
Chapter 1. Sets and Numbers

§1. Sets

A set is considered to be a collection of objects (elements). If A is a set and x is an

element of the set A, we say x is a member of A or x belongs to A, and we write x ∈ A.

If x does not belong to A, we write x /∈ A. A set is thus determined by its elements.

Let A and B be sets. We say that A and B are equal, if they consist of the same

elements; that is,

x ∈ A ⇐⇒ x ∈ B.

The set with no elements is called the empty set and is denoted by ∅. For any

object x, there is a set whose only member is x. This set is denoted by {x} and called a

singleton. For any two objects x, y, there is a set whose only members are x and y. This

set is denoted by {x, y}.
Let A and B be sets. The set A is called a subset of B if every element of A is also

an element of B. If A is a subset of B, we write A ⊆ B. Further, if A is a subset of B, we

also say that B is a superset of A and write B ⊇ A.

It follows immediately from the definition that A and B are equal if and only if A ⊆ B

and B ⊆ A. Thus, every set is a subset of itself. Moreover, the empty set is a subset of

every set.

If A ⊆ B and A ̸= B, then A is a proper subset of B and written as A ⊂ B.

Let A be a set. A condition P on the elements of A is definite if for each element x

of A, it is unambiguously determined whether P (x) is true or false. For each set A and

each definite condition P on the elements of A, there exists a set B whose elements are

those elements x of A for which P (x) is true. We write

B = {x ∈ A : P (x)}.

Let A and B be sets. The intersection of A and B is the set

A ∩B := {x ∈ A : x ∈ B}.

The sets A and B are said to be disjoint if A ∩B = ∅. The set difference of B from A

is the set

A \B := {x ∈ A : x /∈ B}.

The set A \B is also called the complement of B relative to A.

Let A and B be sets. There exists a set C such that

x ∈ C ⇐⇒ x ∈ A or x ∈ B.

We call C the union of A and B, and write C = A ∪B.
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Theorem 1.1. Let A, B, and C be sets. Then

(1) A ∪B = B ∪A; A ∩B = B ∩A.

(2) (A ∪B) ∪ C = A ∪ (B ∪ C); (A ∩B) ∩ C = A ∩ (B ∩ C).

(3) If A ⊆ B, then A ∩B = A and A ∪B = B.

(4) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C); A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. We shall prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) only. Suppose x ∈ A ∩ (B ∪ C).

Then x ∈ A and x ∈ B ∪C. Since x ∈ B ∪C, either x ∈ B or x ∈ C. Consequently, either

x ∈ A ∩B or x ∈ A ∩ C, that is, x ∈ (A ∩B) ∪ (A ∩ C).

Conversely, suppose x ∈ (A ∩B) ∪ (A ∩ C). Then either x ∈ A ∩B or x ∈ A ∩ C. In

both cases, x ∈ A and x ∈ B ∪ C. Hence, x ∈ A ∩ (B ∪ C).

Theorem 1.2. (DeMorgan’s Rules) Let A, B, and X be sets. Then

(1) X \ (X \A) = X ∩A.

(2) X \ (A ∪B) = (X \A) ∩ (X \B).

(3) X \ (A ∩B) = (X \A) ∪ (X \B).

Proof. (1) If x ∈ X \ (X \ A), then x ∈ X and x /∈ X \ A. It follows that x ∈ A. Hence,

x ∈ X ∩A. Conversely, if x ∈ X ∩A, then x ∈ X and x /∈ X \A. Hence, x ∈ X \ (X \A).
(2) Suppose x ∈ X \ (A ∪B). Then x ∈ X and x /∈ A ∪B. It follows that x /∈ A and

x /∈ B. Hence, x ∈ X \ A and x ∈ X \ B, that is, x ∈ (X \ A) ∩ (X \ B). Conversely,

suppose x ∈ (X \ A) ∩ (X \ B). Then x ∈ X \ A and x ∈ X \ B. It follows that x ∈ X,

x /∈ A and x /∈ B. Hence, x /∈ A ∪B, and thereby x ∈ X \ (A ∪B).

(3) Its proof is similar to the proof of (2).

In describing a set, the order in which the elements appear does not matter. Thus the

set {a, b} is the same as the set {b, a}. When we wish to indicate that a pair of elements a

and b is ordered, we enclose the elements in parentheses: (a, b). Then a is called the first

element and b is called the second. The important property of ordered pairs is that

(a, b) = (c, d) if and only if a = c and b = d.

If A and B are sets, then the Cartesian product of A and B, written A×B, is the

set of all ordered pairs (a, b) such that a ∈ A and b ∈ B.

Example 1. Let A be the set of three colors: red, blue, and yellow, and let B be the set

of four fruits: apple, banana, orange, and peach. Then A × B is the set of the following

twelve elements:

(red, apple) (red, banana) (red, orange) (red, peach)
(blue, apple) (blue, banana) (blue, orange) (blue, peach)
(yellow, apple) (yellow, banana) (yellow, orange) (yellow, peach)
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Let X be a set. The collection of all subsets of X is called the power set of X,

written as P(X). The empty set has no elements. But it has exactly one subset. So the

power set of ∅ is the singleton {∅}.
Example 2. Let X be the set of three letters a, b, and c. List all the elements of P(X).

Solution. The elements of P(X) are ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} = A. It

has eight elements.

§2. The Natural Numbers

We denote the set {1, 2, 3, . . .} of all natural numbers by IN. Each natural number n

has a successor, namely n+1. The set IN of natural numbers has the following properties:

1. 1 belongs to IN;

2. If n belongs to IN, then its successor n+ 1 belongs to IN;

3. 1 is not the successor of any element in IN;

4. If m and n in IN have the same successor, then m = n;

5. A subset of IN which contains 1, and which contains n + 1 whenever it contains n,

must equal IN.

The above five properties are known as the Peano Axioms.

Addition and multiplication are defined in IN. For m,n ∈ IN, the sum m + n is a

natural number. The addition is commutative and associative:

m+ n = n+m ∀m,n ∈ IN,

(m+ n) + k = m+ (n+ k) ∀m,n, k ∈ IN.

The product mn of two natural numbers m and n is a natural number. The multiplication

is also commutative and associative:

mn = nm ∀m,n ∈ IN,

(mn)k = m(nk) ∀m,n, k ∈ IN.

Moreover, the multiplication is distributive with respect to the addition:

m(n+ k) = mn+mk ∀m,n, k ∈ IN.

The last property in the Peano Axioms is the basis of mathematical induction. Let

P1, P2, . . . be a list of statements or propositions that may or may not be true. The

principle of mathematical induction asserts that all the statements P1, P2, . . . are true if

(I1) P1 is true, and

(I2) Pn+1 is true whenever Pn is true.
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We will refer to (I1) as the basis for induction and will refer to (I2) as the induction

step. For a sound proof based on mathematical induction, properties (I1) and (I2) must

both be verified.

Example 1. Prove 1 + 2 + · · ·+ n = n(n+ 1)/2 for natural numbers n.

Proof . Our nth proposition is Pn : “1 + 2 + · · ·+ n = n(n+ 1)/2”. Thus P1 asserts that

1 = 1(1 + 1)/2. This is obviously true.

For the induction step, suppose that Pn is true, i.e., 1 + 2 + · · · + n = n(n + 1)/2.

Since we wish to prove Pn+1 from this, we add n+ 1 to both sides to obtain

1 + 2 + · · ·+ n+ (n+ 1) =
1

2
n(n+ 1) + (n+ 1)

=
1

2
(n+ 1)(n+ 2) =

1

2
(n+ 1)((n+ 1) + 1).

Thus, Pn+1 is true if Pn holds. By the principle of mathematical induction, we conclude

that Pn is true for all n.

Example 2. If a set X has n elements, then the power set P(X) has 2n elements.

Proof . We proceed by mathematical induction on n. If n = 1 and X has one element,

then X has exactly two subsets: ∅ and X itself. So P(X) has exactly two elements. This

establishes the basis for induction.

For the induction step, suppose that the power set of any set with n elements has 2n

elements. Let X be a set having n+1 elements. Fix an element x in X. Then A := X \{x}
has n elements. By the induction hypothesis, the power set P(A) has 2n elements. Let B

be a subset of X. Either x ∈ B or x /∈ B. If x /∈ B, then B is a subset of A. If x ∈ B,

then B = (B ∩ A) ∪ {x}. Thus any subset B of X is either a subset of A or is the union

of a subset of A with {x}. The number of subsets of A is 2n, and the number of subsets

of the form C ∪ {x} with C ⊆ A is also 2n. Therefore the total number of subsets of X is

2n + 2n = 2n+1. This completes the induction procedure.

§3. Relations

Let A and B be sets. A relation from A to B is any subset R of A × B. We say

that a ∈ A and b ∈ B are related by R if (a, b) ∈ R, and we often denote this by writing

“aRb”. If B = A, then we speak a relation R ⊆ A×A being a relation on A.

A relation R on a set S is called an equivalence relation if it has the following

properties for all x, y, z ∈ S:

E1. (reflexivity) xRx;
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E2. (symmetry) if xRy, then yRx;

E3. (transitivity) if xRy and yRz, then xRz.

Example 1. Let X be a set and let S be the power set P(X). An element of S × S has

the form (A,B), where A and B are subsets of X. Let

R = {(A,B) ∈ S × S : A and B have the same number of elements }.

Then R is an equivalence relation on S.

Given an equivalence relation R on a set S, we define the equivalence class (with

respect to R) of x ∈ S to be the set

Ex = {y ∈ S : yRx}.

Since R is reflexive, each element of S is in some equivalent class. Furthermore, two

different equivalent classes must be disjoint.

In the above example, if X = {a, b, c} is the set of three letters a, b, and c, then its

power set S = P(X) has four equivalence classes with respect to R: {∅}, {{a}, {b}, {c}},
{{a, b}, {a, c}, {b, c}}, {{a, b, c}}. They form a partition of S.

A relation R on a set S is called a partial ordering if it has the following properties

for all x, y, z ∈ S:

O1. (reflexivity) xRx;

O2. (antisymmetry) if xRy and yRx, then x = y;

O3. (transitivity) if xRy and yRz, then xRz.

Example 2. Let X be a set and let S be the power set P(X). An element of S × S has

the form (A,B), where A and B are subsets of X. Let

R = {(A,B) ∈ S × S : A ⊆ B}.

Then R is a partial ordering on S.

Let m,n ∈ IN. If there exists some k ∈ IN such that n = m+ k, then we write m < n

or n > m. If m < n or m = n, we write m ≤ n or n ≥ m. It is clear that ≤ is a partial

ordering on IN.

A partial ordering ≤ on a set S is called a linear or total ordering if it has the

additional property

O4. (comparability) For x, y ∈ S, either x ≤ y or y ≤ x.

The partial ordering ≤ on IN is a total ordering. On the other hand, if a set X has

more than one element, then the relation ⊆ on P(X) is not a total ordering. Indeed, for

any two distinct elements x and y in X, neither {x} ⊆ {y} nor {y} ⊆ {x}.
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Let ≤ be a partial ordering on a nonempty set X. For x, y ∈ X, y ≥ x has the same

meaning as x ≤ y. If x ≤ y and x ̸= y, then we write x < y or y > x. Let A be a nonempty

subset of X. An element a ∈ A is called the smallest (least) element of A if a ≤ x for all

x ∈ A. Note that such an element is unique. Indeed, if a1 and a2 are two such elements

of A, then a1 ≤ a2 and a2 ≤ a1. Since the relation ≤ is antisymmetric, it follows that

a1 = a2. An element b ∈ A is called the largest (greatest) element of A, if b ≥ x for all

x ∈ A. An element r ∈ A is said to be a minimum of A if there is no element x ∈ A such

that x < r. An element s ∈ A is said to be a maximum of A if there is no element y ∈ A

such that y > s.

Theorem 3.1. Let ≤ be a partial ordering on a nonempty set X, and let A be a nonempty

subset of X.

(1) Suppose that a is the smallest element of A. Then a is also a minimal element of A,

and a is the only minimal element of A.

(2) If ≤ is a total ordering on X and a is a minimal element of A, then a is the smallest

element of A.

Proof. (1) Let a be the smallest element of A. Then a ≤ x for all x ∈ A; hence there is

no x ∈ A such that x < a. This shows that a is a minimal element of A. Further, if b ∈ A

and b ̸= a, then we have b ≥ a and b ̸= a. Hence b > a. So b is not a minimal element of

A. This shows that a is the only minimal element of A.

(2) Suppose that ≤ is a total ordering on X and a is a minimal element of A. Let x

be an arbitrary element of A. Since ≤ is a total ordering, either x ≥ a or x < a. But a is

a minimal element of A. So x < a is false. Hence we must have x ≥ a. This shows that a

is the smallest element of A.

Theorem 3.2. Every nonempty subset of IN contains a least element.

Proof. Let Sn be the set of all natural numbers less than or equal to n. Let Pn be the

statement that every nonempty subset of Sn contains a least element. For n = 1, if A is a

nonempty subset of {1}, then A = {1} and 1 is the least element of A. For the induction

step, suppose Pn is true. Let A be a nonempty subset of Sn+1. If A ∩ Sn is empty, then

A = {n+1} and n+1 is the least element of A. If A∩Sn is nonempty, then it has a least

element a, by the induction hypothesis Pn. It is easily seen that a is the least element of

A. This completes the induction step.

Now let A be an arbitrary nonempty subset of IN. Then A contains a natural number,

say n. The intersection A ∩ Sn is a nonempty subset of Sn. By what has been proved,

A ∩ Sn has a least element a. Clearly, a is the least element of A.

6



§4. Functions

Let A and B be sets. Suppose that F is a relation from A to B. Then F is called a

function from A to B if for every a ∈ A there is exactly one b ∈ B such that (a, b) ∈ F .

Functions are also called maps or mappings.

Example 1. For each of the following relations from A = {a, b, c, d} to B = {1, 2, 3, 4, 5},
determine whether or not it is a function from A to B.

(1) {(a, 1), (b, 2), (c, 3)}
(2) {(a, 1), (b, 2), (c, 3), (d, 4), (d, 5)}
(3) {(a, 1), (b, 2), (c, 3), (d, 5)}
(4) {(a, 5), (b, 5), (c, 5), (d, 5)}
Solution. (1) No, since d ∈ A, but there is no pair (d, x) in the relation. (2) No, since both

(d, 4) and (d, 5) are in the relation. (3) Yes, since each element of A is related to exactly

one element of B. (4) Yes, since each element of A is related to exactly one element of B,

even though every element of A is related to the same element of B.

Suppose that f is a function from A to B. Then A is called the domain of the

function f . If a ∈ A, then there is exactly one element b in B such that (a, b) ∈ f . This

unique b is called the value of f at a or the image of a under f , and it is written f(a). The

set {f(a) : a ∈ A} is called the range of f . It is a subset of B. Let f1 be a function from

A1 to B1, and let f2 be a function from A2 to B2. Then f1 = f2 if and only if A1 = A2,

B1 = B2, and f1(a) = f2(a) for all a ∈ A1.

Let A and B be sets and let f be a function from A to B. Then f is called injective

or one-to-one if for all x, y ∈ A, f(x) = f(y) implies that x = y. Moreover, f is called

surjective or onto if for all b ∈ B there is an a ∈ A with f(a) = b. Finally, f is called

bijective if f is both injective and surjective.

Example 2. (1) Let f be the function from IN to IN given by f(n) = 2n for n ∈ IN.

Then f is injective but not surjective. (2) Let g be the function from IN to IN that sends

each n ∈ IN to the least natural number m such that 2m ≥ n. Then g is surjective but

not injective. (3) Let A = {a, b, c, d, e} and B = {1, 2, 3, 4, 5}. Let h be the relation

{(a, 1), (b, 2), (c, 3), (d, 4), (e, 5)}. Then h is a bijective function.

Let A be a set, and let iA be the relation {(a, a) : a ∈ A}. We call iA the identity

function on A. In other words, iA(a) = a for all a ∈ A. Clearly, iA is bijective.

Let A, B, C be sets, and let f : A → B and g : B → C be functions. Let h the

function given by h(a) = g(f(a)), a ∈ A. Then h is called the composition of f and g

and denoted by g ◦ f .

Theorem 4.1. Let A and B be sets and let f be a function from A to B. Then f is
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bijective if and only if there exists a function g from B to A such that g ◦ f = iA and

f ◦ g = iB .

Proof. If there exists a function g from B to A such that g ◦ f = iA, then f is injective.

Indeed, if x, y ∈ A and f(x) = f(y), then

x = iA(x) = g(f(x)) = g(f(y)) = iA(y) = y.

Moreover, suppose f ◦ g = iB . Then for b ∈ B we have f(g(b)) = (f ◦ g)(b) = iB(b) = b.

So f is surjective.

Conversely, suppose that f is bijective. Recall that f is considered as a relation from

A to B. Let g be the relation from B to A given by {(b, a) ∈ B × A : f(a) = b}. Since f

is bijective, g is a function. Thus g(b) = a if and only if f(a) = b. Hence, g(f(a)) = a for

all a ∈ A and f(g(b)) = b for all b ∈ B. This shows that g ◦ f = iA and f ◦ g = iB.

Let f be a bijective function from A to B. From the above proof we see that there is

a unique function g from B to A such that g ◦ f = iA and f ◦ g = iB . The function g is

called the inverse of f .

§5. Integers

Let ZZ denote the set of integers. We have

ZZ := IN ∪ {0} ∪ {−n : n ∈ IN}.

In other words, the set ZZ consists of positive integers, 0, and negative integers. Let

IN0 := IN ∪ {0}.
Addition and multiplication are defined in ZZ. In particular, m+0 = m and m · 1 = m

for all m ∈ ZZ. We define −0 := 0 and −(−n) := n for n ∈ IN. Consequently, n+ (−n) =

0 for all n ∈ ZZ. Both addition and multiplication are associative and commutative.

Moreover, multiplication is distributive with respect to addition:

m(n+ k) = mn+mk ∀m,n, k ∈ ZZ.

A system (R,+, ·) is called a commutative ring, if R is a nonempty set and the

addition and multiplication satisfy the following properties:

A1. The addition is associative: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

A2. The addition is commutative: a+ b = b+ a for all a, b ∈ R.

A3. R has a zero element 0 such that a+ 0 = a for all a ∈ R.
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A4. Each element a ∈ R has a negative element −a such that a+ (−a) = 0.

M1. The multiplication is associative: (ab)c = a(bc) for all a, b, c ∈ R.

M2. The multiplication is commutative: ab = ba for all a, b ∈ R.

DL. The multiplication is distributive with respect to addition: a(b+ c) = ab + ac for all

a, b, c ∈ R.

If R has an element 1 ̸= 0 such that a·1 = a for all a ∈ R, then R is called the

identity of R. Thus (ZZ,+, ·) is a commutative ring with identity.

Theorem 5.1. Let (R,+, ·) be a commutative ring. The following statements are true

for a, b, c ∈ R.

(1) a+ c = b+ c implies a = b;

(2) −(−a) = a;

(3) a·0 = 0;

(4) (−a)b = −ab;

(5) (−a)(−b) = ab.

Proof. (1) a + c = b + c implies (a + c) + (−c) = (b + c) + (−c) and so by A1 we have

a+ [c+ (−c)] = b+ [c+ (−c)]. By A4 this reduces to a+ 0 = b+ 0 and so a = b by A3.

(2) By A4 and A2 we have [−(−a)] + (−a) = 0 = a+ (−a) and so −(−a) = a by (1).

(3) We use A3 and DL to obtain a·0 = a(0+0) = a·0+a·0. Hence, 0+a·0 = a·0+a·0.
By (1) we conclude that a·0 = 0.

(4) Since a + (−a) = 0, we have ab + (−a)b = [a + (−a)]b = 0·b = 0 = ab + (−ab).

From (1) we obtain (−a)b = −ab.

(5) By (4) and (2) we have (−a)(−b) = −a(−b) = −(−ab) = ab.

For a, b ∈ R, we have (a + (−b)) + b = a + ((−b) + b) = a + 0 = a. Moreover, if

c+ b = a, then it follows from (1) in the above theorem that c = a+ (−b). We define the

difference a− b as a+ (−b). We have

(a+ b)2 = a2 + 2ab+ b2, (a− b)2 = a2 − 2ab+ b2, and (a+ b)(a− b) = a2 − b2.

There is a natural order relation on ZZ. For m,n ∈ ZZ, if n −m ∈ IN0, then we write

m ≤ n or n ≥ m. Evidently, ≤ is a total ordering on ZZ. If m,n ∈ ZZ and m ≤ n, then

m+ k ≤ n+ k for all k ∈ ZZ. Moreover, mk ≤ nk for all k ≥ 0.

A commutative ring R is called an ordered commutative ring if it has a total

ordering ≤ satisfying the following properties for all a, b, c ∈ R:

OA. If a ≤ b, then a+ c ≤ b+ c.

OM. If a ≤ b and 0 ≤ c, then ac ≤ bc.

Thus, (ZZ,+, ·,≤) is an ordered commutative ring with identity.
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Theorem 5.2. Let (R,+, ·,≤) be an ordered commutative ring with identity. The fol-

lowing statements are true for a, b, c ∈ R.

(1) if a ≤ b. then −b ≤ −a;

(2) if a ≤ b and c ≤ 0, then bc ≤ ac;

(3) 0 < a2 for all a ̸= 0;

(4) 0 < 1.

Proof. (1) Suppose that a ≤ b. By OA we have a+ [(−a) + (−b)] ≤ b+ [(−a) + (−b)]. It

follows that −b ≤ −a.

(2) If a ≤ b and c ≤ 0, then 0 ≤ −c by (1). Now by OM we have a(−c) ≤ b(−c), i.e.,

−ac ≤ −bc. From (1) again, we see that bc ≤ ac.

(3) Since ≤ is a total ordering, either 0 < a or a < 0. If 0 < a, then 0·a < a·a. If

a < 0, then 0 < −a and so 0(−a) < (−a)(−a). In both cases we obtain 0 < a2.

(4) Since 1 ̸= 0, by (3) we have 0 < 12 = 1.

Let (R,+, ·,≤) be an ordered commutative ring. The absolute value |a| of an element

a in R is defined as follows:

|a| :=

{
a if a > 0,
0 if a = 0,
−a if a < 0.

Theorem 5.3. Let (R,+, ·,≤) be an ordered commutative ring. The following statements

are true for a, b ∈ R.

(1) |a| ≥ 0;

(2) −|a| ≤ a ≤ |a|;
(3) |a| ≤ b if and only if −b ≤ a ≤ b;

(4) |a| ≥ b if and only if a ≥ b or a ≤ −b;

(5) |a+ b| ≤ |a|+ |b|;
(6) |ab| = |a|·|b|.

Proof. (1) It follows from the definition at once.

(2) If a ≥ 0, then a = |a| ≥ −|a|. If a < 0, then |a| = −a, and hence a = −|a| ≤ |a|.
(3) Suppose |a| ≤ b. It follows that −b ≤ −|a|. By (2) we have −|a| ≤ a ≤ |a|.

Consequently, −b ≤ a ≤ b. Conversely, suppose −b ≤ a ≤ b. It follows that −a ≤ b. We

have |a| = a or |a| = −a. In either case, |a| ≤ b.

(4) Suppose |a| ≥ b. It follows that −|a| ≤ −b. If a ≥ 0, then a = |a| ≥ b; if a < 0,

then a = −|a| ≤ −b. Conversely, suppose a ≥ b or a ≤ −b. Note that a ≤ −b implies

−a ≥ b. We have |a| = a or |a| = −a. In either case, |a| ≥ b.
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(5) We use (2) to deduce that −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. It follows that

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|. Then by (3) we have |a+ b| ≤ |a|+ |b|.
(6) There are four cases. If a ≥ 0 and b ≥ 0, then ab ≥ 0; hence |ab| = ab = |a|·|b|. If

a ≤ 0 and b ≤ 0, then ab ≥ 0; hence, |ab| = ab = (−a)(−b) = |a|·|b|. If a ≤ 0 and b ≥ 0,

then ab ≤ 0; hence, |ab| = −ab = (−a)b = |a|·|b|. Finally, if a ≥ 0 and b ≤ 0, then ab ≤ 0;

hence, |ab| = −ab = a(−b) = |a|·|b|.

An integer m is a factor or divisor of an integer n (or n is a multiple of m) if there

exists an integer k such that n = km. We say that m divides n and write m|n.

Theorem 5.4 (division algorithm). Let m ∈ ZZ and k ∈ IN. Then there exist unique

integers q and r such that

m = kq + r, 0 ≤ r < k.

Proof. Let us prove existence of the desired q and r. If k = 1, then q = m and r = 0

satisfy m = kq + r and 0 ≤ r < k. So we may assume k > 1. Let m be a positive

integer. We prove our assertion by induction on m. For the base case m = 1, q = 0

and r = m satisfy m = kq + r and 0 ≤ r < k. For the induction step, suppose that

our assertion is true for m. We wish to prove it for m + 1. Thus, m = kq + r with

0 ≤ r < k. If r < k − 1, then m+ 1 = kq + (r + 1) with 0 ≤ r + 1 < k. If r = k − 1, then

m+ 1 = kq + r + 1 = kq + k = k(q + 1) + 0. This completes the induction procedure.

If m = 0, then q = 0 and r = 0 satisfy m = kq+ r. Now suppose that m is a negative

integer. Then −m is a positive integer. By what has been proved, −m = kq + r for some

q ∈ ZZ and 0 ≤ r < k. It follows that m = −kq − r. If r = 0, we are done. If 0 < r < k,

then m = k(−q − 1) + (k − r) with 0 < k − r < k.

For uniqueness of q and r, suppose that m = kq + r = kq′ + r′ with 0 ≤ r, r′ < k.

It follows that k(q − q′) = r′ − r. If q > q′, then q − q′ ≥ 1 and k(q − q′) ≥ k. But

r′ − r ≤ r′ < k. So this is a contradiction. For the same reason, q′ > q will also lead to a

contradiction. Thus we must have q = q′. Consequently, r = r′.

In the above division algorithm, q is called the quotient, and r the remainder of m

modulo k.

An even number can be represented as 2k for some k ∈ ZZ. An odd number can be

represented as 2k+1 for some k ∈ ZZ. Note that (2k+1)2 = 4k2+4k+1 = 2(2k2+2k)+1.

So the square of an odd number is an odd number.
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§6. Sums and Products

A binary operation on a set S is a function from S×S to S. For example, addition

and multiplication of natural numbers are binary operations on IN. Let f : S × S → S be

a binary operation, and let x, y ∈ S. In the additive notation, f(x, y) is denoted by x+ y.

In the multiplicative notation, f(x, y) is denoted by x · y or xy.

Let S be a set with a binary operation, written multiplicatively. The operation is

said to be associative, if (xy)z = x(yz) for all x, y, z ∈ S. The operation is said to be

commutative, if xy = yx for all x, y ∈ S. An element e ∈ S is called an identity element

if ex = xe = x for all x ∈ S. An identity element, if it exists, is unique. In the multiplicative

notation, the identity element is often denoted by 1. In the additive notation, the identity

element is often denoted by 0.

A semigroup is a nonempty set together with one associative binary operation. A

monoid is a semigroup with an identity element. A semigroup or monoid is commutative

when its operation is commutative.

Example 1. (1) (IN,+) is a semigroup, but not a monoid, since m + n ̸= n for all

m,n ∈ IN. (2) (IN0,+) is a monoid. We have 0 + n = n+ 0 = n for all n ∈ IN0. (3) (IN, ·)
is a monoid. We have 1 · n = n · 1 = n for all n ∈ IN.

Let (S,+) be a semigroup. For a ∈ S and n ∈ IN, we define na recursively as follows:

1a := a and (n+ 1)a := na+ a. If (S,+) is a monoid, then we define 0a := 0.

Theorem 6.1. Let (S,+) be a semigroup. The following properties hold for all a ∈ S

and all m,n ∈ IN:

(1) ma+ na = (m+ n)a;

(2) m(na) = (mn)a;

(3) if a, b ∈ S and a+ b = b+ a, then n(a+ b) = na+ nb.

Proof. (1) We use induction on n. For n = 1, by definition we have ma+ a = (m+ 1)a.

Let n ∈ IN and assume that ma+ na = (m+ n)a. It follows that

ma+ (n+ 1)a = ma+ (na+ a) = (ma+ na) + a = (m+ n)a+ a = (m+ n+ 1)a.

(2) We proceed by induction on n. For n = 1 we have m(1a) = ma = (m · 1)a. Let

n ∈ IN and assume that m(na) = (mn)a. It follows that

m
(
(n+ 1)a

)
= m(na+ a) = m(na) +ma = (mn)a+ma.

Then we use (1) to deduce that (mn)a+ma = (mn+m)a =
(
m(n+1)

)
a. This completes

the induction procedure.
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(3) We proceed by induction on n. For n = 1 we have 1(a+ b) = a+ b = 1a+1b. Let

n ∈ IN and assume that n(a+ b) = na+ nb. It follows that

(n+ 1)(a+ b) = n(a+ b) + (a+ b) = (na+ nb) + (a+ b) = na+ (nb+ a) + b.

Since a+ b = b+ a, we may use induction to prove that nb+ a = a+ nb. Hence

na+ (nb+ a) + b = na+ (a+ nb) + b = (na+ a) + (nb+ b) = (n+ 1)a+ (n+ 1)b.

This completes the proof.

Let (S, ·) be a semigroup. For a ∈ S and n ∈ IN, we define an recursively as follows:

a1 := a and an+1 := an · a. If (S, ·) is a monoid, then we define a0 := 1. In this situation,

Theorem 6.1 has the following form.

Theorem 6.1′. Let (S, ·) be a semigroup. The following properties hold for all a ∈ S and

all m,n ∈ IN:

(1) am · an = am+n;

(2) (am)n = amn;

(3) if a, b ∈ S and ab = ba, then (ab)n = anbn.

Let (S,+) be a semigroup and for each j ∈ IN let aj ∈ S. Define the sum

1∑
j=1

aj = a1

and for n ∈ IN define the sum

n+1∑
j=1

aj :=
n∑

j=1

aj + an+1.

The parameter j is called the summation index.

Now let (S,+) be a monoid. For each j ∈ ZZ let aj ∈ S. Let m and n be arbitrary

integers. The sum
∑n

j=m aj is defined as follows. If n < m, then

n∑
j=m

aj := 0.

In other words, the empty sum is defined to be 0. If n = m, then

n∑
j=m

aj := am.
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For n ≥ m, define
n+1∑
j=m

aj :=
n∑

j=m

aj + an+1.

Theorem 6.2. Let (S,+) be a monoid. For each j ∈ ZZ let aj , bj ∈ S. Then the following

hold.

(1) For m,n, k ∈ ZZ with m ≤ k ≤ n,

k∑
j=m

aj +
n∑

j=k+1

aj =
n∑

j=m

aj .

(2) For m,n, k ∈ ZZ,
n+k∑

j=m+k

aj =
n∑

i=m

ai+k.

(3) If (S,+) is commutative, then for m,n ∈ ZZ,

n∑
j=m

(
aj + bj

)
=

n∑
j=m

aj +
n∑

j=m

bj .

Proof. (1) If k = n, then
∑n

j=k+1 aj = 0. So our assertion is true for this case. For the

general case we use induction on n. For the base case n = m, we must have k = n. Hence

our assertion is valid. Now assume that our assertion is true for n and let n+ 1 ≥ k ≥ m.

The case k = n+ 1 has been settled. So we may assume m ≤ k < n+ 1. Thus

n+1∑
j=m

aj =
n∑

j=m

aj + an+1 =

( k∑
j=m

aj +
n∑

j=k+1

aj

)
+ an+1

=

k∑
j=m

aj +

( n∑
j=k+1

aj + an+1

)
=

k∑
j=m

aj +

n+1∑
j=k+1

aj .

This completes the induction procedure.

(2) We proceed by induction on n. If n = m, then
∑m+k

j=m+k aj = am+k =
∑m

i=m ai+k.

This establishes the base case. For the induction step, assume that our assertion is true

for n. Then

n+1+k∑
j=m+k

aj =
n+k∑

j=m+k

aj + an+1+k =
n∑

i=m

ai+k + an+1+k =
n+1∑
i=m

ai+k.

(3) We proceed by induction on n. If n = m, then

m∑
j=m

(
aj + bj

)
= am + bm =

m∑
i=m

aj +

m∑
i=m

aj .
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This establishes the base case. For the induction step, assume that our assertion is true

for n. Then
n+1∑
j=m

(
aj + bj

)
=

n∑
j=m

(
aj + bj

)
+ (an+1 + bn+1) =

( n∑
j=m

aj +
n∑

j=m

bj

)
+ (an+1 + bn+1).

Since (S,+) is commutative, we have( n∑
j=m

aj+
n∑

j=m

bj

)
+(an+1+bn+1) =

( n∑
j=m

aj+an+1

)
+

( n∑
j=m

bj+bn+1

)
=

n+1∑
j=m

aj+
n+1∑
j=m

bj .

This completes the induction procedure.

Now let (S, ·) be a monoid. For each j ∈ ZZ let aj ∈ S. Let m and n be arbitrary

integers. The product
∏n

j=m aj is defined as follows. If n < m, then

n∏
j=m

aj := 1.

In other words, the empty product is defined to be 1. If n = m, then

n∏
j=m

aj := am.

For n ≥ m, define
n+1∏
j=m

aj :=
n∏

j=m

aj · an+1.

The following theorem is a restatement of Theorem 6.2 in the multiplicative notation.

Theorem 6.2′. Let (S, ·) be a monoid. For each j ∈ ZZ let aj , bj ∈ S. Then the following

hold.

(1) For m,n, k ∈ ZZ with m ≤ k ≤ n,

k∏
j=m

aj ·
n∏

j=k+1

aj =
n∏

j=m

aj .

(2) For m,n, k ∈ ZZ,
n+k∏

j=m+k

aj =
n∏

i=m

ai+k.

(3) If (S, ·) is commutative, then for m,n ∈ ZZ,

n∏
j=m

(
aj · bj

)
=

n∏
j=m

aj ·
n∏

j=m

bj .

The following theorem generalizes the distributive law.
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Theorem 6.3. Let (R,+, ·) be a commutative ring with identity. For each j ∈ ZZ let

aj ∈ R. Then the following distributive property is valid for all m,n ∈ ZZ and all c ∈ R:

c ·
( n∑

j=m

aj

)
=

n∑
j=m

(c · aj).

Proof. If n < m, then both sides of the above equation are equal to 0. For n ≥ m we

proceed by induction on n. For the base case n = m, both sides of the above equation are

equal to c · am. For the induction step, let n ≥ m and assume that our assertion is valid

for n. Since
∑n+1

j=m aj =
∑n

j=m aj + an+1. By the distributive law we have

c ·
n+1∑
j=m

aj = c ·
( n∑

j=m

aj + an+1

)
= c ·

n∑
j=m

aj + c · an+1.

By the induction hypothesis, c ·
∑n

j=m aj =
∑n

j=m(c · aj). Therefore,

c ·
n+1∑
j=m

aj =

n∑
j=m

(c · aj) + (c · an+1) =

n+1∑
j=m

(c · aj).

This completes the induction procedure.

Theorem 6.4. Let (R,+, ·) be a commutative ring with identity. The following property

holds for all a, b ∈ R and all n ∈ IN:

an − bn = (a− b)

(n−1∑
j=0

an−1−jbj
)

= (a− b)
(
an−1 + an−2b+ · · ·+ bn−1

)
.

Proof. By the distributive law and Theorem 6.3 we have

(a−b)

(n−1∑
j=0

an−1−jbj
)

= a ·
n−1∑
j=0

an−1−jbj−b ·
n−1∑
j=0

an−1−jbj =
n−1∑
j=0

an−jbj−
n−1∑
j=0

an−1−jbj+1.

By Theorem 6.2 we deduce that

n−1∑
j=0

an−jbj = an +
n−1∑
j=1

an−jbj and
n−1∑
j=0

an−1−jbj+1 =
n−2∑
j=0

an−1−jbj+1 + bn.

Applying Theorem 6.2 again we obtain

n−2∑
j=0

an−1−jbj+1 =

n−1∑
j=1

an−jbj .

Therefore,

(a− b)

(n−1∑
j=0

an−1−jbj
)

=

(
an +

n−1∑
j=1

an−jbj
)
−
(n−1∑

j=1

an−jbj + bn
)

= an − bn.

This completes the proof of the theorem.
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§7. Rational Numbers

We use QQ to denote the set of rational numbers:

QQ :=
{m

n
: m ∈ ZZ, n ∈ IN

}
.

The addition in QQ is defined by the rule

m

n
+

p

q
:=

mq + np

nq
.

The multiplication in QQ is defined by the rule

m

n
· p
q
:=

mp

nq
.

A system (F,+, ·) is called a field, if it is a commutative ring with identity, and, in

addition, each nonzero element a in F has an inverse a−1 such that aa−1 = 1. Clearly,

each element a has only one inverse. It is easily seen that (QQ,+, ·) is a field.

Let (F,+, ·) be a field. If a, b ∈ F and b ̸= 0, we define a/b as ab−1. In particular,

1/b = b−1. Note that a/b is the unique element such that (a/b)b = a. Thus, division is

well defined in a field.

Theorem 7.1. Let (F,+, ·) be a field. The following properties hold for a, b, c, d ∈ F :

(1) a ̸= 0 and b ̸= 0 imply ab ̸= 0;

(2) ac = bc and c ̸= 0 imply a = b;

(3) if b ̸= 0 and d ̸= 0, then a/b = c/d if and only if ad = bc.

(4) if b ̸= 0 and c ̸= 0, then (ac)/(bc) = a/b.

(5) if b, c, d are nonzero, then
a
b
c
d

=
a

b

d

c
=

ad

bc
.

Proof. (1) If ab = 0 and a ̸= 0, then b = (a−1a)b = a−1(ab) = 0. (2) ac = bc and

c ̸= 0 imply a = a(cc−1) = (ac)c−1 = (bc)c−1 = b(cc−1) = b. (3) By (1) we have bd ̸= 0.

Moreover, by (2) we see that a/b = c/d if and only if (bd)(a/b) = (bd)(c/d), that is, ad = bc.

(4) Since b(ac) = a(bc), by (3) we obtain (ac)/(bc) = a/b. (5) In light of (3), this follows

from (a/b)(bc) = ac = (c/d)(ad).

A field F is called an ordered field if it has a total ordering ≤ satisfying the following

properties:

OA. If a ≤ b, then a+ c ≤ b+ c.

OM. If a ≤ b and 0 ≤ c, then ac ≤ bc.
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Suppose that m, p ∈ ZZ and n, q ∈ IN. If mq ≤ np, we write m/n ≤ p/q. Then ≤ is a

total ordering in QQ. With this ordering, QQ becomes an ordered field.

If a ≤ b and a ̸= b, we write a < b or b > a. If a < b, then a+ c < b+ c for c ∈ F and

ac < bc for c > 0.

Theorem 7.2. Let (F,+, ·,≤) be an ordered field. The following statements are true for

a, b, c, d ∈ F .

(1) if a > 0, then a−1 > 0;

(2) if b > 0 and d > 0, then (a/b) ≤ (c/d) ⇔ ad ≤ bc.

(3) if 0 < a < b, then 0 < an < bn for all n ∈ IN.

Proof. (1) If a > 0, then a−1 ̸= 0 and so (a−1)2 > 0. Hence a(a−1)2 > 0. It follows

that a−1 > 0. (2) If b > 0 and d > 0, then bd > 0 and (bd)−1 > 0. Hence, (a/b) ≤ (c/d)

implies (a/b)(bd) ≤ (c/d)(bd). It follows that ad ≤ bc. Conversely, if ad ≤ bc, then

(bd)−1(ad) ≤ (bd)−1(bc). Consequently, a/b ≤ c/d. (3) We proceed by induction on n.

The proof for the base case n = 1 is trivial. Suppose that 0 < an < bn. Since a > 0,

we have 0 < a · an < a · bn. Since 0 < a < b, we have a · bn < b · bn. Consequently,

0 < a · an < b · bn. In other words, 0 < an+1 < bn+1. This completes the induction

procedure.

For n ∈ IN0 we define

n! :=
n∏

j=1

j.

In particular, 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, and 5! = 1 · 2 · 3 · 4 · 5 = 120. We have

(n+ 1)! = n!(n+ 1) for all n ∈ IN0. Further, for n, k ∈ IN0 with k ≤ n, we define(
n

k

)
:=

n!

k!(n− k)!
.

Theorem 7.3. For all n, k ∈ IN with k ≤ n,(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
.

Consequently, for all n, k ∈ IN0,
(
n
k

)
is a natural number.

Proof. We have(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!
(
n− (k − 1)

)
!
+

n!

k!(n− k)!
=

n!k

k!(n− k + 1)!
+

n!(n− k + 1)

k!(n− k + 1)!
,
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where we have used the fact that k/k! = 1/(k−1)! and (n−k+1)/(n−k+1)! = 1/(n−k)!.

It follows that(
n

k − 1

)
+

(
n

k

)
=

n!(k + n− k + 1)

k!(n− k + 1)!
=

(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
.

To prove the second statement, we proceed by induction on n. For n = 0 we have

k = 0, and so
(
n
k

)
= 1 ∈ IN. This establishes the base case. For the induction step, suppose

that our assertion is valid for n. Consider
(
n+1
k

)
. If k = 0 or k = n+1, then

(
n+1
k

)
= 1 ∈ IN.

If 0 < k < n + 1, then
(

n
k−1

)
and

(
n
k

)
are natural numbers, by the induction hypothesis.

Therefore,
(
n+1
k

)
=

(
n

k−1

)
+
(
n
k

)
∈ IN. This completes the induction procedure.

We are in a position to establish the following binomial theorem.

Theorem 7.4. Let (R,+, ·) be a commutative ring. Then for all n ∈ IN and all a, b ∈ R,

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k.

Proof. The proof proceeds by induction on n. For n = 1 we have

(a+ b)1 = a+ b =
1∑

k=0

(
1

k

)
akb1−k.

For the induction step, suppose that our assertion is valid for n. We wish to prove it for

n+ 1. By the induction hypothesis we have

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)
n∑

k=0

(
n

k

)
akbn−k.

Then we use the distributive law to obtain

(a+b)n+1 = a
n∑

k=0

(
n

k

)
akbn−k+b

n∑
k=0

(
n

k

)
akbn−k =

n∑
k=0

(
n

k

)
ak+1bn−k+

n∑
k=0

(
n

k

)
akbn−k+1.

For the first sum we make the change of indices: k = j − 1. The range of k is from 0 to n,

so the range of j is from 1 to n+ 1. Thus

n∑
k=0

(
n

k

)
ak+1bn−k =

n+1∑
j=1

(
n

j − 1

)
ajbn−j+1 =

n∑
j=1

(
n

j − 1

)
ajbn−j+1 + an+1.
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For the second sum we have

n∑
k=0

(
n

k

)
akbn−k+1 =

n∑
j=1

(
n

j

)
ajbn−j+1 + bn+1.

Consequently,

(a+ b)n+1 = an+1 +
n∑

j=1

[(
n

j − 1

)
+

(
n

j

)]
ajbn−j+1 + bn+1.

Since
(

n
j−1

)
+
(
n
j

)
=

(
n+1
j

)
, we get

(a+ b)n+1 = an+1 +

n∑
j=1

(
n+ 1

j

)
ajbn+1−j + bn+1 =

n+1∑
j=0

(
n+ 1

j

)
ajbn+1−j .

This completes the induction procedure.

Although the rational numbers form a rich algebraic system, they are inadequate for

the purpose of analysis because they are, in a sense, incomplete.

For example, there is no rational number r such that r2 = 2. In order to prove this

statement, consider the set S of all positive integers n such that 2n2 = m2 for some m ∈ IN.

If the set S is not empty, then we let n0 be its least element. For this n0, there exists some

m0 ∈ IN such that m2
0 = 2n2

0. Since m2
0 is an even number, m0 must be an even number:

m0 = 2m1 for some m1 ∈ IN. Consequently, (2m1)
2 = 2n2

0, and so 2m2
1 = n2

0. Thus n2
0 is

an even number, and hence n0 is an even number: n0 = 2n1 for some n1 ∈ IN. Now we

have m2
1 = 2n2

1. Thus n1 ∈ S and n1 < n0. This contradicts the fact that n0 is the least

element of S. Therefore, there is no pair (m,n) of positive integers such that m2 = 2n2.

Suppose that ≤ is a partial ordering on a nonempty set X. Let A be a nonempty

subset of X. An element u ∈ X is called an upper bound of A if u ≥ a for all a ∈ A. If

A has an upper bound, it is called bounded above. An element v ∈ X is called a lower

bound of A if v ≤ a for all a ∈ A. If A has a lower bound, it is called bounded below.

A subset A of X is called bounded if it is bounded above and bounded below.

If s is an upper bound of A and s ≤ u for every upper bound u of A, then s is unique.

We say that s is the least upper bound or the supermum of A and write s = supA.

Thus, s is the supremum of A if and only if s satisfies the following two properties: (1)

s ≥ a for all a ∈ A and (2) for any s′ < s, there exists some b ∈ A such that s′ < b. If t

is a lower bound of A and t ≥ v for every lower bound v of A, then we say that t is the

greatest lower bound or the infimum of A and write t = inf A.
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Let A := {r ∈ QQ : r2 ≤ 2}. We shall prove that the set A has no least upper bound in

QQ. For this purpose we let s ∈ QQ be an upper bound of A. Let us show s2 ≥ 2. Otherwise,

s2 < 2. We claim that there exists some t > 0 such that (s + t)2 < 2. Indeed, we have

(s + t)2 = s2 + 2st + t2 = s2 + t(2s + t). Thus, if t(2s + t) < 2 − s2, then (s + t)2 < 2.

Choose t := (2−s2)/(2s+1). Since 1 ∈ A, we have s ≥ 1, and so t = (2−s2)/(2s+1) < 1.

Hence t(2s+ t) < t(2s+ 1) = 2− s2. This justifies our claim and shows that s would not

be an upper bound of A. Since s2 ̸= 2, we must have s2 > 2. Choose r := (s2 − 2)/(2s).

Then r > 0 and

(s− r)2 = s2 − 2sr + r2 > s2 − 2sr = s2 − 2s
s2 − 2

2s
= 2.

This shows that s − r is also an upper bound of A. Therefore s is not the least upper

bound of A.

An ordered set (X,≤) is said to be complete if every bounded subset of X has a

supremum and an infimum. The above example demonstrates that (QQ,≤) is incomplete.

§8. Real Numbers

A real number has a representation of the form

k + 0.d1d2d3 · · · ,

where k is an integer and each digit dj belongs to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We use IR to

denote the set of all real numbers.

Let Q be the set {m/10r : m ∈ ZZ, r ∈ IN0}. By using the division algorithm we can

easily prove that each q ∈ Q has a decimal expansion:

q = k +

r∑
j=1

dj
10j

= k + 0.d1 · · · dr,

where k ∈ ZZ and d1, . . . , dr ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Thus, q can be identified with the

real number

k + 0.d1 · · · dr000 · · · ,

which ends in a sequence of all 0’s. If dr ̸= 0, then q has another representation

k + 0.d1 · · · (dr − 1)999 · · · ,

which ends in a sequence of all 9’s.

Suppose that x = k+0.d1d2d3 · · · and x′ = k′+0.d′1d
′
2d

′
3 · · · are two real numbers and

neither decimal representation ends in a sequence of all 9’s. We write x < x′ if k < k′, or

if k = k′ and there exists some r ∈ IN such that dj = d′j for 1 ≤ j < r and dr < d′r. Given

two real numbers x and y, we write x ≤ y if x = y or x < y. It can be easily proved that ≤
is a total ordering on IR. Moreover, (IR,≤) is complete as stated in the following theorem.
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Theorem 8.1. Every nonempty subset of IR that is bounded above has a least upper

bound.

The following theorem establishes the denseness of Q in IR.

Theorem 8.2. If x, x′ ∈ IR and x < x′, then there exists some q ∈ Q such that x < q < x′.

Proof. Suppose that x = k + 0.d1d2d3 · · · and x′ = k′ + 0.d′1d
′
2d

′
3 · · · and neither decimal

representation ends in a sequence of all 9’s. Consider the case k < k′ first. There exists

some s ∈ IN such that ds < 9. Let q := k + 0.d1 · · · ds−19. Then x < q < x′. It

remains to deal with the case k = k′. Since x < x′, there exists some r ∈ IN such that

dj = d′j for 1 ≤ j < r and dr < d′r. There exists some s > r such that ds < 9. With

q := k + 0.d1 · · · ds−19, we have x < q < x′.

The addition of two real numbers x and y is defined as

x+ y := sup{p+ q : p, q ∈ Q, p ≤ x, q ≤ y}.

For each x ∈ IR, there exists a unique real number −x such that x+ (−x) = 0.

The multiplication of two real numbers x and y is defined as follows. If x = 0 or y = 0,

we define x·y = 0. If x > 0 and y > 0, we define

x·y := sup{pq : p, q ∈ Q, 0 < p ≤ x, 0 < q ≤ y}.

If x > 0 and y < 0, define x·y := −(x(−y)); if x < 0 and y > 0, define x·y := −((−x)y); if

x < 0 and y < 0, define x·y := (−x)(−y).

It can be proved that (IR,+, ·,≤) is an ordered field. Moreover, QQ is a subfield of IR.

A number in IR \QQ is called an irrational number.

Although Theorem 8.1 only guarantees that nonempty subsets of IR that are bounded

above have suprema, existence of infima is a consequence.

Theorem 8.3. Every nonempty subset of IR that is bounded below has a greatest lower

bound.

Proof. Let S be a nonempty subset of IR that is bounded below. We denote the set

{−s : s ∈ S} by −S. Then −S is bounded above. By Theorem 8.1, sup(−S) exists as a

real number. Let s0 := sup(−S). We have s0 ≥ −s for all s ∈ S. It follows that −s0 ≤ s

for all s ∈ S. Hence, −s0 is a lower bound of S. Furthermore, if t is a lower bound of S,

then t ≤ s for all s ∈ S. It follows that −t ≥ −s for all s ∈ S. Hence, −t is an upper bound

of −S. We have −t ≥ s0, since s0 is the least upper bound of −S. Consequently, t ≤ −s0.

This shows that −s0 is the greatest lower bound of S and inf S = −s0 = − sup(−S).
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An ordered field F is said to have the Archimedean property if for every pair of

positive elements a and b, there is a positive integer n such that na > b.

Theorem 8.4. A complete ordered field F has the Archimedean property.

Proof. We argue by contraposition. Suppose that the Archimedean property fails. Then

there exist a > 0 and b > 0 such that na ≤ b for all n ∈ IN. Let S := {na : n ∈ IN}.
Then S is nonempty and b is an upper bound for S. Since the field F is complete, S has a

supremum. Let s0 := supS. Now s0 − a < s0, so it is not an upper bound for S. Hence,

there exists some n0 ∈ IN such that s0 − a < n0a. It follows that s0 < (n0 + 1)a. But

s0 ≥ na for all n ∈ IN. This contradiction shows that F has the Archimedean property.

We have shown that (IR,+, ·,≤) is a complete ordered field. If (F,+, ·,≤) is also a

complete ordered field. Then there is a bijective function φ from F to IR such that φ

preserves addition, multiplication, and order. Such a function is called an isomorphism.

Thus IR is the unique complete ordered field (up to isomorphism).

For any real number x, there is a unique integer n such that n ≤ x < n + 1. This

integer n is called the integer part of x, and is denoted by ⌊x⌋. For example, ⌊5⌋ = 5,

⌊3.2⌋ = 3, and ⌊−3.2⌋ = −4.

For a pair of real numbers a and b, we define

(a, b) := {x ∈ IR : a < x < b}, [a, b] := {x ∈ IR : a ≤ x ≤ b},

[a, b) := {x ∈ IR : a ≤ x < b}, (a, b] := {x ∈ IR : a < x ≤ b}.

The set (a, b) is called an open interval, the set [a, b] is called a closed interval, and

the sets [a, b) and (a, b] are called half-open (or half-closed) intervals.

We introduce two symbols ∞ and −∞. The ordering ≤ in IR can be extended to

IR := IR ∪ {−∞,∞} by defining

−∞ < a < ∞ for all a ∈ IR.

Then we have (−∞,∞) = IR and

(a,∞) = {x ∈ IR : x > a}, [a,∞) = {x ∈ IR : x ≥ a},

(−∞, b) = {x ∈ IR : x < b}, (−∞, b] = {x ∈ IR : x ≤ b}.

Let S be any nonempty subset of IR. The symbols supS and inf S always make

sense. If S is bounded above, then supS is a real number; otherwise supS = +∞. If S

is bounded below, then inf S is a real number; otherwise inf S = −∞. Moreover, we have

inf S ≤ supS.
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Example 2. Write the following sets in interval notation:

(a) A := {x ∈ IR : |x− 3| ≤ 5}.
(b) B := {x ∈ IR : |x− 3| > 5}.

Solution. (a) We see that |x−3| ≤ 5 if and only if −5 ≤ x−3 ≤ 5, that is, 3−5 ≤ x ≤ 3+5.

Hence, A = [−2, 8].

(b) |x− 3| > 5 if and only if x− 3 < −5 or x− 3 > 5. Hence, B = (−∞,−2) ∪ (8,∞).

§9. Powers and Roots

Given a real number a and a positive integer m, we want to solve the equation xm = a

for x. For this purpose, we first establish the following Bernoulli inequality:

Theorem 9.1. If x ≥ −1, then for every positive integer n,

(1 + x)n ≥ 1 + nx.

Proof. The proof proceeds by induction on n. For n = 1, we have (1 + x)1 = 1 + 1 · x.
For the induction step, suppose that (1+x)n ≥ 1+nx for x ≥ −1. Since x ≥ −1, we have

1 + x ≥ 0. Hence,

(1 + x)n+1 = (1 + x)(1 + x)n ≥ (1 + x)(1 + nx) = 1 + x+ nx+ nx2 ≥ 1 + (n+ 1)x.

In the last step we have used the fact x2 ≥ 0. This completes the induction procedure.

Theorem 9.2. Let m be a positive integer. For every positive real number a, there exists

a unique positive real number r such that rm = a.

Proof. We first prove the existence of r. Let A := {x ∈ IR : x ≥ 0 and xm ≤ a}. Then

0 ∈ A and A is bounded above by max{1, a}. Since IR is a complete ordered field, A has

a supremum. Let r := supA. If a ≥ 1, then 1 ∈ A; if 0 < a < 1, then a ∈ A. Hence

r ≥ min{1, a} > 0. We claim that rm = a. To justify our claim, it suffices to show that

rm ̸< a and rm ̸> a. First, suppose that rm > a. We wish to find some δ with 0 < δ < r

such that (r − δ)m > a. We have (r − δ)m = rm(1 − δ/r)m. So (r − δ)m > a is true if

(1−δ/r)m > a/rm. By the Bernoulli inequality, (1−δ/r)m ≥ 1−mδ/r. So 1−mδ/r > a/rm

implies (r− δ)m > a. But 1−mδ/r > a/rm holds if and only if δ < r(1− a/rm)/m. Note

that 1 − a/rm > 0. Thus, if δ is so chosen that 0 < δ < r(1 − a/rm)/m, then δ < r

and (r − δ)m > a. This shows that r is not the least upper bound of A, a contradiction.

Therefore rm ̸> a. Next. suppose that rm < a. It follows that (1/r)m > 1/a. By what

has been proved, there exists some δ with 0 < δ < 1/r such that (1/r − δ)m > 1/a. Note
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that 1/r − δ = 1/r − (rδ)/δ = (1 − rδ)/δ. Consequently,
(
r/(1 − δr))m < a. Hence,

r/(1− δr) ∈ A. But r < r/(1− δr). Thus, r is not an upper bound of A, a contradiction.

Therefore rm ̸< a. Since rm ̸> a and rm ̸< a, we must have rm = a.

For uniqueness, suppose that s is also a positive real number such that sm = a. If

s < r, then sm < rm = a; if s > r, then sm > rm = a. Hence we must have s = r.

Let a be a positive real number and let m be a positive integer. Then the unique

positive number r such that rm = a is called the mth root of a, denoted m
√
a. The second

root of a is also called the square root of a, denoted
√
a. Note that

√
a2 = |a|.

If a = 0, then the equation xm = 0 has a unique solution m
√
0 = 0. If a < 0 and m

is an even positive integer, then the equation xm = a is not solvable in IR. In particular,

there is no real number r such that r2 = −1. If a < 0 and m is an odd positive integer,

then the equation xm = a has a unique solution in IR: x = − m
√
|a|.

If a ∈ IR \ {0} and n is a negative integer, then we define an := (a−1)−n. For

a, b ∈ IR \ {0} and m,n ∈ ZZ, the following properties hold:

am · an = am+n, (am)n = amn, (a · b)m = am · bm.

Now let a be a positive real number, and let s ∈ QQ. The rational number s has a

representation s = m/n, where m ∈ ZZ and n ∈ IN. We define

as := ( n
√
a)m.

Suppose that s = p/q is another representation with p ∈ ZZ and q ∈ IN. Then qm = pn.

We have (
( q
√
a)p

)n
= ( q

√
a)pn = ( q

√
a)qm =

(
( q
√
a)q

)m
= am =

(
n
√
a)m

)n
.

It follows that ( q
√
a)p = ( n

√
a)m. Thus the fractional power as is well defined.

Theorem 9.3. Let a and b be positive real numbers, and let s, t ∈ QQ, then the following

hold.

(1) as · at = as+t.

(2) (as)t = ast.

(3) (a · b)s = as · bs.

Proof. We may assume that s = p/n and t = q/n, where p, q ∈ ZZ and n ∈ IN. Then we

have (as)n = ap and (at)n = aq. Moreover, s+ t = (p+ q)/n, so (as+t)n = ap+q. We have

(as · at)n = (as)n · (at)n = ap · aq = ap+q = (as+t)n.
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It follows that as · at = as+t. This proves (1). For (2) we observe that st = pq/n2 and

(
(as)t

)n2

= (as)qn =
(
(as)n

)q
= (ap)q = apq = (ast)n

2

.

Consequently, (as)t = ast. Finally, we have

(
(a · b)s

)n
= (a · b)p = ap · bp = (as)n · (bs)n = (as · bs)n.

It follows that (a · b)s = as · bs. This completes the proof.
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