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Gravity currents in a two-layer stratified ambient:
The theory for the steady-state (front condition)
and lock-released flows, and experimental confirmations
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1Department of Mechanical Engineering, University of Alberta, Edmonton,
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We consider the propagation of a gravity current of density ρc at the bottom of a
two-layer stratified ambient in a horizontal channel of height H, in the high-Reynolds
number Boussinesq domain. The study emphasizes theoretical-analytical model-
ing, however, experimental and Navier-Stokes simulation data are also presented
and their comparison with theory is discussed. The stratification parameters are S
= (ρ1 − ρ2)/(ρc − ρ2) where ρ is the fluid density, and ϕ = h1R/H where h1R is the
(unperturbed) ambient interface height. Here, 1 and 2 denote, respectively, the lower
and upper layer and c denotes the gravity current. The reduced gravity is defined
as g′ = (ρc/ρ2 − 1)g. Rigorous results are obtained for the steady-state analogue
of the classical problem of Benjamin [J. Fluid Mech. 31, 209 (1968)], in which the
half-infinite gravity current has thickness h and speed U. We thereby demonstrate
that the Froude number F = U/(g′h)1/2 is a function of a = h/H, S, and ϕ. In gen-
eral, two solutions (or modes) may be realized. Issues of energy dissipation, sub- vs.
supercriticality with respect to long internal waves and, more generally, the influence
of upstream-propagating disturbances are discussed. For a gravity current released
from a lock of height h0 and length x0, we derive an approximate shallow-water
model and show that the motion is in this case governed by � = H/h0, S, and ϕ.
Although the shallow-water model neglects motion in the ambient layers and ig-
nores the impact of propagation on stratification, the gravity current front speed in
the slumping stage is in excellent agreement with measured data. Our theoretical
solutions are consistent with previous results (in particular, Holyer and Huppert [J.
Fluid Mech. 100, 739 (1980)] and Tan et al. [Environ. Fluid Mech. 11, 203 (2011)]),
but have the advantages of being (i) derived without reliance on adjustable constants
and ad hoc closures; (ii) applicable to a significantly broader range of dimension-
less parameters; and (iii) better assessed by comparison against measured data. The
present one-layer shallow-water approximation turns out to be a simple and versatile
extension of existing models for homogeneous and linearly stratified ambients, and
can be straightforwardly incorporated into the available prediction tools for gravity
currents. C© 2012 American Institute of Physics. [doi:10.1063/1.3680260]

I. INTRODUCTION

Pollution discharge into marine environments or the atmosphere must inevitably consider the
influence of ambient stratification be it a continuous or discrete function of height. For example, in the
case of buoyant plumes rising through a stably stratified medium, one may estimate the maximum rise
height and level of neutral buoyancy from the details of the ambient density profile.1, 2 Conversely, in
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FIG. 1. Effluent discharge in stratified marine environments. (a) Dense effluent and (b) buoyant effluent.

examining the lateral spreading of an intrusive gravity current along a density interface, mimicking
say the motion of an effluent along a thermocline, Sutherland and Nault3 found that the flow may
travel unusually long distances at constant speed, but only for particular values of the interface
thickness.

The present investigation considers a problem of buoyancy-driven flow that results in predom-
inantly horizontal, rather than vertical, motion. More specifically, and for definitiveness, we shall
examine the flow depicted schematically in Figure 1(a), which shows a gravity current propagating
at the base of a two-layer stratified ambient. The gravity current density, ρc, is assumed to be larger
than that of the upper (ρ2) or lower (ρ1) ambient layer, however, density differences are small so
that the Boussinesq approximation applies. Our study is therefore pertinent to either a dense effluent
propagating along a channel floor (Figure 1(a)) or to a light effluent propagating along the underside
of a free surface (Figure 1(b)).

Although experimental and numerical data will be presented and discussed in Secs. IV–VI,
the major impetus of our study is theoretical-analytical. In this respect, there are two interrelated
problems to consider: (i) the idealized steady-state gravity current of height h and speed U, which
is the obvious extension of Benjamin’s classical solution and (ii) the more practical gravity current
produced from rest by lock-release at time t = 0 of a fixed volume of dense fluid. The latter problem
is time-dependent, but it is expected that results from (i) will provide useful insights (qualitative
at least) into the dynamics of the leading domain. The important non-dimensional parameters are
ϕ ≡ h1R/H, where h1R and H are the undisturbed ambient interface height and channel depth,
respectively, and S, a stratification parameter defined as

S = ρ1 − ρ2

ρc − ρ2
, (1.1)

which is in the range 0 ≤ S ≤ 1 (cf. Eq. (2.2) of Ungarish and Huppert4). For the steady-state problem
(i), the additional non-dimensional parameter is the height ratio a ≡ h/H of the gravity current to
the ambient. Conversely, solutions of the lock-release problem (ii), will depend upon � ≡ H/h0 in
which h0 is the initial depth of the gravity current fluid in the lock.

The steady-state analysis seeks to extend the seminal investigation of Benjamin5 and thereby
derive a relationship of the form

U

(g′h)1/2
= F (a, ϕ, S) , (1.2)

in which U is the speed of the gravity current (in the laboratory frame in which the unperturbed
ambient is stagnant), and

g′ = (ρc/ρ2 − 1)g (1.3)

is the reduced gravity where g denotes gravitational acceleration; the dimensionless F is usually
referred to as a Froude number.
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Note that Benjamin considered the simpler (perhaps simplest) problem of gravity current flow
through a uniform ambient; correspondingly in his study F is a function of a alone, and expressible
in a closed-form algebraic formula. However, even for that straightforward case some variations in
the definitions arise. For instance, it is possible to use (g′H)1/2 as the reference speed in Eq. (1.2);
but this lacks physical justification, and the so-scaled results become confusing for deep-ambient
gravity currents in the limit a → 0. In any case, it is important to recall that F provides one equation
for two unknown properties of the gravity current, U and h. Equation (1.2) does not determine the
flow, it is just a necessary constraint on the flow field of the steady gravity current.

When the ambient is inhomogeneous the relationship F is mathematically more complicated,
first of all because more parameters are involved. The physical problem is also more complex.
Consider, for example, a linearly stratified ambient fluid whereby ρa(z) = ρ2 + S(ρc − ρ2)(1
− z/H). In the ambient above the gravity current, h < z < H, the density and speed are unknown z-
dependent functions whose determination is part of the problem. Although a direct analytical solution
of the flow field is hopeless, the methodology of Ungarish6 and White and Helfrich7 is helpful. First,
irrotational solutions of the Euler equations are derived corresponding to a flow in a channel of height
H of upstream speed U, which encounters a semi-infinite solid obstacle having in the downstream
domain the same constant thickness h as the gravity current. Subsequent replacement of the obstacle
with a slug of dense fluid while maintaining the same flow field in the up- and downstream domains
of the ambient, subject to the flow-force balance necessary for maintaining a steady state, excludes
all but a handful of (eigen-) solutions for U/(g′h)1/2 = F . These solutions cannot be expressed in
closed analytical form. Multiple solutions are obtained in some domains of the parameter space
(mostly for small a and S close to 1). The advantage of this approach is that the solution involves
only algebraic equations, it is self-contained and neither requires nor admits adjustable constants.
In addition, when S → 0, Benjamin’s solution is recovered. We expect that the same procedure will
provide reliable insights here. Accordingly, we will develop the F relationship for the present two-
layer stratification. This relationship will be subsequently compared against analogue experimental
and Navier-Stokes simulation data obtained as a part of the present investigation.

Steady-state gravity currents are, in general, dissipative: in a frame of reference moving with
the front, there is a disparity of energy fluxes far up- and downstream. Only solutions in which the
energy is conserved or decreases are feasible, and this yields the restriction a ≤ amax , where amax

corresponds to a non-dissipative gravity current. For Benjamin’s classical result amax = 1
2 ; ambient

stratification decreases this value and may also restrict the feasible domain from below as discussed
in Sec. V. Note that the solutions of Benjamin5 and Ungarish6 do not make any a priori assumption
concerning the magnitude of dissipation. Rather, this is an outcome of their respective analyses.

The lock-release problem is more practical than that of the steady-state gravity current, certainly
from the perspective of laboratory experiments. However, because the lock-release flow is governed
by partial differential, rather than algebraic, equations, the solution is, in general, more difficult
to ascertain. The advantage of examining the lock-release configuration regards validation: it is
relatively easy to obtain accurate laboratory and Navier-Stokes simulation data, in particular, for the
speed of propagation. There are, moreover, both experimental and theoretical evidences that during
the initial (or slumping) stage of propagation, the leading part of the gravity current resembles a
steady-state current. This facilitates comparisons with and assessments of the steady-state results.
Indeed, a large part of the present investigation is concerned with the lock-release problem for
general � (ratio of ambient to lock heights). Accordingly, we present a shallow-water (SW) model
and closed analytical solutions for the speed of propagation in the slumping stage. To our knowledge,
such a formulation has not been published before. Second, we show laboratory and Navier-Stokes
simulation results which are used for comparisons with the analytical predictions for both the
steady-state and lock-released problems.

A forerunner of the present analysis is the investigation of Holyer and Huppert.8 The steady-state
gravity current problem considered in that work is the same as examined here. (Holyer and Huppert8

separately studied the steady propagation of an interfacial gravity current in a two-layer stratified
ambient. We do not address this topic here, but rather refer the interested reader to the discussion
of Ungarish,9 Flynn and Linden,10 and Ungarish.11) There are, however, differences in the solution.
Holyer and Huppert8 attempted to identify the steady state with the lock-release problem. This was
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achieved by making recourse to some restrictive assumptions concerning the nature and magnitude
of the energy dissipation, which are difficult to justify. The present solution has the benefit of various
pieces of knowledge that have accumulated in the three decades since the publication of Holyer
and Huppert’s paper. We are now able to derive a solution that does not require these assumptions.
Therefore, in our opinion, the present analysis constitutes a more reliable extension of Benjamin’s
result and a more versatile formulation and solution of the lock-release problem. A second closely
related previous investigation is that of Tan et al.12, 13 However, that study covers only the special
case of full-depth lock-release, � = 1, and here we consider the general case.

To summarize, the present investigation contains novel contributions and significant extensions
concerning the theory of both the steady-state and lock-released gravity currents in a two-layer
stratified ambient. This is expected to close gaps of knowledge, enhance understanding, and provide
a simple predictive tool for these flows.

The rest of the paper is organized as follows: the experimental apparatus and procedure are
reviewed in Sec. II. Experimental results are confirmed by comparison against analogue numeri-
cal simulations. The numerical code is described in Sec. III and a qualitative comparison between
experimental and numerical data is given thereafter in Sec. IV. In Sec. V we consider, by suit-
able adaptation of Benjamin,5 Ungarish,6 and White and Helfrich,7 the steady propagation of a
dense gravity current through a two-layer ambient. Theoretical results are compared against labo-
ratory data. We then present in Sec. VI a simplified shallow-water model, which admits realistic
initial/boundary conditions and time-dependent solutions. Model predictions are corroborated by
extensive comparison with measured results. Finally, a series of conclusions is provided in Sec. VII.

II. EXPERIMENTAL PROCEDURE

Experiments were performed in a glass tank having the following dimensions: 227.5 cm long by
25.0 cm wide by 30.0 cm tall. A vertical barrier made of plastic served as the lock gate; it was placed
at a distance � = 32.4 ± 0.1 cm from the left end-wall. (By comparison, the fluid depth, H, was
fixed at 20.0 ± 0.1 cm.) The tank was backlight using an electric vinyl light-sheet and experimental
images were recorded at either 4 or 8 frames/s using a pair of LaVision GmbH Imager 3 12-bit
cameras with 35 mm Nikon AF Nikkor lenses placed ∼4.25 m in front of the tank.

Fluid densities were adjusted by addition of salt (sodium chloride) and were measured using an
Anton Paar DMA 38 densitometer having an accuracy of 5 × 10−4 g/cm3. Although ρ1 and ρc varied,
respectively, between 0.9987 g/cm3 and 1.0446 g/cm3 and 1.0217 g/cm3 and 1.0962 g/cm3, a typical
experiment had a gravity current density of ρc � 1.04 g/cm3 (see Tan,14 Appendix F for further
details). Density contrasts were always small enough so that the stratified fluid was Boussinesq.

For the full-depth lock-release experiments (� = 1), we first filled the tank with dyed tap water
(ρ2 � 0.9982 g/cm3) to a depth h2R. Salt water having a density ρ1 was then trickled into the
tank through a nozzle placed ∼4 mm above the floor. The nozzle was foam-covered to minimize
interfacial mixing during the filling process. Tank filling continued (and the supply flow rate gradually
increased) until the lower layer depth was h1R. Thereafter, the lock gate was lowered into the tank
and more dye (food coloring) and salt were added to the lock region. After manually mixing the
lock fluid, the gate, which was guided by a pair of vertical sliders, was smoothly removed from the
tank resulting in a gravity current flow.

Partial-depth lock-release experiments with � > 1 followed a slightly more involved procedure.
When h0 < h1R, the ambient layers were established as described above. After lowering the lock
gate, however, fluid from the lower layer of the lock region was drained through a pipe placed at the
bottom of the tank. Simultaneously, fluid of density ρ2 was allowed to flow into the lock, without
mixing, through a pair of small holes in the lock gate located at heights of approximately 17.5 cm
and 20.0 cm. A significant hydrostatic pressure difference between the lock and ambient regions
was thereby avoided. This difference might have otherwise caused leakage across the imperfect
seals of the lock gate. Siphoning was terminated once the desired volume of fluid of density ρ1

had been removed. Salt water of density ρc premixed with dye was then slowly added to the lock
region through the foam-covered nozzle thereby causing fluid of density ρ2 to concurrently flow out
of the lock region through the aforementioned holes in the gate. Fluid addition continued until the
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combined height, H, of the fluids to either side of the gate reached 20.0 ± 0.1 cm, or, equivalently,
the ambient interface height reached the same elevation outside and inside the lock.

When h1R ≤ h0 < H, the ambient layers were established as described above except that the
lighter ambient layer of density ρ2 was overfilled to a height of h2R + �H. After the lock gate was
lowered and food coloring and salt were mixed into the lock, lock fluid was then siphoned from the
bottom while fluid of density ρ2 simultaneously flowed into the lock, this time through the upper
hole only. Siphoning continued until fluid of density ρc spanned a height h0 inside the lock. The
parameter �H was chosen so that the total fluid depth then equalled the desired value, namely,
20.0 ± 0.1 cm.

The front speed was measured by evaluating the position of the leading edge of the gravity
current through a sequence of images. Two methods were employed to track the position of the front:
(i) manual selection of the leading edge for each image; and, more preferably, (ii) using the built-in
MATLAB function normxcorr2. The height, h, of the gravity current was obtained by measuring the
vertical position of the gravity current crest relative to the bottom surface and corresponds to an
average value over a significant fraction of the slumping phase. Due, however, to the turbulent mixing
and large-scale structures behind the front, this parameter was difficult to measure and thus has a
large associated experimental uncertainty. Easier to measure was the initial height, h0, of the gravity
current fluid, which was determined prior to the initiation of the experiment using a conductivity
probe (Precision and Measurement Engineering, MSCTI) mounted to a computer controlled traverse
(Velmex, X-Slide). The relationship between voltage and density was linear and was verified using
stock solutions of known density.

III. NUMERICAL SIMULATIONS

The purpose of the numerical simulations is to provide verification, such as it is required, and
extension of our laboratory data. The front speed is again the measured quantity of primary interest.
Details of the DNS algorithm (Diablo) used to simulate the flows described in Sec. II have been
chronicled at length in related publications.12, 15 Only the essential details will be recounted here.

In its present implementation, the algorithm solves, using primitive variables, the two-
dimensional Navier-Stokes equations by employing a spectral and finite-difference decomposition,
respectively, in the horizontal (x) and vertical (z) directions. No slip conditions are applied along
the horizontal boundaries z = 0 and z = H. The fluid density, ρ, which is dynamically coupled to
u = (u, w), is solved via

Dρ

Dt
= ν

Sc
∇2ρ , (3.1)

where ν = 0.01 cm2/s is the kinematic viscosity. Consistent with Härtel et al.16 and others, the
Schmidt number is chosen as Sc = 1.

Time is evolved using a third-order Runge-Kutta-Wray algorithm and a Crank-Nicholson
scheme. As with Tan et al.,12 we typically select �t = 5 × 10−3 s, tmax = 62.5 s, �x = 0.195 cm,
L = 400.0 cm, �z = 0.078 cm, H = 20.0 cm, and a maximum density difference of ρc − ρ2 = 2
× 10−2 g/cm3. Here, L denotes the length of the numerical domain. Different values for the density
ratio S are recovered by varying ρ1 between ρc = 1.02 g/cm3 and ρ2 = 1.00 g/cm3. As summarized
in Figure 2, a selected number of simulations were run at higher Reynolds number for which �t
= 2.5 × 10−3 s, �x = 0.111 cm, and ρc − ρ2 = 3.39 × 10−2 g/cm3 or ρc − ρ2 = 3.70 × 10−2 g/cm3.
In these higher-Re numerical simulations, L = 227.5 cm corresponding to the length of the glass tank
described in Sec. II. In all cases, and as with the post-processing of our laboratory data, estimates of
the front speed follow from tracking the front position in time.

IV. COMPARISON BETWEEN EXPERIMENTS AND NUMERICAL SIMULATIONS

Figure 2 contrasts snapshot images of experimental (panels (a) and (c)) and numerical (pan-
els (b) and (d)) data. In panels (a) and (b), ϕ = 0.38 ± 0.01, � = 2.22 ± 0.10, and S = 0.746
± 0.047 (± is included to indicate the associated experimental error). Images are shown at
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FIG. 2. (Color online) Flow evolution in a complementary pair of experiments (panels (a) and (c)) and numerical simulations
(panels (b) and (d)). In the top and bottom row, respectively, images measure 176 cm × 20 cm and 178 cm × 20 cm. Further
experimental and numerical parameters are summarized in the text.

t(g′h0)1/2/h0 = 5.02, 10.03, and 15.06 where g′ = 36.3 cm/s2 corresponding to a Reynolds num-
ber, based on h0, of Re = 16.5 × 103. Conversely, in panels (c) and (d), ϕ = 0.25 ± 0.01, �

= 1.39 ± 0.04, and S = 0.511 ± 0.045. Images are shown at t(g′h0)1/2/h0 = 5.69, 13.30, and 20.89
where g′ = 33.3 cm/s2 corresponding to Re = 31.2 × 103. In both cases, fluid densities in the
numerical simulations are chosen to match those from the analogue experimental runs.

The correlation between image pairs is encouraging: in each case, generally strong agreement is
noted when comparing the front position and the ambient interface shape. Because the DNS algorithm
is two-dimensional, one observes in the numerical images much more pronounced vortices in the lee
of the front. By comparison, these vortices are rapidly broken down by spanwise instabilities in the
real three-dimensional flow. Correspondingly, we see in panel (d), in particular, a series of abrupt
deflections to the ambient interface well behind the gravity current head, which are not evident in
the experimental images of panel (c). Fortunately, given the aims of the present investigation, such
observations are largely moot: the (constant) front speed, U, is unaffected by the coherence of the
trailing vortices17 and their associated perturbations to the ambient interface. Indeed we will show in
Figure 11 that there is little difference between the front speeds measured experimentally and those
determined from the numerical simulations.

V. THE STEADY-STATE CURRENT AND F RESULTS

A. Formulation

We start our analysis with a related simpler problem: the steady, stratified flow over a semi-
infinite obstacle of height h = aH, depicted schematically in Figure 3(a). A solution of this problem
is reported in Baines;18 below, we review the essential features of Baines’s solution for the sake
of completeness and for the point of comparison to the equations in the subsequent analysis. We
assume irrotational flow of an ideal, stress-free fluid. Far up- and downstream of the leading edge, O,
of the obstacle, the speed is horizontal and piecewise z-independent. The pressure in these domains
is hydrostatic according to ∂P/∂z = −ρ ig (i = 1, 2). For prescribed upstream (right-hand side) flow
conditions, the objective is to determine the corresponding conditions in the downstream parallel
flow domain, i.e., h1L, h2L, u1, and u2.

Mass conservation applied to the lower and upper ambient layers indicates that

Uϕ = u1χ , and U (1 − ϕ) = u2 (1 − a − χ ) , (5.1)

respectively, where χ ≡ h1L/H. These results allow us to eliminate the layer velocities u1 and u2

from subsequent equations.



026601-7 Gravity currents in a two-layer stratified ambient Phys. Fluids 24, 026601 (2012)

ϕ

E

O

H
Uh

h

h

u1

2L

1L
2R

h=aH ρ

ρ

1R = Hh1

2

U

= Hχ

(a)

2u

ϕ

A

D
(b)

O

H
Uh

h

h

u

u

1

2

B

C

2L

1L
2R

h=aH
z

ρ

ρ

1R = Hh1

2

U

= Hχ

ρc

FIG. 3. Definition sketch of (a) steady two-layer flow over a semi-infinite solid obstacle; and (b) a steady, dense gravity
current in a two-layer stratified ambient in which the reference frame moves at the front speed, U.

Because the flow is ideal, Bernoulli’s equation may be applied in the lower and upper ambient
layers. For this purpose, it is convenient to use the reduced pressure p = P + ρ2gz and to specify
p = 0 in the unperturbed upper layer of the ambient (at the right in Figure 3(a)). In addition, the
pressure is continuous at the interface between the layers, which is also a streamline. Let E be a
point on the downstream horizontal interface, and denote by pE the pressure there. We obtain for the
lower layer

1
2ρ1U 2

[
1 − (ϕ/χ )2

] = pE + ρ2g′SH (1 + χ − ϕ) , (5.2)

and for the upper layer

1
2ρ2U 2

[
1 −

(
1 − ϕ

1 − a − χ

)2
]

= pE . (5.3)

We eliminate pE from Eqs. (5.2) and (5.3), invoke the Boussinesq assumption (ρ1 ≈ ρ2), and the
definition F = U/(g′h)1/2, and thereby obtain the dimensionless relationship

S

(
a + χ − ϕ

a

)
= 1

2F
2

[(
1 − ϕ

1 − a − χ

)2

−
(

ϕ

χ

)2
]

(5.4)

(cf. (3.6.4b) of Baines18). Provided the upstream flow conditions, S, ϕ, and F , and the obstacle
height, a = h/H, are given, Eq. (5.4) closes the solution: it admits a solution for χ , from which the
downstream layer depths, i.e., h1L = χH and h2L = H − h − h1L = H(1 − a − χ ), can be determined.
It is then straightforward to compute u1 and u2 from Eq. (5.1). Attention is, of course, restricted to
physical solutions with positive ui and hiL.

Now we switch from flow over a solid obstacle to the gravity current problem. Graphically, we
replace the shaded region of Figure 3(a) with the slug of fluid of density ρc ≥ ρ1 shown schematically
in Figure 3(b). In a frame moving with the gravity current, O is a stagnation point and the pressure
there is 1

2ρ1U 2 + C . Inside the slug the pressure is hydrostatic, P = 1
2ρ1U 2 + C − ρcgz, and there

is again pressure continuity at the interface z = h.
The first major difference with the solid obstacle solution is that nowF and a cannot be specified

independent of one another. To maintain a steady state it is necessary to balance the flow forces on
the boundaries of a pertinent control volume about the gravity current head. Our control volume is
bounded by the vertical line segments AD and BC of Figure 3(b), and by the horizontal line segments
z = 0, H. Because there are no external horizontal forces applied to this control volume, a steady
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state (zero acceleration) requires that∫ D

A
(P + ρu2)dz =

∫ C

B
(P + ρu2)dz , (5.5)

where P, ρ, and u denote, respectively, the fluid pressure, density, and velocity. The vertical coordi-
nate, z, is defined in Figure 3(b). Using the hydrostatic pressures in the gravity current and ambient
and eliminating u by Eq. (5.1), Eq. (5.5) may be written in dimensionless form as

F2a

[
1
2 − ϕ2

χ
− (1 − ϕ)2

1 − a − χ

]
= S

[
ϕ

(
1 − 1

2ϕ
) − χ

(
1 − 1

2χ − a
)] + 1

2 a(a − 2) (5.6)

in which F is given by Eq. (1.2) (cf. Eq. (2.6) of Holyer and Huppert8 and Eq. (2.5) of Tan et al.12).
Equations (5.4) and (5.6) complete the solution of the steady-state gravity current in the sense

of Benjamin’s analysis. Given the height of the channel and the gravity current (which define a), and
the stratification conditions of the far-upstream ambient (in particular, the dimensionless parameters
S and ϕ), we solve (numerically) systems (5.4) and (5.6) for χ and F . A simple analytical result
for F analogous to the well-known [(2 − a)(1 − a)/(1 + a)]1/2 of Benjamin5 seems unattainable,
however this is rather a technical detail; the extensions concerning a linearly stratified ambient6, 7

also require a numerical calculation of F in the final stage.

B. Rate of dissipation and head loss

The second major difference between the flow of the ambient over a solid obstacle and the flow
field of the combined gravity current-ambient system concerns energy dissipation. While the solid
obstacle is able to passively sustain the vertical force due to the pressure distribution of the ideal flow
of the ambient, the slug of fluid of density ρc is governed by an internal pressure distribution that
must be taken into consideration. This contribution introduces the effects called “dissipation” and
“head loss,” and imposes a limitation on the range of validity of F obtained by the aforementioned
calculation. (In Benjamin’s classical case this is the well-known a ≤ 1

2 restriction.)
The rate of dissipation is the difference between the out- and ingoing energy flux with respect

to the control volume. In dimensional form this reads19

Ḋ =
∫ D

A

[
(P + 1

2ρu2 + ρgz)
]

u dz −
∫ C

B

[
(P + 1

2ρu2 + ρgz)
]

u dz . (5.7)

Evaluating the above integrals and scaling with ρ2h(g′h)3/2, the dimensionless rate of dissipation is
expressed as

Ḋ = F
a

{
1 − S

[
ϕ + 1

a
(1 − ϕ)(ϕ − χ )

]
− 1

2F
2

[
ϕ3

χ2
+ (1 − ϕ)3

(1 − χ − a)2

]}
, (5.8)

or, more simply,

Ḋ = F
a

[
1 − S − 1

2F
2

(
ϕ

χ

)2
]

, (5.9)

where Eq. (5.4) has been applied in deriving the latter expression. The quantity Ḋ is calculated
numerically for values of F and χ that satisfy the steady-state conditions of continuity and flow-
force balance; see Figures 4–6. This is like in Benjamin’s solution, although, again, no analytical
expression is available. If Ḋ = 0 the flow is free of dissipation; this energy-conserving solution is
realized for certain values of a. In Benjamin’s solution, Ḋ = 0 occurs for a = amax = 1

2 only; in
the present stratified case there is, in general, another value of a, amin < amax , where the solution
also has zero dissipation. This observation is consistent with the findings of Holyer and Huppert;8

details will be presented later. Currents with Ḋ < 0 are physically unacceptable because Ḋ < 0
implies the existence of an energy source inside the control volume. By contrast, gravity currents
with Ḋ ≥ 0 are realizable. As explained by Benjamin,5 Ḋ > 0 indicates that some shear, and perhaps
turbulence, is present in the domain about the head of the gravity current (as indicated schematically in
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FIG. 4. Solution to Eqs. (5.4), (5.6), and (5.9) for ϕ = 0.5 and S = 0.25. (a) and (d) F (thick curves) and cLW (thin curves)
vs. a. (b) and (e) χ (thick curves) and 1 − a − χ (thin curves) vs. a. (c) and (f) Ḋ vs. a. The top and bottom rows show the
mode 1 and mode 2 solutions, respectively. In all cases dashed and solid curves show solutions corresponding, respectively,
to Ḋ < 0 and Ḋ ≥ 0.

Figure 3(b)). Unlike the irrotational flow above a solid obstacle, the encounter between the gravity
current and the ambient generates a jump inside the control volume; the streamlines between sections
AD and BC are no longer smooth as compared to the flow of Figure 3(a). The most perfection we
can require after the replacement of the solid obstacle with the layer of dense fluid is that the far
upstream and far downstream speeds remain unchanged, like in the perfect flow about the obstacle
(Figure 3(a)).

Equation (5.9) can be used to estimate the behavior of a physical gravity current when a � 0.
The obvious requirement is that, in spite of the O(a−1) coefficient, Ḋ remains finite, of the order
of unity, in the limit a → 0. The very thin gravity current produces a small deviation of the thick
ambient above, and hence χ = ϕ − O(a) (the minus sign reminds us that a decrease of value will
occur). To maintain a finite Ḋ, it is necessary that

F = [2(1 − S)]1/2 − O(a) (a � 1) . (5.10)

Below, we confirm that Eq. (5.10) is a quite accurate prediction in the appropriate limit.
The rate of energy dissipation, Ḋ, is associated with a pressure head loss, �. Let Q be a

point on the surface z = h in the downstream domain outside the control volume. For ideal flow
over the semi-infinite obstacle of Figure 3(a), the pressure at this point is given by Bernoulli’s
equation PQi = 1

2ρ1(U 2 − u2
1 − 2gh) + C , where i denotes “ideal.” In the slug-like gravity cur-

rent, the pressure at this point is given by the hydrostatic relation PQ = PO − ρcgh = 1
2ρ1U 2 + C

− ρcgh. The difference between PQi and PQ, scaled with ρ2g′ gives a (dimensional) head loss

� = PQi − PQ

ρ2g′ = (1 − S)h − ρ1u2
1

2ρ2g′ . (5.11)

Recall that in the Boussinesq case, ρ1/ρ2 ≈ 1. Because the pressure above point Q is hydrostatic,
and the speeds are the same as in the ideal case, the head loss result (5.11) applies at any vertical
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FIG. 5. As in Figure 4 but with S = 0.5.
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position z satisfying h ≤ z ≤ H. In other words, the head loss is independent of elevation, like in
Benjamin’s solution.

It has been shown by Ungarish11 that Ḋ and � are related by

� = Ḋ/(ρ2g′ HU ) , (5.12)

where Ḋ is dimensional. This equivalence applies here as well as can be verified by combining
Eqs. (5.1) and (5.11), and then contrasting the result with Eq. (5.9). Furthermore, Ḋ = 0 corresponds
to � = 0, and for a > amax or a < amin we obtain the unphysical scenario � < 0. However, �

is, in general, an unreliable measure of dissipation because, according to Eq. (5.12), � is obtained
by distributing the rate of dissipation Ḋ over the entire height of the ambient, which may be large.
Note that �/h = [Ḋ/(ρ2g′Uh)]a. For deep-ambient gravity currents (small a), �/h becomes a
small number in spite of the fact that the term inside the brackets is of order unity, i.e., the physical
dissipation does not decrease. A particularly problematic result is that the head loss vanishes as
a → 0. This may give the misleading conclusion that a very deep-ambient gravity current is energy-
conserving.

A key difference between our analysis and that of Holyer and Huppert8 is associated with
the role attributed to energy dissipation. Holyer and Huppert8 argued that energy dissipation fixes
the value of a so that, in other words, a “second equation” (in addition to U/(g′h)1/2 = F) can
be formulated for the steady-state gravity current. More specifically, Holyer and Huppert8 opined
that the maximum dissipation for a certain throughput M = Uh would occur, and that M would be
maximized when not prescribed. They used � as a measure for energy dissipation, allowing for
different values in the upper and lower layers of the ambient. In addition, Holyer and Huppert8

attempted to impose reasonable values of the head loss and then calculate the reaction of the gravity
current flow until the postulated maximum principles were realized. In these respects, and with the
benefit of results that emerged following the publication of Holyer and Huppert’s important study
(e.g., as summarized in Ungarish11), the present analysis follows a rather different methodology. We
argue that the precise value of h (or a) is determined by initial and boundary conditions. Steady-state
gravity currents, like the one considered by Benjamin,5 may emerge from various initial conditions;
therefore, the steady-state solution must contain some degree of freedom that cannot be determined
from time-independent considerations only. The most we can do with a pure steady-state gravity
current problem, without adding adjustable constants, is to determine F as a function of a, subject
to the condition that Ḋ ≥ 0. In other words, if the variables U and h of the steady gravity current
are unspecified, we are able to derive only one equation, not two. Moreover, Eq. (5.10) indicates
that for a deep-ambient (small a) gravity current, the calculation of a from speed considerations is
ill-conditioned.

A real gravity current, particularly the one issuing from a lock-release apparatus, is governed by
hyperbolic equations with information carried along characteristics up- and downstream in the fluid
of density ρc. In these cases F is a “jump condition” for speed as a function of h at the front where
the characteristics encounter the unperturbed ambient. The “second equation” for speed as a function
of h is provided by the information carried by the characteristics, not by dissipation considerations
and the maximum volume flux of the gravity current, M = Uh. Our approach is fully consistent
with Benjamin’s solution and is predicated on the following observation:11 for a more realistic
gravity current, Benjamin’s idealized F formula is a jump condition for the two-layer shallow-water
equations of motion. Unique solutions for the dam-break problem are thereby obtained for both
Boussinesq and non-Boussinesq gravity currents which propagate in a homogeneous ambient. In
general, the lock-released gravity current does not attain maximum M; the exception is the critical
(or choked) case when the characteristic speed matches that of the leading edge of the gravity
current. This logic has been broadly applied to gravity currents and intrusions in homogeneous
and linearly stratified ambients, for both the slumping and time-dependent stages of propagation,
and has led to encouraging qualitative and quantitative agreements with observations in various
circumstances.4, 9, 20 It is therefore sensible to apply the same logic to the present problem. The
theoretical advantage is that we derive a more general result, and the practical advantage is that
we can use the similar simplified tools for the prediction of gravity currents in various related
circumstances.
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C. Results and comparisons with laboratory data

Sample solutions of steady-state gravity currents are shown in Figures 4–6, which consider
ϕ = 0.5 and S = 0.25, 0.5, and 0.75, respectively. The Appendix shows analogous results when
ϕ > 0.5 and ϕ < 0.5; similar trends are noted. In general, the solution is not unique for a given
combination of parameters. Panels (a)–(c) show the mode 1 solution to Eqs. (5.4) and (5.6), whereas
panels (d)–(f) consider the mode 2 solution. The middle panels of Figures 4–6 consider χ = h1L/H,
which exhibits a monotonic variation with a, and 1 − a − χ = h2L/H, which typically exhibits a
non-monotonic variation, at least for the mode 1 solution. Panels (c) and (f) consider the variation of
the dissipation rate Ḋ with a and indicate that the physically acceptable Ḋ ≥ 0 solution occurs over
a restricted range of a, the breadth of which decreases (increases) with S for the mode 1 (mode 2)
solution. When Ḋ ≥ 0 (Ḋ < 0), the curves of panels (a), (b), (d), and (e) are indicated by the solid
(dashed) lines corresponding to a physical (unphysical) flow.

For both the mode 1 and mode 2 solutions the behavior is consistent with Figure 3 of Ungarish6

who considered a linearly stratified, rather than a two-layer, ambient. Thus, (i) F typically decreases
with S and also with a; and (ii) the higher mode appears for small a and non-small S. Recall, how-
ever, that a � 1 is precisely the range in which Eq. (5.10) applies. Evaluation of Eq. (5.10) when
S = 0.25, 0.5, and 0.75 shows that F = 1.225, 1, and 0.7071, respectively. These values are
in excellent agreement with the small a, mode 2 Froude numbers indicated, respectively, in
Figures 4–6. Note moreover that the mode 1 front speed, F1, is a decreasing function of ϕ for
fixed S whereas F2 is an increasing function of ϕ. For fixed ϕ, it is further observed that F1,2

typically decreases with S, although important exceptions arise, e.g., F1 for small a when ϕ = 0.25.
The stratified ambient is able to carry waves. As shown by Eq. (3.2.6) of Baines,18 the speed of

the dominant hydrostatic long wave, or characteristic, scaled with (g′h)1/2, is

cLW =
[

Sϕ(1 − ϕ)

a

]1/2

. (5.13)

In contrast to the nomenclature applied in Tan et al.,12 but consistent with the definition made by
White and Helfrich,7 a steady-state gravity current is said to be sub- or supercritical when F < cLW

or F > cLW , respectively. In each of Figures 4–6, we compare F (denoted by the thick curves of
panels (a) and (d)) with cLW (denoted by the thin curves of panels (a) and (d)). The mode 1 solution is
typically supercritical (particularly for small S and non-vanishing a) whereas the mode 2 solution is
universally subcritical. Combining Eqs. (5.10) with (5.13) we find the following sufficient condition
for the subcriticality of a mode 2 deep-ambient gravity current:

S >
2a

ϕ(1 − ϕ) + 2a
(a � 1) . (5.14)

The interpretation of subcritical gravity currents poses difficulties. The fact that perturbations move
faster than the gravity current gives rise to the question “What is the meaning of an “unperturbed
ambient” on which the steady-state F was developed?”

The theoretical answer is that this is an imposed situation: we describe an analytically possible
steady-state solution motion. This interpretation is a consistent extension of Benjamin’s analysis in
which the up- and downstream flows are given by simple solutions of the Euler equations, and we
seek an eigenvalue (the dimensionless F) that allows matching (without an energy source) while
neglecting the initial and boundary conditions under which such a flow can be established and
maintained.

In practical situations the answer is more complicated, particularly if we wish to draw a
comparison between lock-released gravity currents (discussed in Sec. VI) and the steady-state
prediction for F . The gravity current released from behind a lock gate will inevitably excite transient
perturbations. If the gravity current is subcritical (or even slightly supercritical with small ϕ), these
perturbations may (and likely will) alter the initial conditions in the ambient fluid into which the
gravity current propagates. Strictly speaking, this effect is incompatible with the assumptions made
in the Benjamin-type control-volume balances used for the calculation of the steady-state F . To
proceed with the available solution, we must then rephrase the “unperturbed condition” postulate
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as: we assume that the upstream perturbations cause only a minor alteration of the initial state.
(Comparing theoretical predictions with experimental results, as we do in Figures 8–10, helps to
clarify where this and other model assumptions are justified.)

A more rigorous alternative is to solve the coupled problem of the gravity current of unknown
speed in an ambient with time-dependent stratification and layer-specific speeds. This is a formidable
three-layer problem, and there is little hope that a reliable steady-state-speed solution, analytical
or semi-analytical, can be obtained. The available guideline in this direction is, again, the solid-
obstacle problem, as discussed in Sec. 3.6 of Baines18 – see also Baines.21 Thus, Figure 3.9 of
Baines18 indicates that an obstacle of sufficient height, suddenly introduced into a subcritical flow
(or even a slightly supercritical flow with small ϕ) typically alters conditions upstream. (For reference,
the parameters ϕ and F/cLW in our analysis correspond to r and F0 in Baines’s figures; our a/ϕ
resembles, qualitatively, his Hm.) As shown in Figure 3.14 of Baines,18 such upstream effects
are often manifested as a jump in the ambient interface that propagates ahead of the obstacle.
The speed, magnitude, and strength of this jump depend on a variety of parameters; quantitative
details are given in Baines’s Figure 3.12. Unfortunately, these results do not carry over to the
present problem: in contrast to the rigid topography, the gravity current is a deformable obstacle
as exhibited experimentally, numerically, and schematically in Figures 2(a) and 2(c), 2(b) and 2(d),
and 3(b), respectively (see also Figure 11(b) of the related investigation by White and Helfrich7).
Correspondingly, the gravity current crest may represent a region of significant shear and vertical
acceleration so that the hydraulic equations of motion cannot consistently be applied in this vicinity.
As noted above, Benjamin’s solution focuses on conditions far up- and downstream of the front
and is not invalidated by such local vertical accelerations. The same cannot be said of Baines’s
solution, however, because the amplitude of the upstream-propagating disturbance “is controlled
by a critical condition at the crest. . .” Finally, in the practical lock-release problem, the system
is bounded by a vertical back wall which renders the shape of the “obstacle,” and the boundary
conditions different, in general, from those of the reported solutions. Of course, waves reflected in
time-dependent lock-release problems may interact with the head of the gravity current, but this is
a different effect.

Our understanding (based, admittedly, more on qualitative arguments than on rigorous analy-
sis) is that the malleability and elongated shape of the gravity current will modify the alterations
of the ambient stratification as compared to a solid obstacle of the same h in similar circum-
stances. It may then be the case that the effect of the upstream perturbation is, in general, different
than would be expected from studies of flow over rigid topography. In this vein, and though less
rigorous than the supercritical results, the subcritical solutions of F can still be considered as
reasonable first approximations in a number of practical cases to be examined below. Where the
agreement between theory and experiment proves unfavorable, an alternative approach pertinent
to lock-released gravity currents and based on shallow-water theory is also available. The relevant
derivation does not distinguish between sub- and supercritical gravity currents and is presented in
Sec. VI.

Returning to Figures 4–6, recall that there are different intervals of a over which Ḋ ≥ 0. On
the basis of this observation, it is straightforward to evaluate amax and amin for various S; results are
summarized graphically in Figure 7. The mode 1 solution can be realized only between the thick
and thin solid curves; with ϕ = 0.5, Figure 7 predicts the mode 1 solution to be unphysical for all a
when S � 0.754 (cf. Figures 2 and 4 of Tan et al.13). Conversely, the mode 2 solution is anticipated
only below the thick dashed curve.

Figure 7 predicts a thin region of bi-stability, in which the mode 1 and mode 2 solutions are
simultaneously realizable; it corresponds to the area below the thick dashed curve but above the thin
solid curve. By examining analogous results (not shown) corresponding to ϕ = 0.25 and ϕ = 0.75,
we conclude that the area of this region of bi-stability increases with ϕ. In particular, for large ϕ,
mode 2 solutions occur over a broader range of a. Although formal evidence is presently lacking,
the mode 2 solution with its thicker and slower associated gravity current is, in our estimation,
more likely to be realized in this region of bi-stability than the faster but thinner mode 1 solution.
(Experiments are difficult to conduct in this regime principally because a is so small, however, there
exists some support for this point of view – see, in particular, Figures 9(b) and 10(c).)
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FIG. 7. amax (thick curves) and amin (thin curves) versus S for ϕ = 0.5. The mode 1 and mode 2 solutions are shown,
respectively, by the solid and dashed lines. Note that amin for mode 2 coincides with the horizontal axis.

In order to assess the steady-state results, we use the laboratory data that was obtained for
lock-released gravity currents as described in Sec. II. There is evidence, presented in Sec. VI, that
a lock-released gravity current experiences a quite significant slumping stage in which the speed
of propagation, uN, is constant and the domain behind the leading edge or nose is of constant
height, hN – the subscript N denotes the nose. (The determination of hN is, of course, nontrivial
in experiments or numerics because of billows and mixing. Because the situation is especially
subjective when examining two-dimensional numerical output, examination of the Navier-Stokes
simulations is deferred till Sec. VI B.) We therefore hope to find a correspondence between the
measured data and the solution of the idealized steady-state gravity current with similar parameters,
in particular, concerning the behavior of F . Note, however, that this comparison cannot be regarded
as an ironclad test of the steady-state theory: it is, in general, impossible to ascertain a priori the
extent to which the assumptions of the theory are fulfilled in the intrinsically time-dependent lock-
release flow. This uncertainty is increased when the real gravity current propagates with critical and
subcritical F .

Figures 8–10 indicate the variation of F with a for various S and ϕ. The solid and dashed
curves are, respectively, the mode 1 and mode 2 theoretical results, and the circles indicate mea-
surements derived from laboratory experiments. By contrast with theoretical predictions, the data
points show a modest deviation of F with a and typically fall between 0.4 ≤ F ≤ 0.6 with larger
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FIG. 9. As in Figure 8 but with ϕ = 0.5.

measured values occurring when ϕ and S are comparatively small in magnitude. In aggregate,
the agreement between theory and experiment in Figures 8–10 can be considered to be fair
with generally better correspondence arising for large ϕ and, more particularly, large a, i.e., the
upper dissipation-free limit. White and Helfrich,7 in their investigation of gravity current flow
through an ambient with arbitrary stratification, refer to this dissipation-free limit as the “conju-
gate state.” They likewise observe good agreement for large a but less favorable agreement for
small a.

In addition to our previous comments concerning the difference between steady and time-
dependent flows, there are numerous possible explanations for the offset observed in Figures 8–10.
First, there are well-documented difficulties with measuring the gravity current height, particu-
larly as this parameter approaches zero.11 Because hN is not a clear-cut defined variable, errors
accumulate in both a = hN/H and F = uN /(g′hN )1/2. In the real flow, moreover, the speed may
be z-dependent, while the theory assumes perfect z-independent moving cores of fluid. Further-
more, note that the most pronounced discrepancies when S = 0.25 occur for gravity currents with
near-critical F . In these cases, a gravity current started from rest into a given two-layer strati-
fied ambient may attain such a speed in contrast with the ideal steady-state solution because of a
head-wave interaction3 that locks the speed of the gravity current to that of a (slower) interfacial
wave.

There is, of course, the additional possibility of altered upstream conditions in which case the
driving effect on the gravity current is expected to be diminished due to velocity perturbations and a
displacement of the ambient interface. So as to carefully investigate this possibility, the experimental
data points of Figures 8–10 distinguish between cases in which upstream-propagating disturbances
were (closed circles) and were not (open circles) observed. Generally, though not universally, the
closed and open data points fall below and above the dotted curves indicating the long wave
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FIG. 10. As in Figure 8 but with ϕ = 0.75.
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FIG. 11. uN vs. ϕ for � = 4.00 (left column), � = 2.00 (left-center column), � = 1.33 (right-center column), � = 1 (right
column) and S = 0.25 (top row), S = 0.5 (middle row), S = 0.75 (bottom row). The solid lines indicate the analytical prediction
of Sec. VI B. Experimental (circles) and numerical (right-facing triangles) data are also shown. Consistent with Figures 8–10,
closed and open markers show, respectively, cases in which upstream-propagating disturbances were and were not observed;
open markers with a superimposed star denote in-between or indeterminate cases. Six-pointed stars show experiments with
ϕ = 0 or ϕ = 1 for which case the ambient is of uniform density. The “bull’s eye” data point of the upper left panel denotes
a high Reynolds number experiment, i.e., Re = 11.3 × 103. By contrast, the left and right adjacent experimental data points
have respective Reynolds numbers of Re = 7.7 × 103 and Re = 7.2 × 103. Representative error bars corresponding to the
laboratory experiments are indicated in the upper right panel.

speed, cLW. Closed data points arise with greater frequency when ϕ is small and S is large. From
Figure 8(a), there is especially a poor agreement between the closed data point and the associated
solid curve suggesting that upstream influences might be especially significant when ϕ = S = 0.25.
On the other hand, similar discrepancies are noted in Figures 9(a) and 10(a) (S = 0.25) where
no upstream-propagating disturbances were found. In instances where S is large, most notably in
Figures 9(c) and 10(c), we observe much better agreement with the mode 1 and mode 2 branches
of the theoretical solution. Although this is an area that demands future research, the above results
suggest that upstream-propagating disturbances exert only a moderate influence in modifying the
gravity current front speed during the slumping stage of propagation.

Note finally that a number of repeat experiments were performed employing identical S and
geometric parameters (ambient interface height, depth of dense fluid in the lock, etc.) but with
proportionally larger values for ρc − ρ2 and ρ2 − ρ1. The variation in the scaled front speed
was found to be within representative experimental uncertainty suggesting that Reynolds num-
ber effects, though an appealing culprit, are not responsible for the discrepancies documented in
Figures 8–10. Further examination of Reynolds number effects can be found in our discussion of
Figure 11.

From Figures 8–10 and with the benefit of the theoretical solutions for comparison, one can
discern for select combinations of ϕ and S a shift from the mode 2 to the mode 1 solution. This
transition is most evident in Figures 9(b) and 10(c). In the former case, we note that the experimental
data points shift from the mode 1 solution to the mode 2 solution at larger values of a than
those predicted theoretically. This could also have been anticipated: the speed of the lock-released
gravity current develops with time from zero, and is influenced by viscosity. Consequently, the
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gravity current will first appear as the slower mode 2 solution, and then require significant forcing
for further acceleration to the faster mode 1 solution. Similar trends have been reported for gravity
currents in a linearly stratified ambient.22

In other cases, notably when S = 0.25, it is unclear whether a transition from the mode 2 to
the mode 1 solution does, in fact, occur. To take an extreme example, Figure 8(a) shows that the
mode 2 solution exists only over a very limited range of a (i.e., for a � 0.03) when ϕ = S = 0.25.
In this (and related) cases, the mode 2 solution may represent an “interesting feature of the steady
solutions, [but not] a useful predictive tool.”7

We conclude this section by placing Figures 8–10 into their proper context by making a
comparison with Benjamin’s classical solution. It, like the equations of Sec. V A, does not explicitly
model a lock-release flow but rather considers the steady propagation of a gravity current (into a
homogeneous ambient) without specific reference to lateral boundaries or initial conditions. In this
simpler configuration, the typical discrepancy for F between theory and lock-release experiment
is 30% for small a and about 25% for a close to 0.5 (this is, for example, the difference between
Benjamin’s results and those of Huppert and Simpson23). In aggregate, the agreement between theory
and measurement exhibited in Figures 8–10 is of similar magnitude. Note, however, that generally
larger discrepancies are noted for small a and small-to-moderate S. Wishing to address this region of
parameter space and wishing also to provide a predictive tool of greater generality and reliability, it
is worthwhile to consider, using the shallow-water equations, the time evolution of the lock-release
flow. This is the subject of Sec. VI.

VI. SHALLOW-WATER THEORY

As noted above, a realistic gravity current, and, in particular, the widely studied lock-released
flow depicted in Figure 2, are time-dependent phenomena subject to clear-cut initial and boundary
conditions. The analysis of the idealized steady-state flow in the unbounded-x domain is relevant as
a guiding line, but cannot model the observed motion as a function of x and t.

A simple model that is expected to close the gap between the steady-state solution and the
more realistic flows of Figure 2 is the one-layer SW model. The major simplification comes from
the assumption that there is no motion in either ambient layer. Consequently, the density and
the hydrostatic pressure in layers 1 and 2 are like in the unperturbed state. The formal justifi-
cation is that when the ambient is significantly thicker than the gravity current (i.e., for large
� where � ≡ H/h0) the return flow is weak, and the inertial forces in the ambient are negligible as
compared to the hydrostatic driving.

Because the kinetic energy of the ambient is zero by definition, one-layer SW models do not
always yield reliable predictions for the gravity current height, particularly as � → 1 in which case
the canonical half-depth solution a = 1

2 can be exceeded.11 However, there is evidence concerning
homogeneous and linearly stratified ambients4, 24, 25 that these models are surprisingly robust when
considering the front speed of the slumping stage even for values of � down to 1. This auspicious
record motivates the extension of the model to the stratification shown schematically in Figure 3(b).

A. Equations of motion

In this subsection, we again use the reduced pressure, defined so that p = P + ρ2gz where p2

= 0. The pressure in the unperturbed ambient is then

pa(z) =
{

0 (h1R < z ≤ H )

(ρ1 − ρ2)g(h1R − z) (0 ≤ z ≤ h1R)
, (6.1)

and the pressure in the gravity current is

pc(x, z, t) = −(ρc − ρ2)gz + f (x, t) . (6.2)
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The condition of pressure continuity between pa and pc at z = h determines the unknown function
f. After some algebra, we obtain

pc(x, z, t) = −(ρc − ρ2)gz + (ρc − ρ2)gh + pa(h) . (6.3)

The driving pressure gradient is therefore

∂pc

∂x
(x, t) =

{
ρ2g′ ∂h

∂x (h > h1R)

ρ2g′(1 − S) ∂h
∂x (h ≤ h1R)

. (6.4)

It is now appropriate to non-dimensionalize the variables. We scale horizontal lengths with the lock
length x0, heights with h0, speeds with (g′h0)1/2, and time with x0/(g′h0)1/2. The SW equations for
h(x, t) and u(x, t) can now be derived by the same method as for the classical unstratified case.11

(For both the stratified and unstratified cases, the continuity equation is the same.) In the z-averaged
x-momentum equation, the stratification enters via the ∂pc/∂x term given by Eq. (6.4). Consequently,
in characteristic (and non-dimensional) form, the SW equations may be written as[

h
u

]
t

+
[

u h
1 − SH(h) u

] [
h
u

]
x

=
[

0
0

]
, (6.5)

where H(h) is the unit step-function: H(h) has value 0 for h > h1R, and value 1 for h ≤ h1R.
The system of equations given by Eq. (6.5) is hyperbolic in the parameter range of interest.

Following the standard procedure, Eq. (6.5) yields the characteristic balances11

[1 − SH(h)]1/2 h−1/2dh ± du = 0 , (6.6)

on the characteristics

dx

dt
= c± = u ± [1 − SH(h)]1/2 h1/2 . (6.7)

The initial conditions are zero velocity and unit dimensionless height and length at t = 0. For
boundary conditions, we require zero velocity at x = 0 and apply a front condition at x = xN(t),
which defines the nose of the gravity current.

B. Front condition

The front of the SW gravity current is a vertical shock produced by the intersection of the c+
characteristics at the dam-break release. Taking a control volume about the jump (similar to the
control volume ABCD in Figure 3), and noting that the enclosed mass vanishes as the thickness of
the control volume approaches zero, we conclude that the balances used in Sec. V to calculate F
dominate the relationship between uN and hN. In other words, uN /h1/2

N is a function of S, ϕ (or h1R

scaled with h0 in the present formulation), and a (or hN/� in the present formulation). Formally,
the previously derived rigorous values of F can be used. However, this possibility turns out to be
awkward. The matching of the SW equations with the nose boundary condition entails iterations;
in order to achieve smooth convergence, we require a relatively simple expression for uN /h1/2

N .
Unfortunately, this description does not apply to the solutions of Sec. V, which were obtained using
a process that leads to disparate mode 1 and mode 2 solutions. (In either case, no explicit analytical
expression for F is available.) Moreover, a closer inspection shows that the steady-state equations
and one-layer SW model are not entirely congruent because the latter discards the motion in the
ambient. Therefore, the combination of the rigorous F with the present SW equations will inevitably
contain approximation errors.

In view of these considerations, a more practical method is adopted. We develop a simplified
form ofF following, again, the methodology used for gravity currents in a linearly stratified ambient.
While the exact steady-state balances of Ungarish6 and White and Helfrich7 yield complicated non-
unique solutions for F , Ungarish and Huppert4 and Ungarish9 used a much simpler approximation
and still obtained SW solutions that agree well with experiments and simulations. The requisite
approximation is based on the idea of separation of effects, which is itself suggested by Benjamin’s
solution (see Ungarish,11 Secs. 3.2 and 12.2.1): the ratio of the dynamic reaction to the pressure
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driving force on the front of the gravity current is a function of geometry (for both stratified
and homogeneous ambients). Quantitatively and in dimensional form this separation of effects is
expressed as

uN = Fr(a) ×
[

Pc(z = 0) − Pa(z = 0)

ρa

]1/2

. (6.8)

Here, a is the depth ratio hN/�; Pc and Pa denote, respectively, the pressure of the gravity current
and of the ambient; and ρa denotes the ambient fluid density and in the present Boussinesq case we
take ρa = ρ2. The advantages of Eq. (6.8) are: (i) the pressure term is straightforwardly given by
Eqs. (6.1) and (6.3), and (ii) Fr(a) can be taken “off the shelf” from the well-investigated case of flow
into a homogeneous ambient. This evidence strongly suggests the use of the semi-empirical result
usually referred to as the Froude number of Huppert and Simpson,23

Fr(a) = FrH S(a) =
{

1.19 (0 ≤ a ≤ 0.075)

0.5a−1/3 (0.075 < a ≤ 1)
. (6.9)

We now combine Eq. (6.8) with Eqs. (6.1), (6.3), and (6.9) and scale the speed with (g′h0)1/2

and the height with h0 and thereby obtain the following straightforward (non-dimensional) nose
condition:

uN =
⎧⎨
⎩ FrH S(a)

(
1 − S h1R

hN

)1/2
h1/2

N (h1R < hN )

FrH S(a)(1 − S)1/2h1/2
N (hN < h1R)

. (6.10)

This front condition is simpler and more explicit than the implementation of the more rigorous
steady-state F . It is encouraging to note that for a deep-ambient gravity current the latter line of
Eq. (6.10) is actually in good agreement with Eq. (5.10); the difference between the rigorous
coefficient 21/2 and the empirical 1.19 is a well-known effect. For additional justification, we subject
the above results to comparisons with measured laboratory and numerical data in Sec. VI C.

C. Dam break and slumping

The initial propagation is of dam-break type, and the method of characteristics can be used to
obtain an analytical solution of the SW equations, in particular, to determine the value of the speed
of propagation.

Because H(h) is a simple function it is straightforward to integrate the characteristic balance
equation (6.6). For a c+ characteristic from the reservoir where h = 1, u = 0 to the nose where
h = hN, u = uN there are three alternatives:

1. h1R < hN < 1. The interface h(x, t) separates fluid of density ρc below and fluid of density ρ2

above; therefore H(h) = 0 along the path of integration and

uN = 2(1 − h1/2
N ) . (6.11)

2. hN < h1R < 1. The upper part of h(x, t) resides in the domain of fluid 2, but the height of the
gravity current decreases so that a part of it is covered by fluid of density ρ1. In this case, H(h)
is initially 0 then becomes 1 in the domain h ≤ h1R, i.e.,

uN = 2(1 − h1/2
1R ) + 2(1 − S)1/2(h1/2

1R − h1/2
N ) . (6.12)

3. h1R > 1. The gravity current is now embedded in fluid of density ρ1 from the beginning and
correspondingly H(h) = 1 on the path of integration. Therefore,

uN = 2(1 − S)1/2(1 − h1/2
N ) . (6.13)
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The above results contain information provided by the conditions in the body of the dense fluid. This
information must be combined with the jump condition (6.10) yielding two equations in the two
unknowns hN and uN. Equations (6.11)–(6.13) are valid for all c+ characteristics that emanate from
the rectangular reservoir of stagnant dense fluid. Consequently, for some time interval following
the lock-release, which we call the slumping time, hN and uN must remain constant. This prediction
of the SW model nicely complements the present experimental observations in which a constant
front speed is similarly observed (see also Figure 11 of Tan et al.12). The agreement represents a
qualitative, but nevertheless important, corroboration of the SW model.

The next obvious step is the quantitative verification of the constant front speed. Here the
simplified front condition (6.10) proves helpful. We found that the intersection of Eq. (6.10) with
Eqs. (6.11)–(6.13) provides a well-converged and unique value of hN. Subsequent substitution into
Eq. (6.10) yields the analytical prediction of uN. These results are shown as smooth curves in Figure
11, and comparisons with measured data (represented by the open and closed symbols of Figure 11)
are now straightforward.

Consistent with White and Helfrich,7 the overall impression from Figure 11 is of very satisfactory
agreement over the entire (broad) range of tested parameters. Discrepancies are of the order of the
measurement errors. We emphasize that the present analytical results were obtained from a well-
defined set of general equations, without any adjustable constants or ad hoc closures. We used
the semi-empirical Huppert-Simpson Fr formula, but this is a generic ingredient of numerous SW
models,11 not a special choice tailored to this particular problem.

A formally surprising outcome is that a favorable comparison between theory and experiment is
obtained also for values of � close to and equal to 1 (�= 1 corresponding to a full-depth lock-release),
whereas the one-layer SW model is expected to lose accuracy when there is a significant return flow
in the ambient. We believe that this robustness demonstrates that the underlying physical mechanisms
are well captured by the simplified equations. Although there certainly are approximation errors in
the SW equations (6.5) and in the front condition (6.10), there is an internal cancellation that renders
accurate values of the combined result uN. We also note that the present solutions for the full-depth
lock-release case are consistent with those of Tan et al.;12 the present results, however, have the
advantage of generality, while their solution pertains only to � = 1.

Figure 11 shows that the speed of propagation decreases with S and ϕ. This is expected:
by increasing either of S or ϕ, we increase the depth-averaged density of the ambient. Thus, the
(dense) gravity current feels a smaller density difference, and hence a reduced buoyancy driving
force. Even so, Figure 11 shows the following interesting effect: for a given S, uN first decreases
with ϕ, then attains a constant “plateau” for ϕ larger than some critical value. The interpretation
is as follows. When ϕ increases from 0, the lower ambient layer thickens, and the overall density
difference felt by the head of the gravity current is reduced. The maximum reduction is attained
when ϕH = hN; further increase of ϕ will have a comparatively minor effect on the buoyancy
driving force. We note again that the SW model captures well the behavior of the real gravity
current.

The normalized speed of propagation increases with the depth-ratio parameter �. This effect
is well-documented from the classical homogeneous-ambient configurations.11 A deep-ambient
gravity current creates less return flow and hence encounters a smaller dynamic loss of driving force.
Ambient stratification does not affect this trend.

The results displayed in Figure 11 cover scenarios in which upstream-propagating disturbances
were and were not excited. When � and S are small, there is, as expected, a reduced likelihood
that such disturbances will occur. Even when they do occur, however, Figure 11 indicates that there
is no marked deviation from the trend of the analytical solutions. We speculate that the influence
of upstream-propagating disturbances will become significant at a later stage of motion, i.e., by
dictating the point at which the gravity current begins to decelerate.12, 14

In summary, the comparisons discussed above provide strong support for the claim that the
one-layer SW model developed in this paper, though dramatically simplified, captures well the
leading-order dynamics of the flows exhibited in Figure 2 insofar as it provides accurate estimates
of the front speed for a wide range of dimensionless parameters. This conjecture is consistent with
the discussion of Ungarish and Huppert4 who suggested that a decomposition of the type advocated
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by Eq. (6.8) “reflects a local, quasi-steady integral property of the current head [that] is expected to
remain valid also for a stratified ambient.” Moreover, concerning the dynamic influence of waves
in the ambient fluid, it has been concluded by Ungarish and Huppert,4 Flynn and Sutherland,26

and Flynn and Linden10 that gravity currents propagating in stratified media impart only a modest
fraction of their kinetic energy to such waves.

VII. DISCUSSION AND CONCLUSIONS

We have investigated the propagation of a gravity current into a two-layer stratified ambient,
under the assumption of a high-Reynolds number and Boussinesq flow field. Both the steady-state
and the lock-release problem were examined. Our main attention was focused on the derivation of
analytical-theoretical results, however, laboratory experiments and Navier-Stokes simulations were
also performed, principally to assess the validity of our analysis.

The advantage and novelty of our study is as follows. First, we developed and solved the motion
from first principles, without relying on adjustable constants or ad hoc closures. Second, we obtained
consistent extensions to existing theories for the homogeneous and linearly stratified ambients (in
particular, the classical solution of Benjamin5 for the steady-state case, and the widely used one-layer
shallow-water model for the lock-release problem). Third, we contrasted our analytical results with
experimental and Navier-Stokes data. Our results are consistent with the previous solutions of Holyer
and Huppert8 and Tan et al.,12 but are more rigorous, applicable to a wider range of parameters, and
more exhaustively validated.

The steady-state solution of Sec. V is thorough, and the results are, in general, non-unique,
with a fast mode 1 and slower mode 2 arising as physically acceptable solutions in Figures 4–6.
We demonstrated that energy dissipation considerations play a rather passive role in excluding
some solutions because their realization would require an internal energy source. In any case, the
steady-state result is mostly of fundamental theoretical-academic importance: it provides insights
and guiding lines, but the analysis yields one implicit relationship in two unknowns (gravity cur-
rent front speed and thickness). The result is given by the combination of Eqs. (5.4) and (5.6); it
lacks a known analytical solution and does not admit initial or boundary conditions. Moreover,
Figures 8–10 indicate that the agreement with laboratory data is relatively poor when the gravity
current is thin and/or the ambient is deep.

By contrast, the one-layer shallow-water model of Sec. VI which we developed for the time-
dependent gravity current is less rigorous than the steady-state solution (for example, it ignores the
kinetic energy of the ambient layers and also neglects the influence of propagation on stratification),
but turns out to be a versatile and accurate solver for the much-studied lock-release problem. The
predicted values for speed of propagation are straightforwardly obtained and show good agreement
with measurements over the entire (wide) range of tested parameters (see Figure 11). Notwithstanding
the apparent simplicity of the one-layer shallow-water model formulation, the underlying physics
of the flow seem to be well-represented. Adding this model to the existing body of literature
yields a versatile calculation tool for the prediction of gravity currents in homogeneous, two-layer
stratified, and linearly stratified ambients. Taken together, we believe that the associated collection
of studies, which dates at least as far back as the 1983 investigation of Rottman and Simpson,27

enhances the reliability of the pertinent body of knowledge particularly insofar as the front speed is
concerned.

Because we considered a Boussinesq system, our results developed for a bottom gravity current
can be immediately applied to a surface-top gravity current (a mirror image of our problem), and to
the upper half of a symmetric intrusion (the lower half is again a mirror image). The behavior of a
non-symmetric intrusion is a topic that needs a separate investigation.

Feasible extensions of the present work are to study the flow beyond the slumping stage and
also to examine the flow dynamics in a cylindrical geometry. Viscous effects, which were neglected
in the present investigation, are expected to become influential in these cases because of the decrease
of speed and thickness with time. Either alternative requires nontrivial modifications of the Navier-
Stokes numerical code and of the laboratory setup.
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As noted above, a deficiency of our analytical solution is that it does not describe the effect
of propagation on stratification. This effect may be significant in practical problems; the flow
field around a propagating gravity current bears similarities (though also important differences as
discussed above) to that over rigid topography; guidelines of the expected effect can be inferred
from Baines,18 in particular his Sec. 3.6. The more rigorous and quantitative investigation of the
intriguing interaction between the three layers of fluid needs a dedicated study, and this must be left
for future work.

ACKNOWLEDGMENTS

Financial support was generously provided by NSERC through the Discovery Grant and
Research Tools and Instruments programs. Helpful discussions with Dr. Brian L. White are ac-
knowledged. Selected experiments were performed using equipment kindly loaned by the labo-
ratory of Dr. David S. Nobes, who also offered assistance in designing the experimental appa-
ratus. Finally, Dr. Brian A. Fleck financially supported A.W.T. during a portion of his graduate
degree.

APPENDIX: FRONT CONDITION RESULTS FOR ϕ �= 0.5

Figures 4 through 6 exhibit solutions to Eqs. (5.4), (5.6), (5.9), and (5.13) for various S but
fixed ϕ, i.e. ϕ = 0.5. In Figures 12–17, we show analogous results for the cases ϕ = 0.25 and
ϕ = 0.75. Similar trends are observed with the following notable exceptions: (i) when ϕ = 0.25
and S ≥ 0.5, Figures 13 and 14 indicate that the mode 1 solution is universally supercritical; and
(ii) when ϕ = 0.75 and S = 0.25, Figure 15 indicates that the mode 2 solution becomes supercritical,
albeit briefly, i.e., for 0.048 ≤ a ≤ 0.071.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.25

0.5

0.75

1

1.25

1.5
Mode 1, φ=0.25,  S=0.25

(a)

a

F
,

c
L

W

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
(b)

a

χ
,

1
−

a
−

χ

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.4

−0.2

0

0.2

0.4

0.6
(c)

a

Ḋ
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FIG. 12. As in Figure 4 but with ϕ = 0.25.
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FIG. 13. As in Figure 5 but with ϕ = 0.25.
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Ḋ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.25

0.5

0.75

1

1.25

1.5
Mode 2, φ=0.25,  S=0.75

(d)

a

F
,

c
L

W

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
(e)

a

χ
,

1
−

a
−

χ

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.4

−0.2

0

0.2

0.4

0.6
(f)

a

Ḋ

FIG. 14. As in Figure 6 but with ϕ = 0.25.
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FIG. 15. As in Figure 4 but with ϕ = 0.75.
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FIG. 16. As in Figure 5 but with ϕ = 0.75.
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Ḋ
FIG. 17. As in Figure 6 but with ϕ = 0.75.
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