}=\left(a^{s}\right)^{q n}=\left(\left(a^{s}\right)^{n}\right)^{q}=\left(a^{p}\right)^{q}=a^{p q}=\left(a^{s t}\right)^{n^{2}} .
$$

Consequently, $\left(a^{s}\right)^{t}=a^{s t}$. Finally, we have

$$
\left((a \cdot b)^{s}\right)^{n}=(a \cdot b)^{p}=a^{p} \cdot b^{p}=\left(a^{s}\right)^{n} \cdot\left(b^{s}\right)^{n}=\left(a^{s} \cdot b^{s}\right)^{n} .
$$

It follows that $(a \cdot b)^{s}=a^{s} \cdot b^{s}$. This completes the proof.

